08 Магнитоупругие волны в субмикронных пленках ЖИГ, полученных ионно-лучевым распылением на подложках гадолиний-галлиевого граната

© Ю.В. Хивинцев,^{1,2} В.К. Сахаров,¹ С.Л. Высоцкий,^{1,2} Ю.А. Филимонов,^{1-3,¶} А.И. Стогний,⁴ С.А. Никитов^{5,2}

¹ Саратовский филиал ИРЭ им. В.А. Котельникова РАН,

410019 Саратов, Россия

² Саратовский государственный университет им. Н.Г. Чернышевского,

410026 Саратов, Россия

³ Саратовский государственный технический университет им. Ю.А. Гагарина,

410054 Саратов, Россия

⁴ Научно-практический центр по материаловедению НАН Беларуси,

220072 Минск, Беларусь

⁵ Институт радиотехники и электроники им. В.А. Котельникова РАН,

125009 Москва, Россия

[¶] e-mail: yuri.a.filimonov@gmail.com

(Поступило в Редакцию 2 августа 2017 г.)

Обнаружены серии эквидистантных осцилляций в спектре передачи и законе дисперсии поверхностных магнитостатических волн (ПМСВ) Дэймона–Эшбаха, распространяющихся в субмикронных (200 nm) пленках железоиттриевого граната (ЖИГ), полученных ионно-лучевым распылением на подложках гадолинийгаллиевого граната (ГГГ). Указанные осцилляции отвечают возбуждению магнитоупругих волн в структуре ЖИГ–ГГГ на частотах резонансного взаимодействия ПМСВ с упругими сдвиговыми модами волноведущей структуры ЖИГ–ГГГ. Полученные результаты указывают, что исследованные пленки ЖИГ характеризуются эффективной магнитоупругой связью спиновой и упругой подсистем и согласованием акустических импедансов на интерфейсе ЖИГ–ГГГ, что позволяет рассматривать технологию ионно-лучевого распыления пленок ЖИГ на подложках ГГГ, как перспективную для создания устройств магноники и стрейнтроники.

DOI: 10.21883/JTF.2018.07.46178.2448

Перспективы интеграции устройств магноники [1,2] с полупроводниковыми электронными компонентами, а также создания монолитных композитных мультиферроидных структур для устройств стрейнтроники [3,4] стимулируют разработку нежидкофазных технологий получения пленок железоиттриевого граната (ЖИГ). На сегодняшний день наиболее широко используются методы импульсного лазерного напыления [5-7], ВЧ магнетронного распыления [8,9] и ионно-лучевого испарения [10-12]. Сообщалось также о получении пленок ЖИГ с использованием золь-гель технологий [13], молекулярно-лучевой эпитаксии [14] и осаждения из газовой фазы [15]. Достигнутый за последние годы прогресс в развитии таких технологий позволяет получать пленки ЖИГ нанометровых (5-100 nm) и субмикронных (100-1000 nm) толщин на подложках гадолинийгаллиевого граната (ГГГ) [5–10], Si [10,11], GaN [12]. При этом в таких пленках удается наблюдать распространение субмикронных [7,10] и нанометровых [5] спиновых волн, которые демонстрируют эффекты невзаимности [16], параметрической неустойчивости [17] и позволяют осуществлять эффективный спиновый транспорт [6-8,15]. Однако об обнаружении эффектов распространения магнитоупругих волн (МУВ) в структурах ЖИГ/ГГГ, полученных нежидкофазной эпитаксией, до сих пор не сообщалось. В настоящей работе исследовано

распространение МУВ в субмикронных пленках ЖИГ, полученных ионно-лучевым распылением на подложках ГГГ.

Отметим, что применительно к эпитаксиальным структурам ЖИГ/ГГГ эффекты распространения МУВ изучены достаточно подробно [18–21]. Показано, что на частотах фазового синхронизма спиновых и упругих волн, поддерживаемых волноведущей структурой ЖИГ/ГГГ, в амплитудно-частотной характеристике (АЧХ) и законе дисперсии спиновой [18–20] или упругой [21] волны, прошедшей через структуру, наблюдаются осцилляции. Мы покажем, что аналогичные особенности наблюдаются в спектре передачи и законе дисперсии поверхностных магнитостатических волн (ПМСВ) Дэймона–Эшбаха при распространении в субмикронных пленках ЖИГ, полученных ионно-лучевым распылением на подложках ГГГ.

