01

Ударное уширение линий перехода 10⁰0-00⁰1 молекул CO₂ атомами инертных газов в диапазоне температур 300-700 К

© К.И. Аршинов¹, О.Н. Крапивная¹, В.В. Невдах², С.Р. Сырцов¹, В.Н. Шут¹

¹ Институт технической акустики НАН Беларуси,

210023 Витебск, Беларусь ² Белорусский национальный технический университет, 220013 Минск, Беларусь e-mail: itaaki@yandex.ru

Поступила в редакцию 11.01.2018 г.

С использованием перестраиваемого CO_2 -лазера измерены ненасыщенные коэффициенты поглощения в чистом CO_2 и в бинарных газовых смесях CO_2 с инертными газами He, Ar, Kr и Xe в соотношении 1:2 при давлении 100 Torr на центральных частотах линий R(8), R(22), P(8), P(22) и P(32) перехода 10^00-00^01 молекулы CO_2 в температурном диапазоне 300-700 K. Определены коэффициенты ударного уширения спектральных линий молекулы CO_2 атомами He, Ar, Kr и Xe. Полученные температурные зависимости коэффициентов ударного уширения аппроксимированы степенными функциями с двумя различными показателями степени.

DOI: 10.21883/OS.2018.07.46257.10-18

Введение

Для измерения концентрации углекислого газа в атмосфере при помощи СО2-лазера, изучения переноса ИК излучения в атмосфере, определения энергетических характеристик мощных технологических СО2-лазеров требуется знание параметров спектральных линий молекул СО₂, находящихся в условиях ударного уширения [1,2]. В перечисленных задачах молекулы СО2 входят в состав многокомпонентных газовых смесей, и основными процессами, приводящими к ударному уширению их спектральных линий, являются парные столкновения молекул СО2 между собой и с другими компонентами газовой смеси. Следовательно, полная ударная ширина спектральных линий молекулы СО2 может быть представлена в виде суммы вкладов в уширение, даваемых такими парными столкновениями. Для определения этих вкладов необходимо исследовать бинарные смеси молекул СО₂ с разнообразными компонентами, в том числе с инертными газами.

Ударная ширина спектральных линий молекул CO₂ Δv_L в бинарной смеси CO₂: M_i может быть представлена в виде $\Delta v_L = \gamma_{CO_2-CO_2}(\xi_{CO_2} + b_{CO_2-M_i} \cdot \xi_{M_i})p_{\Sigma}$, где $\gamma_{CO_2-CO_2}$ — ударная ширина линии CO₂ при давлении 1 Тогт или коэффициент ударного самоуширения линий молекул CO₂, $\xi_{CO_2} = p_{CO_2}/p_{\Sigma}$ и $\xi_{M_i} = p_{M_i}/p_{\Sigma}$ — доли молекул CO₂ и компоненты M_i в смеси, p_{CO_2} и p_{M_i} — парциальные давления CO₂ и M_i, p_{Σ} — сумарное давление смеси, $b_{CO_2-M_i} = \gamma_{CO_2-M_i}/\gamma_{CO_2-CO_2}$ — относительный коэффициент ударного уширения линий молекул CO₂ компонентой M_i, $\gamma_{CO_2-M_i}$ — коэффициент ударного уширения линий молекул CO₂ компонентой M_i, $p_{CO_2-M_i}$ — коэффициент ударного уширения линий молекул CO₂ компонентой M_i, $p_{CO_2-M_i}$ — коэффициент ударного уширения линий молекул CO₂ компонентой M_i при $p_{M_i} = 1$ Torr. Существуют немногочисленные экспериментальные результаты измерений $b_{CO_2-M_i}(T)$ для инертных газов. Например, в работе [3] приведены значения ($M_i = H_2$, D_2 , O_2 , N_2 , He, Ne, Ar, Kr) лишь для двух значений температуры — 300 и 523 K, и следовательно, вид функций $b_{CO_2-M_i}(T)$ в рассмотренном температурном диапазоне не установлен. В работе [4] даны значения $\gamma_{CO_2-M_i}$ только одной линии P(20) в полосе $10^{0}0-00^{0}1$ для целого ряда буферных газов ($M_i = CO_2$, N_2O , NO, CO, H₂, D₂, O₂, N₂, He, Ne, Ar, Kr, Xe, NH₃, CH₄) при одном значении температурые зависимости коэффициентов $b_{CO_2-M_i}$ для He и N₂ и получены различающиеся результаты: в [5] температурная зависимость отсутствует, а в [6] такая зависимость обнаружена.

