12

Простые модели латеральных гетероструктур

© С.Ю. Давыдов

Физико-технический институт им. А.Ф. Иоффе РАН,

Санкт-Петербург, Россия

E-mail: Sergei Davydov@mail.ru

(Поступила в Редакцию 18 января 2018 г.)

Методом функций Грина в приближении сильной связи получены общие аналитические выражения для плотностей состояний латеральной гетероструктуры, образованной контактом двух квадратных полубесконечных решеток с однозонным и двухзонным спектрами. Для численных оценок использована полуэллиптическая плотность состояний, а для оценки перехода заряда предложена модель двух взаимодействующих димеров. Обсуждается применение настоящего подхода к описанию латеральных эпитаксиальных и графеноподобных гетероструктур.

DOI: 10.21883/FTT.2018.07.46129.015

1. Введение

Теоретическое исследование гетероструктур на основе комбинаций химически различных двумерных (2D) графеноподобных соединений представляет непосредственный интерес для создания приборов наноэлектроники. В большинстве случаев речь идет о вертикальных структурах, когда 2D слои располагаются параллельно друг другу вдоль оси z, перпендикулярной к их плоскостям [1-4]. Такие структуры называют вандер-ваальсовыми, так как слои связаны дисперсионными силами. В меньшей степени внимание уделяется латеральным структурам, образованным состыкованными по кромкам 2D-слоями, расположенными в одной плоскости [3,5,6]. Отметим, что наиболее популярны ГС, где компонентами является графен и гексагональный нитрид бора (h-BN), причем как для вертикального [4,7,8], так и для латерального [6,9,10] вариантов.

В настоящей работе мы предложим схему описания электронной структуры латеральных ГС, основанную на методе функций Грина и теории сильной связи. При этом для простоты будут рассмотрены модели контактов одноатомных и двухатомных квадратных решеток с одинаковыми расстояниями между ближайшими соседями (б.с.), чтобы избежать усложнений, связанных со структурным рассогласованием.

2. Полубесконечные 2D-решетки: метод Калкстейна—Совена

Рассмотрим бесконечную одноатомную квадратную решетку, расположенную в плоскости (x,y), с расстоянием a между б.с. и законом дисперсии электронов $\varepsilon(\mathbf{k}) = \varepsilon - 2t[\cos(k_x a) + \cos(k_y a)]$, где ε — энергия атомной s-орбитали, t — энергия перехода электрона между б.с., $\mathbf{k} = (k_x, k_y)$ — волновой вектор. Функция

Грина такой решетки имеет вид:

$$G_0(\omega, \mathbf{k}) = \frac{g(\omega)}{1 + 2tg(\omega)[\cos(k_x a) + \cos(k_y a)]}.$$
 (1)

Здесь $g^{-1}(\omega)=\omega-\varepsilon+is$ — одноатомная функция Грина, ω — энергетическая переменная, $s=0^+$ [11,12]. Такая одноатомная решетка представляет собой простейшую модель 2D-металла.

Аналогично, для бесконечной двухатомной квадратной решетки, состоящей из атомов A и B, находящихся на расстоянии a друг от друга, имеем $\varepsilon_{\pm}(\mathbf{k})=\bar{\varepsilon}\pm\sqrt{\Delta^2+4t^2[\cos^2(k_xa)+\cos^2(k_ya)]}$, где $\bar{\varepsilon}==(\varepsilon_A+\varepsilon_B)/2$, $\Delta=(\varepsilon_A-\varepsilon_B)/2$. Соответствующая функция Грина есть

$$G_0^{A(B)}(\omega, \mathbf{k}) = \frac{g_{A(B)}(\omega)}{1 - 4g_A(\omega)g_B(\omega)t^2[\cos^2(k_x a) + \cos^2(k_y a)]},$$
(2)

где $g_{A(B)}^{-1}(\omega)=\omega-\varepsilon_{A(B)}+is$, $\varepsilon_{A(B)}$ — энергия s-орбитали атома A(B) [11,12]. Такая двухатомная решетка является простейшей моделью 2D-полупроводника с шириной запрещенной зоны $E_g=2|\Delta|$.