В экспериментах использовалась пленка ЖИГ толщиной $d \approx 200$ nm, полученная ионно-лучевым распылением на подложке ГГГ с кристаллографической ориентацией (111) и толщиной $D \approx 600 \,\mu$ m. Пленки выращивались по технологии, описанной в работе [22]. Использовались компактированные мишени керамики состава Y₃Fe₅O₁₂, которые распылялись пучком ионов кислорода с энергией 1600 eV и плотностью тока $\approx 0.25 \,\text{mA/cm}^2$ при рабочем давлении кислорода менее 0.4 Pa и предельном вакууме ≤ 0.03 Ра. Для обеспечения соответствия катионного состава мишени и осаждаемого материала мишень предварительно распылялась в указанных режимах на сменяемую заслонку в течение 180 min. Поток распыляемого материала при комнатной температуре осаждался на подложку со скоростью $\approx 2.4\,\text{nm/min}$ и с неравномерностью по поверхности < 10%. Далее образец отжигался на воздухе в течение 60 min при температуре 850°С и равномерно охлаждался до 400°С в течение 300 min. На вставках a-c к рис. 1 приведены соответственно изображение поперечного сечения пленки, полученное с помощью атомно-силовой микроскопии (АСМ) изображение участка поверхности 2.5 × 2.5 µm пленки ЖИГ, дифрактограмма, измеренная на установке Дрон-4 с фокусировкой по плоскому образцу в геометрии Брэгга–Брентано (схема $\theta - 2\theta$ Си K_{α} излучение, $\lambda \approx 0.15418$ nm). Из вставки *а* можно видеть, что пленка характеризуется плоскопараллельными интерфейсными границами пленка-подложка и пленкаповерхность (здесь над поверхностью ЖИГ показан технологический слой платины, который применяется в стандартной методике изготовления поперечного сечения диэлектрических образцов методом реза фокусированными ионными пучками на станции FIB Helios NanoLab 600). При этом отсутствует видимое размытие интерфейсной области пленка-подложка, которое могло бы быть вызвано диффузионными процессами при отжиге. Поперечное сечение демонстрирует, что пленка имеет толщину $d \approx 200 \,\mathrm{nm}$ и является сплошной и однородной. Последнее несколько контрастирует с АСМ изображением поверхности пленки на вставке b, где виден гранулированный характер пленки с размером зерна $\approx 200 \,\mathrm{nm}$ и перепадами высот $\approx 80 \,\mathrm{nm}$. Из дифрактограммы на вставке с видно совпадение рефлексов (888) от пленки и подложки с точностью расхождения их положений $\Delta \theta < 0.25^{\circ}$ в окрестности угла отражения $2\theta \approx 119^\circ$, что свидетельствует об эпитаксиальном согласовании кристаллических решеток подложки и пленки и о доминировании текстуры (111) в пленке ЖИГ.

Эффективная намагниченность пленки 4 л М определялась из спектров ферромагнитного резонанса (ФМР), измеренных для образца размером 3 × 3 mm на частоте $f_r \approx 9.9 \,\text{GHz}$ при углах ψ между направлением магнитного поля H и плоскостью пленки $\psi \approx 0$ и $\psi \approx 90^{\circ}$ (см. вставку *d* к рис. 1). Как при перпендикулярном намагничивании ($\psi \approx 90^\circ$), так и при касательном ($\psi \approx 0$) в спектре наблюдалось несколько линий поглощения шириной $\Delta H(f_r) \approx 20$ Oe, что указывает на возбуждение мод спин-волнового резонанса в пленке и отражает неоднородность распределения ее магнитных параметров. Расчет намагниченности, выполненный для основного пика поглощения, дал значение 4π M \approx 1.733 kgf. Отметим, что зависимость резонансных полей $|\mathbf{H}_r(\boldsymbol{\varphi})|$ в спектре ФМР пленки, намагниченной под углом к нормали ($\psi \approx 30-70^\circ$) от поворота пленки на угол ϕ относительно направления проекции магнитного поля Н на плоскость пленки, имела период,

близкий к 120°: $H_r(\varphi) = H_r(\varphi + 2\pi n/3)$, что является типичным [23] для монокристаллических пленок ЖИГ кристаллографической ориентации (111), выращенных жидкофазной эпитаксией на ГГГ(111). Это позволяет утверждать, что в исследуемой пленке ЖИГ внутреннее эффективное магнитное поле содержит вклад со стороны полей кубической кристаллографической анизотропии. Следовательно, в исследуемой пленке ЖИГ присутствует значительная доля монокристаллической фазы, что согласуется с видом дифрактограммы на вставке *с* к рис. 1.

