05

Механизм и динамика разрушения поверхности напряженных гранитов под влиянием ударной волны

© И.П. Щербаков, В.И. Веттегрень, Р.И. Мамалимов, Х.Ф. Махмудов

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия [¶] e-mail: Victor.Vettegren@mail.ioffe.ru

(Поступило в Редакцию 30 октября 2017 г.)

С временным разрешением 2 ns исследована динамика вылета положительно заряженных ионов под влиянием ударной волны с поверхностей гранитов, содержащих различную концентрацию кварца и полевого шпата. Предполагается, что ионы вылетают в моменты выхода на поверхность образца дислокаций, двигающихся в пересекающихся плоскостях скольжения. На месте выхода дислокаций образуются дефекты, которые имеют вид протяженных "канавок". Сжимающая нагрузка подавляет процесс образования дефектов.

DOI: 10.21883/JTF.2018.07.46168.2537

Введение

В последние годы нами были начаты экспериментальные исследования механизма и динамики разрушения с наносекундным разрешением ненагруженных и одноосно сжатых горных пород под воздействием ударных волн [1-7]. Интерес к этой проблеме вызван тем, что скорость ударной волны в несколько раз больше скорости поперечной звуковой волны S_t, а разрушение путем образования и накопления трещин может происходить только со скоростью, не больше чем $\sim 1/3S_t$ [8]. В наших исследованиях было установлено [1-7], что кристаллические решетки кварца и полевых шпатов, входящих в состав гранитов, под воздействием ударных волн разрушаются не путем образования и накопления микротрещин, а испарением с вылетом положительно заряженных ионов и электронов.

В настоящей работе исследована динамика разрушения одноосно сжатых гранитов, концентрация кварца в которых изменялась от нуля до 35–40%. Предполагалось, что изменение концентрации кварца может повлиять на динамику разрушения гранитов.

Объект и метод исследования

Для исследований были использованы граниты трех видов: аляскит, плагиогранит и габбро-диабаз. Аляскит и плагиогранит содержали зерна кварца (~ 35–40%) и полевого шпата — плагиоклаза (~ 50–60%). Средний размер зерен этих минералов в аляските составлял ~ 7 mm, а в плагиограните — ~ 4 mm. Габбро-диабаз состоял из плагиоклаза (~ 60%) и пироксена (~ 30%) с размерами зерен ~ 2 mm.

Из гранитов были выпилены образцы в виде параллелепипедов с размерами ребер $4 \times 4 \times 6$ сm. Внутри них был вырезан паз, в который были вставлены медные электроды, присоединенные к конденсатору. При разряде конденсатора между электродами возникала дуга. Она вызывала появление ударной волны в воздухе и вслед за ней — в образце [9]. Энергия разряда составляла ~ 0.2 J, а мощность — $2 \cdot 10^5$ W.

Вылетающие из гранитов ионы находятся в электронно-возбужденном состоянии. При переходе из возбужденного в основное состояние они излучают свет в видимой области спектра, т.е. возникает люминесценция. Для ее регистрации перед поверхностью образцов устанавливали один из концов кварцевого световода, а его второй конец располагали перед поверхностью фотокатода фотоэлектронного умножителя РМТ-136 (рис. 1). Напряжение на выходе РМТ подавали на вход аналого-цифрового преобразователя ADS-3112 и через каждые 2 пѕ записывали в память компьютера для дальнейшего анализа и обработки.

Для сжатия образцов использовали пресс PGDR. Величину сжимающего напряжения изменяли ступенчато — через 10–20 МРа. После приложения заданного напряжения через образец пропускали ударную волну и записывали временную зависимость интенсивности люминесценции.

Рис. 1. Блок-схема установки: 1 — конденсатор, 2 — электронный ключ, 3 — электроды (между которыми происходит электрический пробой), 4 — образец, 5 — кварцевый световод, 6 — фотоумножитель PEM-136, 7 — аналого-цифровой преобразователь ADS-3112, 8 — компьютер, 9 — пресс.

Гранит	Прочность, МРа	Размер зерен плагиоклаза, mm	Сжимающее напряжение, МРа	$\ln N_0$	$b \cdot 10^3$
Аляскит	160	6.5	0	3.2	3
			144	2.8	5
Габбро-диабаз	320	2	0	3	2.9
			210	2.7	10

Характеристики распределения числа струй ионов, вылетающих из ненапряженных и сжатых образцов гранитов, от их интенсивности I_m

Механизм образования люминесценции

Через ~ 23 μ s после замыкания пластин конденсатора происходила ионизация молекул воздуха, и затем возникал пробой промежутка между электродами. Еще через ~ 0.3 μ s загоралась дуга (рис. 2). Интенсивность ее излучения достигала максимального значения через ~ 0.6 μ s, а затем уменьшалась приблизительно экспоненциально от времени. Через ~ 2.6 μ s после возникновения пробоя интенсивность дуги уменьшалась на порядок.