Цель настоящей работы — экспериментальное определение коэффициентов ударного уширения спектральных линий перехода $10^{0}0-00^{0}1$ молекул CO₂ атомами инертных газов He, Ar, Kr и Xe в диапазоне температур 300-700 K.

Экспериментальные результаты и их обсуждение

В настоящей работе для определения относительных коэффициентов ударного уширения спектральных линий молекул CO₂ атомами инертных газов использовалась методика сравнения ненасыщенных коэффициентов поглощения (КП) на центральной частоте линий перехода $10^{0}0-00^{0}1$ в чистом CO₂ α_{CO_2} и в бинарных смесях CO₂: M_i $\alpha_{CO_2:M_i}$ с соотношением компонент по давлению P_{CO_2} : $P_{M_i} = 1$: Y при фиксированной температуре и давлениях, обеспечивающих лоренцевский контур линий

Рис. 1. Температурные зависимости ненасыщенных КП на линии P(22) перехода $10^{0}0-00^{0}1$ молекулы CO₂: (*a*) чистый CO₂; (*b*) газовые смеси CO₂: Ar=1:2 (\circ), CO₂:Kr=1:2 (\times), CO₂:Xe=1:2 (+), CO₂:He=1:2 (\bullet).

поглощения (например, [7]). В качестве источника зондирующего излучения применялся стабилизированный по частоте перестраиваемый CO₂-лазер. Значения относительных коэффициентов ударного уширения $b_{CO_2-M_i}$ определялись из выражения

$$\alpha_{\rm CO_2}/\alpha_{\rm CO_2:M_i} = 1 + Y b_{\rm CO_2-M_i}.$$
 (1)

Были измерены КП на линиях R(8), R(22), P(8), P(22) и P(32) перехода $10^{0}0-00^{0}1$ в чистом CO₂ и в газовых смесях CO₂:He/Ar/Kr/Xe=1:2 при давлениях $P_{CO_2} = P_{\Sigma} = 100$ Тогт в диапазоне температур 300-700 К. Погрешности измерения КП не превышали $\sim 2 \cdot 10^{-5}$ сm⁻¹. Результаты измерений КП на линии P(22) представлены на рис. 1.

Значения относительных коэффициентов ударного уширения $b_{\rm CO_2-He}$, $b_{\rm CO_2-Ar}$, $b_{\rm CO_2-Kr}$ и $b_{\rm CO_2-Xe}$, полученные с помощью выражения (1), представлены на рис. 2. Штриховыми линиями показаны линейные аппроксимации температурных зависимостей $b_{\rm CO_2-M_i}(T) = a_0 + a_1(T)$. Аналогичные температурные зависимости коэффициентов поглощения и относительных коэффициентов ударного уширения были получены для всех используемых линий. Коэффициенты $\{a_0, a_1\}$

соответствующих линейных аппроксимаций зависимостей $b_{\rm CO_2-He}(T)$, $b_{\rm CO_2-Ar}(T)$, $b_{\rm CO_2-Kr}(T)$ и $b_{\rm CO_2-Xe}(T)$ представлены в табл. 1.