Для изучения эффектов распространения спиновых волн на поверхности пленки ЖИГ формировались возбуждающие и приемные антенны в виде закороченных копланарных волноводов из меди по технологии, аналогичной [24]. Антенны имели длину $l \approx 200 \,\mu$ m, ширину w сигнального и земляных проводников $w \approx 7 \,\mu$ m, расстояние j между проводниками $j \approx 4 \,\mu$ m. Исследовались макеты с расстоянием Lмежду сигнальными линиями $L_1 \approx 50$ и $L_2 \approx 100 \,\mu$ m (рис. 1). Касательное магнитное поле $H \approx 120-1400$ Ое прикладывалось вдоль микроантенн, что соответствовало возбуждению поверхностных магнитостатических волн (ПМСВ) Деймона–Эшбаха [25] в интервале частот $f \approx 1.5-6$ GHz.

Измерение S-параметров макетов линии задержки на ПМСВ проводилось с помощью зондовой станции, векторного анализатора цепей Agilent Technologies E5071 и предусилителя Agilent Technologies 87405С, который использовался для усиления выходного сигнала. Измерениям предшествовала калибровка для исключения влияния зондов, кабелей и предусилителя. Для исключения влияния проводилось вычитание ее сигнала при $H \approx 2150$ Ое, когда спиновые волны на частотах < 6 GHz не возбуждались. Измерения выполнялись при уровне падающей мощности $P_{\rm in} \approx -30$ dBm, что было меньше порогового уровня развития параметрической неустойчивости ПМСВ в исследованных пленках.

На рис. 2 и 3 приведены соответственно частотные зависимости параметра $S_{21}(f)$ и дисперсионные характеристики ПМСВ f = f(k), где волновые числа k = k(f) рассчитывались по результатам измерений набега фазы волны $\theta(f, L)$ в макете с $L_1 \approx 50 \, \mu {
m m}$ с помощью соотношения [26] $k(f) = \theta(f)/L$. На вставках к рис. 2 и 3, b показаны в увеличенном масштабе выделенные кружками участки частотной зависимости амплитуды коэффициента прохождения $S_{21}(f)$ ПМСВ и дисперсионных кривых f = f(k) соответственно. Видно, что в зависимости $S_{21}(f)$ наблюдаются эквидистантные осцилляции, разделенные частотными интервалами $\Delta f \approx 3 \,\mathrm{MGz}$ и имеющие резонансный характер — ширина пика ≤ 1 MGz. Глубина осцилляций ∆А в зависимости $S_{21}(f)$ увеличивалась с расстоянием, что видно из сравнения вставок а и b к рис. 2. При этом в дисперсионной зависимости ПМСВ на резонансных частотах формируются аномальные участки (рис. 3, b). Ранее аналогичные

Рис. 1. Вид экспериментального макета, с обозначением параметров копланарных антенн: L — расстояние между центральными проводниками, w — ширина микрополосок, j — расстояние между микрополосками, s — контактные площадки для микрозондов. На вставках: a — изображение скола пленки по толщине, полученное на сканирующем электронном микроскопе; b — ACM изображение участка 2.5 × 2.5 μ m поверхности пленки ЖИГ; c — дифрактограмма пленки; d — спектры ФМР при касательном ($\psi \approx 0$) и нормальном ($\psi \approx 90^{\circ}$) намагничивании образца.

2.6

2.7

2.8

2.9

H, kOe

5.2

5.3

5.4

-0.4

Рис. 2. Спектры коэффициента передачи $S_{21}(f, L)$ ПМСВ в структуре ЖИГ(200 nm)/ГГГ(600 μ m) при $L_1 \approx 50 \,\mu$ m и $L_2 \approx 100 \,\mu$ m поле $H \approx 550$ Ос. На вставках — увеличенные участки спектра $S_{21}(f, L)$ при L_1 (*a*) и L_2 (*b*), выделенные кружками.

 $K\alpha_1$

119.0

 2θ , deg

0

118.5

Κα

120.0

119.5

Рис. 3. a — измеренные (сплошные линии) и рассчитанные в дипольном приближении законы дисперсии ПМСВ (пунктир) при полях H = 0.32, 0.55, 0.81, 1.07 kOe. Кружками выделены частоты, для которых приведены данные в таблице. b — участок дисперсии, выделенный штриховой линией на дисперсионной кривой при поле H = 1.07 kOe, на котором видны аномальные участки в законе дисперсии.