На рис. 3 показаны спектры люминесценции аляскита и плагиогранита, полученные при энергии разряда 80 J.Они состоят из нескольких десятков узких (шириной ~ 0.5-1 nm) линий, наложенных друг на друга. Воспользовавшись таблицами спектральных линий [10], установлено, что они соответствуют излучению положительно заряженных ионов. В соответствии с составом аляскита в спектре его люминесценции наблюдали излучение одно, двух и трех положительно заряженных ионов Na, Fe, Si, Al и O, а в спектре плагиогранита — Al, Ca, K, Li, Na, Fe, O и Mn. Кроме того, в спектрах содержались линии, соответствующие ионам азота и меди. Ионы азота образовались при ударе ионов плазмы о молекулы азота воздуха, а ионы меди вылетели из медных электродов.

Рис. 2. Временная зависимость интенсивности дуги.

Рис. 3. Спектры люминесценции плагиоклаза (*a*) и аляскита (*b*).

Эти результаты показывают, что ударная волна вызывает разложение гранитов, при котором с их поверхности вылетают положительно заряженные ионы. При энергии разряда 80 J около 80% объема образца распадается на ионы.

Уменьшим теперь энергию разряда в 400 раз — до 0.2 J. Оказалось, что при такой энергии из гранита тоже вылетают ионы (рис. 4). В этом случае они пред-

ставляют собой струи, интенсивность которых варьирует на ~ 2 порядка, а интервал между ними изменяется от нескольких десятков ns до нескольких μ s.

Каков же механизм образования ионов? Известно [11], что при взаимодействии дислокаций, движущихся в пересекающихся плоскостях скольжения, возникают сильные искажения кристаллической решетки. Они могут вызывать переходы между уровнями основного и возбужденного электронных состояний и распад межатомных связей. Ударная волна "выносит" искаженные участки кристаллических решеток на поверхность, что и приводит к вылету возбужденных положительно заряженных ионов.

Известно, что искажения кристаллической решетки в местах пересечения плоскостей скольжения препятствуют движению дислокаций. Поэтому около таких пересечений скапливаются цуги из нескольких десятков-сотен дислокаций [12]. При их прорыве на поверхности должны появляться дефекты в виде канавок, глубина которых может достигать $\sim 1 \, \mu$ m и более. Такие дефекты должны наблюдаться в оптический микроскоп.

Рис. 4. Временные зависимости интенсивности струй ионов, вылетающих из габбро-диабаза. Сжимающее напряжение, МРа: *a* — 0; *b* — 208.

Рис. 5. Фотографии поверхности аляскита (a) до воздействия ударной волны, аляскита (b) и габбро-диабаза (c) после ее воздействия. Темная наклонная полоса на рисунке (c) — граница между зернами габбро-диабаза.

Оказалось, что, действительно, после воздействия ударной волны на поверхностях гранитов наблюдаются дефекты, имеющие вид протяженных "канавок" (рис. 5).

Динамика разложения гранитов

Вернемся вновь к рассмотрению рис. 4, на котором показаны временные зависимости интенсивности струй ионов, вылетающих из габбро-диабаза и аляскита под действием ударной волны. Такие же временные зависимости интенсивности струй ионов наблюдались ранее для плагиогранита [6]. Во всех случаях увеличение

Рис. 6. "Одиночные" струи ионов из аляскита. Давление, МРа: *a* — 0; *b* — 144.

Рис. 7. Зависимости числа струй ионов от их интенсивности для габбро-диабаза. Давление, МРа: *I* — 0; *2* — 210.

сжимающего напряжения приводило к уменьшению числа струй. Это показывает, что сжимающее напряжение препятствует выходу цугов дислокаций на поверхность. На рис. 6 показаны фрагменты временных зависимостей сигнала от РЕМ при образовании одной из канавок. Видно, что интенсивность сигнала сначала растет, достигает максимального значения и затем уменьшается. Величина интенсивности определяется скоростью двух процессов. Первый — рост интенсивности при образовании "канавки". Второй — уменьшение сигнала от РЕМ после ее образования. Скорость такого уменьшения определяется величинами паразитной емкости и сопротивления нагрузки.

Будем полагать, что максимальная скорость роста интенсивности струй ионов задана скоростью ударной волны. В гранитах она составляет ~ 5 km/s [2]. Тогда по времени Δt достижения максимального значения интенсивности I_m струй (рис. 6, *a*) можно оценить длину дефектов. Оказалось, что для всех исследованных гранитов она варьирует от ~ 5 до 30 μ m.

Распределения длин дефектов на поверхности гранитов

На рис. 7 показаны распределения числа N струй ионов из ненапряженных и одноосносжатых образцов габбро-диабаза от их интенсивности — I_m , которая пропорциональна длине "канавок". Видно, что распределения имеют вид $N = N_0 \exp(-bI_m)$, где N_0 — предельное значение N при $I_m \rightarrow 0$, а $b = \ln(N_0/N)/I_m$. Такой же вид имели распределения для аляскита и плагиогранита. Это означает, что число "канавок" экспоненциально уменьшается при увеличении их длины.