В рассматриваемых случаях столкновений молекулы СО2 с атомами инертных газов, не обладающими собственным электрическим дипольным моментом, их взаимодействие носит дисперсионный характер, и уширение спектральных линий молекул СО2 зависит от поляризуемости атомов и от их массы. В работе [8] было исследовано ударное уширение линий *R*-ветви полосы v₂ (1850-2140 сm⁻¹) полярной молекулы H₂O в смесях с инертными газами Не, Ne, Ar, Kr. Молекулы воды обладают постоянным дипольным моментом, и их взаимодействие с инертными газами имеет дисперсионный и индукционный характер. Влияние массы атомов буферного газа (m₂) на коэффициент уширения линий поглощающей молекулы (*m*₁) учитывалось использованием "массового" фактора $\sim [m_1/(m_1+m_2)]^{n/2}$, где n = (q - 3)/(q - 1) для потенциала межмолекулярного взаимодействия типа r^{-q}. Следовательно, коэффициент ударного уширения линий молекулы H₂O должен уменьшаться для атомов с большей массой. Тем не менее было установлено, что с увеличением массы атомов относительные коэффициенты ударного уширения всех исследуемых линий возрастали, т.е. основное влияние на параметры контура спектральных линий полярных молекул H₂O оказывает значение поляризуемости атомов буферных газов.

По мере возрастания размеров атомов (He, Ar, Kr, Xe) происходит увеличение их поляризуемости при столкновениях, и это должно приводить к росту ударных коэффициентов уширения линий CO₂. Однако, согласно нашим экспериментам, относительные коэффициенты ударного уширения спектральных линий молекул CO₂ атомами инертных газов уменьшаются при переходе от атомов Не к атомам Xe. Это свидетельствует о том, что в рассматриваемом случае основное влияние оказывает

Рис. 2. Температурные зависимости относительных коэффициентов столкновительного уширения линии P(22) перехода $10^{0}0-00^{0}1$ атомами инертных газов He (•), Ar (°), Kr (×), Xe (+) (настоящая работа); линии P(20) перехода $10^{0}0-00^{0}1$ атомами инертных газов Ar (\triangle), He (\Box) [3]; их линейные аппроксимации (штриховые линии).

T. K

Линия	Не		Ar		Kr		Xe	
	<i>a</i> ₀	a_1, K^{-1}	a_0	a_1, K^{-1}	a_0	a_1, K^{-1}	a_0	a_1, K^{-1}
P(8) P(22) P(32) R(8) R(22)	0.448 0.486 0.512 0.478 0.47	0.00032 0.00045 0.00047 0.00025 0.00055	0.588 0.509 0.335 0.587 0.423	0.00006 0.00018 0.00026 0.00006 0.0004	0.575 0.417 0.375 0.588 0.512	0.00004 0.00025 0.00028 0.00006 0.00013	0.16 0.121 0.098 0.114 0.143	0.00005 0.00005 0.00008 0.00001 0.00001

Таблица 1. Значения параметров линейных аппроксимаций температурных зависимостей относительных коэффициентов ударного уширения линий перехода 10⁰0-00⁰1 молекулы CO₂ атомами инертных газов

изменение "массового" фактора столкновительных партнеров. Оценки, сделанные для смесей молекул СО2 с атомами инертных газов на основе приведенного выше соотношения (при q = 6, n = 3/5), качественно согласуются с нашими экспериментальными результатами. Существенное уменьшение относительного коэффициента ударного уширения линий перехода 10⁰0-00⁰1 атомами Хе, возможно, связано со сменой режима соударения с мягкого (soft) на жесткий (hard) [1,9], что обусловлено значительно большей массой возмущающих молекул по сравнению с поглощающими ($m_{Xe} \gg m_{CO_2}$). Следует отметить, что сравнение значений коэффициентов уСО2-хе (T = 300 K) для линий P(8) перехода $10^{0}0-00^{0}1 \text{ CO}_{2}$ и R(0) перехода $00^{0}0-30^{0}1$ CO₂ дает сопоставимый результат — 2.44 MHz/Torr для P(8) в нашей работе и 3.15 MHz/Torr для *R*(0) в [10].