особенности в зависимостях $S_{21}(f)$ и f = f(k) наблюдались в экспериментах по изучению распространения МСВ в эпитаксиальных пленках ЖИГ [18–20], в том числе и в пленках субмикронной толщины $d \approx 0.54 \,\mu\text{m}$ [20], и связывались с образованием "быстрых" [27] МУВ на частотах фазового синхронизма МСВ и упругих волн акустического волновода пленка ЖИГ-подложка ГГГ. Поэтому следовало ожидать, что обнаруженные нами резонансные особенности в зависимостях $S_{21}(f)$ и f = f(k) имеют аналогичную природу.

Действительно, резонансные частоты, на которых наблюдаются осцилляции в зависимостях $S_{21}(f)$ и f = f(k), отвечают частотам отсечки сдвиговых упругих мод волноведущей структуры пленка-подложка, которые в случае $d \ll D$ определяются соотношением

$$f_N \approx V_t N / (2D), \tag{1}$$

где $V_t = 3.57 \cdot 10^5$ cm/s — скорость поперечных акустических волн в ГГГ, $D \approx 600 \,\mu$ m толщина ГГГ, N отвечает целому числу полуволн акустической сдвиговой волны по толщине структуры и в случае, показанном на вставке, N = 1092 - 1102. При этом частотный интервал между соседними модами с номерами N и N + 1 определяется как

$$\Delta f_{N,N+1} = V_t / (2D), \qquad (2)$$

что в нашем случае составляет $\Delta f_{N,N+1} \approx 2.98 \text{ MHz}$ и хорошо согласуется с измеренными значениями $\Delta f \approx 3 \text{ MHz}.$

В качестве параметров, характеризующих эффективность резонансного взаимодействия спиновой и упругой волн, можно рассматривать "глубину" осцилляций ΔA в

зависимости $S_{21}(f)$ (вставки к рис. 2) и относительную величину изменений волнового числа $\Delta k/k$ в законе дисперсии f = f(k) (рис. 3, b). Отметим, что в пренебрежении влиянием прямой электромагнитной наводки между преобразователями амплитуду осцилляций ΔA в спектре передачи $S_{21}(f)$ и вызванную резонансным взаимодействием с упругой волновой добавкой $\Delta k''_{MEV}$ к мнимой части k'' волнового числа ПМСВ k = k' + ik''можно связать с помощью соотношения [28,19]

$$\Delta A \, \mathrm{dB} = -8.68 \Delta k_{\mathrm{MEV}}^{\prime\prime} L, \qquad (3)$$

где L — пройденное волной расстояние. Применимость (3) к нашему случаю подтверждается ростом с расстоянием L "глубины" осцилляций ΔA в зависимости $S_{21}(f, L)$, показанных на вставках (a) и (b) на рис. 2.

Для оценки пространственных декрементов ПМСВ как вне частот магнитоупругих резонансов k", так и на резонансных частотах $k''_{MEV} = k'' + \Delta k''_{MEV}$ воспользуемся результатами измерений частотных зависимостей $S_{21}(f)$ в макетах с различными расстояниями между преобразователями $L_1 \approx 50\,\mu{
m m}$ и $L_2 \approx 100\,\mu{
m m}$ (рис. 2). При этом будем обращаться к частотам f^* , отвечающим максимуму прошедшего сигнала ПМСВ при фиксированном поле подмагничивания. Такие частоты выделены кружками на зависимостях $S_{21}(f)$ и f = f(k) на рис. 2 и 3. В приближении идентичности параметров как преобразователей, так и участков пленки, на которых они размещены, на выбранной частоте f* изменение амплитуды прошедшего сигнала $\Delta A(f^*) = S_{21}(f^*, L_1) - S_{21}(f^*, L_2) = 8.68 k'' L \,\mathrm{dB}$, где $L = L_2 - L_1 = 50 \,\mu$ m. В таблице приведены значения

Значения пространственных декрементов k'', k''_{MEV} , $\Delta k''_{MEV}$, а также относительное изменение волнового числа $\Delta k/k$ на частоте магнитоупругого резонанса и групповая скорость V_g ПМСВ в рассматриваемой структуре при выбранных значениях поля подмагничивания $H_{1,2,3}$ и частот f^*