В таблице приведены значения $\ln N_0$ и *b* для габбро-диабаза и аляскита. Видно, что величина $\ln N_0$ слабо зависит от напряжения, а *b* — растет при его увеличении. Это показывает, что сжимающее напряжение тем сильнее подавляет выход дефектов на поверхность, чем больше их длина.

Заключение

Под влиянием ударной волны на поверхность гранитов выходят дислокации, двигающиеся в пересекающихся плоскостях скольжения. Кристаллическая решетка в областях пересечения плоскостей сильно искажена, поэтому ударная волна вызывает испарение положительно заряженных ионов из таких областей [12]. После испарения на поверхностях гранитов образуются дефекты, которые имеют вид протяженных "канавок". Сжимающая нагрузка подавляет процесс образования таких дефектов.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 16-05-00138).

Список литературы

- Веттегрень В.И., Воронин А.В., Куксенко В.С., Мамалимов Р.И., Щербаков И.П. // ФТТ. 2014. Т. 56. Вып. 2. С. 315–317. [Vettegren V.I., Voronin A.V., Kuksenko V.S., Mamalimov R.I., Shcherbakov I.P. // Phys. Solid State. 2014. Vol. 56. N 2. P. 317–320.] doi: 10.1134/S1063783414020322
- [2] Веттегрень В.И., Щербаков И.П., Воронин А.В., Куксенко В.С., Мамалимов Р.И. // ФТТ. 2014. Т. 56. Вып. 5. С. 981–985. [Vettegren V.I., Shcherbakov I.P., Voronin A.V., Kuksenko V.S., Mamalimov R.I. // Phys. Solid State. 2014. Vol. 56. N 5. P. 1018–1022.] doi: 10.1134/S1063783414050321
- [3] Веттегрень В.И., Щербаков И.П., Куксенко В.С., Мамалимов Р.И. // ФТТ. 2014. Т. 56. Вып. 9. С. 1767– 1771. [Vettegren V.I., Shcherbakov I.P., Kuksenko V.S., Mamalimov R.I. // Phys. Solid State. 2014. Vol. 56. N 9. P. 1828–1832.] doi: 10.1134/S1063783414090303
- [4] Веттегрень В.И., Куксенко В.С., Щербаков И.П. // Физика Земли. 2016. № 5. С. 134–149. [Vettegren V.I., Kuksenko V.S., Shcherbakov I.P. // Izvestiya, Phys. Solid Earth. 2016. Vol. 52. N 5. P. 754–769.] doi: 10.1134/S106935131604011X
- [5] Щербаков И.П., Веттегрень В.И., Мамалимов Р.И., Махмудов Х. // ФТТ. 2017. Т. 59. Вып. 3. С. 556– 558. [Shcherbakov I.P., Vettegren V.I., Mamalimov R.I., Makhmudov Kh.F. // Phys. Solid State. 2017. Vol. 59. N 3. P. 575–577.] doi: 10.1134/S1063783417030295
- [6] Щербаков И.П., Веттегрень В.И., Мамалимов Р.И., Махмудов Х. // ЖТФ. 2017. Т. 87. Вып. 8. С. 1182– 1184. [Shcherbakov I.P., Vettegren V.I., Mamalimov R.I., Makhmudov Kh.F. // Techn. Phys. 2017. Vol. 62. N 8. P. 1194– 1196.] doi: 10.1134/S1063784217080242.
- [7] Щербаков И.П., Веттегрень В.И., Мамалимов Р.И., Махмудов Х. // ЖТФ. 2017. Т. 87. Вып. 10. С. 1527– 1531. [Shcherbakov I.P., Vettegren V.I., Mamalimov R.I., Makhmudov Kh.F. // Techn. Phys. 2017. Vol. 62. N 10. P. 1533–1537.] doi: 10.1134/S1063784217100218
- [8] Регель В.Р., Слуцкер А.И., Томашевский Э.Е. Кинетическая природа прочности твердых тел. М.: Наука, 1974. 560 с.
- [9] Абрамова К.Б., Щербаков И.П., Русаков А.И. // ЖТФ. 1999. Т. 69. Вып. 2. С. 137–140. [Abramova K.B., Shcherbakov I.P., Rusakov A.I. // Techn. Phys. 1999. Vol. 44. N 2. P. 259–261.] doi: 10.1134/1.1259298
- [10] Зайдель А.Н., Прокофьев В.К., Райский С.М., Славный В.А., Шрейдер Е.Я. Таблицы спектральных линий. Изд. 4-е. М.: Наука, 1977. 800 с. [Zaidel' A.N., Prokof'ev V.K., Raiskii S.M., Slavnyi V.A., Shreider E.Ya. Tables of spectral lines. NY.: Springer Science + Business Media, 1970. 782 p.]
- [11] Zakrevskii V.A., Shuldiner A.V. // Phil. Mag. B. 1995. Vol. 71.
 N 2. P. 127–138.
- [12] Владимиров В.И. Физическая природа разрушения металлов. М.: Металлургия, 1984. 280 с.