Были определены коэффициенты ударного уширения $\gamma_{CO_2-M_i}$ линий молекулы CO₂ атомами He, Ne, Ar, Kr. Ранее в [11,12] было показано, что зависимости коэффициентов самоуширения $\gamma_{CO_2-CO_2}(T)$ спектральных линий молекул CO₂ в диапазоне температур 300–700 К могут быть описаны формулой, учитывающей изменение механизма взаимодействия сталкивающихся молекул при изменении температуры газа и содержащей два разных показателя степени n_1 и n_2 . Так как было получено, что температурные зависимости относительных коэффициентов $b_{CO_2-M_i}$ являются линейными функциями и $\gamma_{CO_2-M_i}(T) = b_{CO_2-M_i}(T)\gamma_{CO_2-CO_2}(T)$, то для описания функций $\gamma_{CO_2-M_i}(T)$ может быть использована формула

$$\gamma_{\mathrm{CO}_2-\mathbf{M}_i} = [\gamma_{\mathrm{CO}_2-\mathbf{M}_i}(T_c)](T_c/T)^n, \qquad (2)$$

где $n = \begin{cases} n_1, & \text{при } T < T_c, \\ n_2, & \text{при } T > T_c. \end{cases}$

На рис. 3 представлены температурные зависимости коэффициентов ударного уширения линии P(22) перехода $10^{0}0-00^{0}1$ молекулы CO₂ атомами инертных газов.

Как уже отмечалось выше, для изучения ударного уширения линий с разными вращательными числами *J* были проведены измерения на линиях R(8), R(22), P(8), P(22) и P(32) перехода $10^{0}0-00^{0}1$. В качестве примера на рис. 4 представлены температурные зависимости коэффициентов ударного уширения атомами Хе линий

Таблица 2. Значения параметров аппроксимаций по формуле (2) температурных зависимостей коэффициентов ударного уширения линий перехода $10^{0}0-00^{0}1$ молекулы CO₂ атомами инертных газов

Атом	n_1 n_2		$\gamma_{\mathrm{CO}_2-\mathrm{M}_i}(T_c),$ MHz/Torr	T_c, K				
	P(8)							
He	1.866	0.425	7.46					
Ar	2.121	0.756	6.758	360				
Kr	3.352	0.376	5.748					
Xe	1.213	0.759	2.25	320				
	P(22)							
He	1.174	0.663	5.013					
Ar	1.262	0.956	4.708	360				
Kr	1.365	0.79	4.002					
Xe	1.5	1.05	1.35	340				
	P(32)							
He	2.98	0.241	4.512					
Ar	2.317	0.439	3.029	350				
Kr	3.092	0.285	3.13					
Xe	1.557	0.49	0.914	360				
	<i>R</i> (8)							
Не	4.32	0.318	5.055	260				
Ar	Ar 4.843		5.299	300				
Kr	Kr 5.391		4.483	355				
Xe	4.323 0.71		1.141	555				
	R(22)							
He	1.444	0.64	5.364	380				
Ar	1.841	0.638	4.417	380				
Kr	1.464	0.663	3.65	420				
Xe	1.478	1.075	1.117	380				

P-ветви перехода $10^{0}0-00^{0}1$ молекул CO₂ с различными вращательными квантовыми числами. Значения параметров, входящих в формулу (2), для всех линий и инертных газов приведены в табл. 2.

Рис. 3. Температурные зависимости коэффициентов ударного уширения линии P(22) перехода $10^{0}0-00^{0}1$ CO₂ атомами Не (•), Ar (•), Kr (×), Xe (+) и их аппроксимации формулами типа (2) (штриховые линии).

Рис. 4. Температурные зависимости коэффициентов ударного уширения линий P(8), P(22) и P(32) перехода $10^{0}0-00^{0}1$ CO₂ атомами Хе и их аппроксимации формулами типа (2) (штри-ховые линии): $\circ - P(8)$, $\bigtriangleup - P(22)$, $\Box - P(32)$.

Заключение

Измерены ненасыщенные коэффициенты поглощения в диапазоне температур 300-700 К на центральных частотах линий R(8), R(22), P(8), P(22) и P(32) перехода 10⁰0-00⁰1 молекулы СО₂ в чистом углекислом газе и в газовых смесях CO₂:He/Ar/Kr/Xe = 1:2 при давлениях 100 Torr, когда линии поглощения имеют лоренцевский контур. Определены относительные коэффициенты $b_{\text{CO}_2-M_i}(T)$ и коэффициенты ударного уширения $\gamma_{\rm CO_2-M_i}(T)$ рассмотренных спектральных линий и их температурные зависимости. Установлено, что значения коэффициентов ударного уширения уменьшаются при переходе от атомов Не к атомам Хе, причем атомы Хе имеют аномально низкую эффективность ударного уширения спектральных линий молекулы СО2 $b_{\rm CO_2-Xe}(T) \sim 0.2$ по сравнению с атомами других использованных инертных газов.