H, f^*	k", 1/cm	$k_{\rm MEV}^{\prime\prime}$, 1/cm	$\Delta k_{\rm MEV}^{\prime\prime}$, 1/cm	$\Delta k/k$, %	V_g , 10 ⁵ cm/s	$\widetilde{k}^{\prime\prime}, 1/\mathrm{cm}$ $\widetilde{\Delta H(f^*)}, \mathrm{Oe}$
$H_1 \approx 320 \mathrm{Oe}$ $f^* \approx 2.387 \mathrm{GHz}$	134	143	9	< 1	3.7	250 2.8
$H_2 \approx 550 \mathrm{Oe}$ $f^* \approx 3.285 \mathrm{GHz}$	270	309	39	< 2	3.2	330 4.9
$H_3 \approx 810 \mathrm{Oe}$ $f^* \approx 4.196 \mathrm{GHz}$	403	696	293	4–10	2.6	676 5.9

Примечание. В крайнем правом столбце оценки магнитных потерь ПМСВ $\tilde{k}'' \approx \gamma \Delta H(f^*)/V_g$, где значения $\Delta H(f^*) = \Delta H(f_r) \cdot f^*/f_r$ учитывают зависимость скорости релаксации спиновых волн от частоты, а также эффективная ширина линии ФМР ($\Delta H(f^*) \approx k'' V_g/\gamma$, где значения k'' и V_g берутся из таблицы.

 $k'', k''_{MEV}, \Delta k''_{MEV}$, рассчитанные с помощью соотношения (3), и $\Delta k/k$, рассчитанные по результатам измерения фазочастотных характеристик, для значений поля $H_1 \approx 320$ Oe, $H_2 \approx 550$ Oe и $H_3 \approx 810$ Oe. Здесь же для сравнения приведены оценки величин (\tilde{k}'') для дипольных ПМСВ (вне частот (1)), полученные с помощью соотношения $\tilde{k}'' \approx \gamma \Delta H(f^*)/V_g$, где $\gamma = 1.76 \cdot 10^7$ Oe⁻¹ · s⁻¹ — гиромагнитное отношение для ЖИГ, V_g — групповая скорость ПМСВ, рассчитанная для выбранных частот по наклону дисперсионных зависимостей на рис. 3, *a*, а значение ширины линии ФМР на частоте f^* пересчитывается с учетом линейной зависимости скорости релаксации спиновых волн от частоты $\Delta H(f^*) = \Delta H(f_r) f^*/f_r$.

Из таблицы видно, что с ростом поля (частоты f^*) вызванные резонансным взаимодействием с упругим волнами добавки в дисперсию $\Delta k/k$ и затухание $\Delta k'_{MEV}$ резко увеличиваются. Параметр $\Delta k/k$ возрастает от значений $\leq 1\%$ при $H_1 \approx 320 \,\text{Oe} \,(f^* \approx 2.387 \,\text{GHz})$ до 4—10% при $H_3 \approx 810$ Oe ($f^* \approx 4.195$ GHz). Для потерь изменения еще контрастнее. Действительно, если при поле $H_1 \approx 320 \,\mathrm{Oe}~(f^* \approx 2.387 \,\mathrm{GHz})$ значения $\Delta k'_{\rm MEV} \approx 9 \, {\rm cm}^{-1}$ и на порядок меньше измеренных значений пространственного декремента $k'' \approx 133 \,\mathrm{cm}^{-1}$, то при $H_3 \approx 810$ Oe $(f^* \approx 4.195 \text{ GHz})$ магнитоупругое взаимодействие приводит на полтора порядка большим значениям $\Delta k''_{\rm MEV} \approx 290 \, {\rm cm}^{-1}$, что всего лишь на 30% меньше значений магнитных потерь $k'' \approx 403 \,\mathrm{cm}^{-1}$. То обстоятельство, что $\Delta k''_{\rm MEV}$ могут быть сопоставимы с магнитными потерями ($\Delta k''_{\rm MEV} \approx k''$) и даже существенно их превышать $(\Delta k''_{\text{MEV}} \gg k'')$, хорошо известно для "быстрых" МУВ [28,19] и объясняется большими потерями упругих волн на распространение вдоль волновода ЖИГ-ГГГ на резонансных частотах (1).

Обращает на себя внимание рост эффективности взаимодействия ПМСВ и УВ с частотой (см. таблицу). Этот факт следует связать с двумя обстоятельствами, определяющими эффективность возбуждения звука в структуре ЖИГ-ГГГ [29–31]. С одной стороны, указанная эффективность пропорциональна интегралу *I* перекрытия намагниченности ПМСВ **m** и магнитострикционного поля (**h**_{me}) упругой волны по толщине пленки ЖИГ $I \sim \int_0^d \mathbf{m} \mathbf{h}_{me} dz$. С другой стороны, наибольшая эффективность перекачки звука из пленки ЖИГ в подложку ГГГ будет достигаться при согласовании акустических импедансов $Z = \rho V_t$ (ρ плотность среды) на интерфейсе: $\rho_{\text{YIG}}V_{\text{YIG}} = \rho_{\text{GGG}}V_{\text{GGG}}$. Если считать, что исследуемая структура ЖИГ/ГГГ имеет упругие параметры, близкие к монокристаллическим эпитаксиальным структурам [29]: $\rho_{\rm YIG} \approx 5.17 \, {\rm g/cm^3},$ $V_{\rm IYG} \approx 3.85 \cdot 10^5 \,{\rm cm/s}, \ \rho_{\rm GGG} \approx 7.02 \,{\rm g/cm^3}, \ V_{\rm GGG} = V_t, \ {\rm to}$ получим $Z_{IYG} \approx 0.8 Z_{GGG}$, что отражает хорошее согласование импедансов [30,31]. В этом случае эффективному возбуждению упругих волн в структуре будет отвечать частота $f_{\text{max}} \approx V_{\text{IYG}}/(2d) \approx 9.6 \text{ GHz}$. В нашем случае мы не смогли пронаблюдать распространение ПМСВ на частотах выше 6 GHz из-за падения амплитуды выходного сигнала и невозможности его выделения на уровне шумов. Однако тенденция к нарастанию эффективности взаимодействия ПМСВ и сдвиговых упругих волн в структуре ЖИГ/ГГГ наблюдается, что подтверждает предположение о хорошем акустическом контакте на границе пленка-подложка в исследуемой структуре.

Отметим, что потери в спиновой и упругой подсистемах разрушают магнитоупругий резонанс [29,32]. Потери упругих волн в нашем случае ($d \ll D$) определяются в основном подложкой ГГГ и для типичной вязкости звука ξ в гранатах [29] $\xi \approx 3 \cdot 10^{-16}$ s на частоте f = 6 GHz временной декремент сдвиговых волн составит $\omega_{el}'' = 4\pi^2 f^2 \xi \approx 1.4 \cdot 10^7 \text{ s}^{-1}$. Такие малые потери сдвиговых упругих волн позволяют наблюдать в структурах ЖИГ/ГГГ задержку упругих волн на частоте 3 GHz до 10 μ s [29]. Потери в магнитной подсистеме в нашем случае, рассчитанные по результатам измерения ширины линии в спектре ФМР (вставка *d* рис. 1), оказываются $\omega_m'' \approx \gamma \Delta H \approx 3.5 \cdot 10^8 \text{ s}^{-1}$, что на порядок больше не только потерь в упругой подсистеме, но и типичных значений магнитоупругой щели $\Delta \omega \leq 10^7 \text{ s}^{-1}$ в спектре ПМСВ в структурах ЖИГ/ГГГ [29,33]. При этом оказывается выполненным условие $|\omega_{el}'' - \omega_m''| \gg \Delta \omega$, что должно приводить к разрушению синхронизма спиновой и упругой волн [33,29]. Чтобы преодолеть противоречие сделанных оценок с результатами эксперимента, следует предположить, что в ширину линии ФМР $\Delta H(f_r) \approx 20$ Ое вносится существенный вклад, обусловленный неоднородностью параметров пленки. Чтобы оценить диссипативную составляющую обратимся к правой колонке таблицы, где приведены значения пространственного декремента ПМСВ \tilde{k}'' , полученные с помощью соотношения $\tilde{k}'' \approx \gamma \Delta H(f^*)/V_g$, где $\Delta H(f^*) = \Delta H(f_r) f^* / f_r$ учитывает зависимость скорости релаксации спиновых волн от частоты. Видно, что рассчитанные таким образом значения пространственного декремента оказываются на 50-150% больше по сравнению с измеренными величинами k", указанными в левой колонке. С другой стороны, если воспользоваться приведенными в таблице результатами измерений к" и Vg, то можно получить оценку эффективной ширины линии $\Phi MP \Delta H(f^*)$ на частоте f^* с помощью соотношений [32] $\Delta H(f^*) \approx k'' V_g / \gamma$. Полученные таким образом значения эффективной ширины линии $\Phi MP \Delta H(f^*)$ составляют, например, для частоты $f^* \approx 2.387 \,\mathrm{GHz}$ величину $\Delta H(f^*) \approx 2.9$ Ое, что в 1.6 раза меньше значений $\Delta H(f^*)$, определенных по результатам измерений ширины линии в спектре ФМР. При этом следует учесть, что неоднородность параметров пленки приведет к расфазировке ПМСВ на выходном преобразователе, что приведет к дополнительному падению уровня $S_{21}(f^*, L)$, как следствие, завышенным потерям ПМСВ, рассчитанным по формуле (3). С учетом сказанного можно утверждать, что для исследованной структуры вклад со стороны неоднородности параметров пленки в результаты измерения ширины линии в спектре ФМР составляет не менее 50%.