Показано, что относительные коэффициенты ударного уширения $b_{\text{CO}_2-M_i}(T)$ всех рассмотренных спектральных линий в исследованном интервале температур являются

слаборастущими линейными функциями, а коэффициенты ударного уширения $\gamma_{\text{CO}_2-M_i}(T)$ описываются степенными зависимостями с двумя различными показателями степени.

Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (грант № Ф15СО-003).

Список литературы

- [1] Стариков В.И., Лаврентьева Н.Н. Столкновительное уширение спектральных линий поглощения молекул атмосферных газов / Под ред. Фирсова К.М. Томск: Издво Института оптики атмосферы СО РАН, 2006. С. 222; *Starikov V.I., Lavrentieva N.N.* Collisional broadening and shifting of spectral line of atmospheric moleculs. Tomsk: Publishing House of the IAO SB RAS, 2006. 308 p.
- [2] Witteman W.J. The CO₂ laser. Springer, 1987; Витеман В. CO₂-лазер. М.: Мир, 1990. С. 70.
- [3] Буланин М.О., Булычев В.П., Ходос Э.Б. // Опт. и спектр. 1980. Т. 48. В. 4. С. 732; Bulanin M.O., Bulychev V.P., Khodos E.B. // Opt. Spectrosc. 1980. V. 48. P. 403.
- [4] Meyer T.W., Rhodes C.K., Haus H.A. // Phys. Rev. A. 1975.
 V. 12. N 5. P. 1993.
- [5] Robinson A.M., Weiss J.S. // Can. J. Phys. 1982. V. 60. P. 1656.
- [6] Аршинов К.И., Аршинов М.К., Невдах В.В. // Опт. и спектр. 2012. Т. 112. № 6. С. 914; Arshinov K.I., Arshinov M.K., Nevdakh V.V. // Opt. Spectrosc. 2012. V. 112. N 6. P. 844.
- [7] Аршинов К.И., Крапивная О.Н., Невдах В.В., Шут В.Н. // ЖПС. 2017. Т. 84. № 5. С. 679; Arshinov K.I., Krapivnaya O.N., Nevdakh V.V., Shut V.N. // J. Appl. Spectrosc. 2017. V. 84. N 5. P. 739.
- [8] Claveau C., Henry A., Hurtmans D., Valentin A. // JQSRT. 2001. V. 68. P. 273.
- [9] Быков А.Д., Синица Л.Н., Стариков В.И. Введение в колебательно-вращательную спектроскопию многоатомных молекул. Томск: Изд-во Института оптики атмосферы СО РАН, 2004. 274 с.; Bykov A.D., Sinitsa L.N., Starikov V.I. Introduction in rovibrational spectroscopy of polyatomic molecules. Tomsk: Publishing House of the IAO SB RAS, 2004. 274 p.
- [10] Shinji Nakamichi, Yoshimitsu Kawaguchi, Hisato Fukuda, Shinichi Enami, Satoshi Hashimoto, Masahiro Kawasaki, Toyofumi Umekawa, Isamu Morino, Hiroshi Suto, Gen Inoue // Phys. Chem. Chem. Phys. 2006. V. 8. P. 364.
- [11] Невдах В.В., Аршинов К.И., Лешенюк Н.С. // Сб. тр. VIII межд. конференции "Фундаментальные проблемы оптики" 2014.. СПб: Университет ИТМО, 2014. С. 121.
- [12] Аршинов К.И., Крапивная О.Н., Невдах В.В. // Оптика атмосферы и океана. 2017. Т. 30. № 3. С. 193; Arshinov K.I., Krapivnaya O.N., Nevdakh V.V. // Atmospheric and Oceanic Optics. 2017. V. 30. N 4. P. 311.