Заключение

Таким образом, исследовано распространение ПМСВ Дэймона-Эшбаха с длинами волн 15-100 µm в пленках ЖИГ толщиной ~ 200 nm, полученных ионно-лучевым распылением на подложках ГГГ (111) толщиной $\approx 600\,\mu$ m. Показано, что в диапазоне частот 2–6 GHz в спектре передачи и дисперсионной зависимости ПМСВ таких субмикронных пленок могут наблюдаться серии эквидистантных осцилляций. Указанные осцилляции отвечают возбуждению магнитоупругих волн в структуре ЖИГ/ГГГ на частотах резонансного взаимодействия ПМСВ с упругими сдвиговыми модами волноведущей структуры ЖИГ-ГГГ. Полученные результаты указывают, что структуры ЖИГ/ГГГ, полученные технологией ионно-лучевого распыления, характеризуются эффективной магнитоупругой связью спиновой и упругой подсистем и согласованием акустических импедансов на интерфейсе ЖИГ–ГГГ. При этом сама технология перспективна для создания устройств магноники и стрейнтроники, а также структур, демонстрирующих акустическую спиновую накачку [34].

Работа выполнена при финансовой поддержке РФФИ (проекты № 16-29-14058, 16-57-00135) и БРФФИ (проект № Ф16Р-085).

Список литературы

- [1] Никитов С.А., Калябин Д.В., Лисенков И.В., Славин А.Н. и др. // УФН. 2015. Т. 185. С. 1099–1128.
- [2] Serga A.A., Chumak A.V., Hillebrands B. // J. Phys. D: Appl. Phys. 2010. Vol. 43. P. 264002.
- [3] Fetisov Y.K., Srinivasana G. // Appl. Phys. Lett. 2006. Vol. 88.
 P. 143503.
- [4] Устинов А.Б., Фетисов Ю.К., Лебедев С.В., Srinivasan G. // Письма в ЖТФ. 2010. Т. 36. Вып. 4. С. 41–47.
- [5] Yu H., d'Allivy-Kelly O., Cros V., Bernard R., Bartolotti P., Anane A., Brandl F., Huber R., Stasinopoulos I., Grundler D. // Sci. Rep. 2014. 4:6848. doi: 10.1038/srep06848
- [6] Wang H.L., Du C.H., Pu Y., Adur R., Hammel P.C., Yang F.Y. // Phys. Rev. B. 2013. Vol. 88. P. 100406(R)
- [7] Evelt M., Demidov V.E., Bessonov V., Democritov S.O., Prieto J.L., Munoz M., Youseff J. B., Naletov V.V., de Loubens G., Klein O., Collet M., Garcia-Hermandez K., Bortolotti P., Cros V., Anane A. // Appl. Phys. Lett. 2016. Vol. 108. P. 172406.
- [8] Lustikova J., Shiomi Y., Qiu Z., Kikkawa T., Iguchi R., Uchida K., Saitoh E. // J. Appl. Phys. 2014. Vol. 116. P. 153902 1-6.
- [9] Kang Y.M., Wee S.H., Baik S.I., Min S.G., Yu S.C., Moon S.H., Kim Y.W., Yoo S.I. // J. Appl. Phys. 2005. Vol. 97. P. 10A3191-3.
- [10] Stognij A.I., Lutsev L.V., Bursian V.E., Novitskii. N.N. // J. Appl. Phys. 2015. Vol. 118. P. 023905.
- [11] Sakharov V., Khivintsev Y., Vysotsky S., Shadrov V., Stognij A., Filimonov Y. // Proc. 20th Int. Conf. Magn. Barcelona, Spain. 2015. P. 1546.
- [12] Stognij A., Lutsev L., Novitskii N., Bespalov A., Golikova O., Ketsko V., Gieniusz R., Maziewski A. // J. Phys. D: Appl. Phys. 2015. Vol. 48. N 48. P. 485002-8.
- [13] Aldbea F.W., Ahmad N.I., Ibrahim N.B., Yahya M. // J. Sol-Gel Sci. Technol. 2-14. Vol. 71 P. 31–37.
- [14] Jermain C.L., Paik H., Aradhya S.V., Buhrman R.A., Schlom D.G., Ralph D.C. // Appl. Phys. Lett. 2016. Vol. 109.
 P. 192408. doi: 10.1063/1.4967695
- [15] Kirihara A., Kajiwara Y., Ishida M., Nakamura Y., Manako T., Saitoh E., Yorozu S. // Nat. Mat. 2012. Vol. 11. P. 686–689.
- [16] Sakharov V.K., Khivintsev Y.V., Vysotskii S.L., Stognij A.I., Filimonov Y.A. // IEEE Magn. Lett. 2017. Vol. 8. P. 3704804.
- [17] Сахаров В.К., Хивинцев Ю.В., Высоцкий С.Л., Стогний А.И., Дудко Г.М., Филимонов Ю.А. // Изв. вузов. Прикладная нелинейная динамика. 2017. Т. 25. № 1. С. 35– 51.
- [18] Гуляев А., Зильберман П.Е., Казаков Г.Т., Сысоев В.Г., Тихонов В.В., Филимонов Ю.А., Нам Б.П., Хе А.С. // Письма в ЖЭТФ. 1981. Т. 39. № 9. С. 500–504.

- [19] Казаков Г.Т., Тихонов В.В., Зильберман П.Е. // ФТТ. 1983.
 Т. 25. № 8. С. 2307–2312.
- [20] Андреев А.С., Зильберман П.Е., Кравченко В.Б., Огрин Ю.Ф., Темирязев А.Г., Филимонова Л.М. // Письма в ЖТФ. 1984. Т. 10. Вып. 2. С. 90–94.
- [21] Казаков Г.Т., Котелянский И.М., Маряхин А.В., Филимонов Ю.А., Хивинцев Ю.В. // РЭ. 2004. Т. 49. № 5. С. 568– 576.
- [22] Stognij A.I., Tokarev V.V., Mitin Yu.N. // Mat. Res. Soc. Symp. Proc. 1992. Vol. 236. P. 331–334.
- [23] Дудко Г.М., Казаков Г.Т., Сухарев А.Г., Филимонов Ю.А., Шеин И.В. // РЭ. 1990. Т. 35. № 5. С. 966–976.
- [24] Khivintsev Yu.V., Filimonov Yu.A., Nikitov S.A. // Appl. Phys. Lett. 2015. Vol. 106. P. 052407.
- [25] Damon R.W., Eshbach J.R. // J. Phys. Chem. Sol. 1961.
 Vol. 19. P. 308–320. doi: 10.1016/0022–3697(61)90041-5
- [26] Schilz W. // Philips Res. Rep. 1973. Vol. 28. P. 50-65.
- [27] Бугаев А.С., Гуляев Ю.В., Зильберман П.Е., Филимонов Ю.А. // ФТТ. 1981. Т. 23. Вып. 4. С. 2647–2655.
- [28] Бугаев А.С., Гуляев Ю.В., Зильберман П.Е., Филимонов Ю.А. // РЭ. 1982. Т. 27. № 10. С. 1979–1983.
- [29] *Гуляев Ю.В., Зильберман П.Е.* // Изв. вузов. Физика. 1988. Т. 31. № 11. С. 6–23.
- [30] Ле-Кроу Р., Комсток Р. // Физическая акустика / Под. ред. У. Мэзона. М.: Мир, 1968. Т. З. Ч. Б. С. 156–243.
- [31] Штраус В. Магнитоупругие свойства иттриевого феррита-граната. Физическая акустика / Под. ред. У. Мэзона. М.: Мир, 1970. Т. 4. Ч. Б. С. 247–316.
- [32] Ахиезер А.И., Барьяхтар В.Г., Пелетминский С.В. Спиновые волны. М.: Наука, 1967. 368 с.
- [33] Филимонов Ю.А., Хивинцев Ю.В. // РЭ. 2002. Т. 47. № 8. С. 1002–1007.
- [34] Polzikova N.I., Alekseev S.G., Pyatakin I.L., Kotelyanskii I.M., Luzanov V.A., Orlov A.P. // AIP Advances. 2016. Vol. 6. P. 056306.