Для перехода к полубесконечным решеткам, что необходимо для нахождения соответствующих функций Грина G и $G^{A(B)}$, воспользуемся подходом Калкстейна и Совена [13]. Пусть бесконечной решетке отвечает гамильтониан H_0 , а полубесконечной — гамильтониан $H = H_0 + T$, где T — возмущение, описывающее разрезание (разрыв межатомных связей) бесконечной решетки, в результате чего возникают левая (L) и правая (R) полубесконечные решетки. Обозначая через $|\mathbf{R}\rangle$ локализованную на узле решетки $\mathbf{R} = (x, y)$ функцию Ваннье, можно записать

$$\langle \mathbf{R}|T|\mathbf{R}'\rangle = -\langle \mathbf{R}|H_0|\mathbf{R}'\rangle,\tag{3}$$

где $|{\bf R}\rangle\in R$, $|{\bf R}'\rangle\in L$. Соотношение (3) следует из того простого факта, что после разрезания правая и левая

1390 С.Ю. Давыдов

половины исходной решетки не связаны между собой, т.е. $\langle {\bf R}|H|{\bf R}'\rangle=0.$

Будем считать, что ось x перпендикулярна, а ось y параллельна разрезу. Тогда для бесконечной одноатомной решетки справедливы трансляционные соотношения вида $\langle m, k_y | G_0 | n, k_y' \rangle = \delta(k_y - k_y') G_0(\omega, m - n, k_y)$, $\langle m, k_y | G | n, k_y' \rangle = \delta(k_y - k_y') G(\omega, m, n, k_y)$ и $\langle m, k_y | T | n, k_y' \rangle = \delta(k_y - k_y') T(m, n)$, где m(n) — номера атомных рядов, так что $x_{m(n)} = ma(na)$. Для двухатомной решетки можно записать аналогичные соотношения, заменив ma(na) на 2ma(2na). Считаем, что $m \geq 0$ соответствуют области $R, m \leq -1$ отвечает области L. При этом отличными от нуля являются только матричные элементы T(-1,0) и T(0,-1), равные по модулю t^1 .

Начнем с одноатомной решетки. Воспользовавшись уравнением Дайсона $G = G_0 + G_0 T G$, получим для функции Грина правой полубесконечной решетки $(m \ge 0)$ следующее выражение:

$$G(m, m) = G_0(0) + tG_0(m+1)G_0(-m)[1 - tG_0(1)]^{-1}.$$
(4)

На разрезе "поверхностная" функция Грина (4) имеет вид

$$G(0,0) = \frac{G_0(0)}{1 - tG_0(1)}. (5)$$

Для левой полубесконечной решетки $(m \le -1)$ вместо выражений (4) и (5) получим соответственно

$$G(m, m) = G_0(0) + tG_0(-m-1)G_0(m)[1 - tG_0(-1)]^{-1},$$
(6)

$$G(-1, -1) = \frac{G_0(0)}{1 - tG_0(-1)}. (7)$$

В формулах (4)—(7) в аргументах функций Грина опущены переменные ω и k_{ν} .

Воспользовавшись результатами п. 1 Приложения, для случая $\alpha^2=4t^2/W^2<1$, где $W=\Omega+2t\cos(k_ya)$, $\Omega=\omega-\varepsilon$ легко показать, что

$$G(-1, -1) = G(0, 0) \equiv G(\omega, k_y) = \frac{2}{W} \frac{1 - \sqrt{1 - \alpha^2}}{\alpha^2},$$
(8)

 $G(\omega, k_{\rm v}) = (W - \sqrt{W^2 - 4t^2})/2t^2$. Tak этом случае функция Грина не содержит мнимой соответствующая плотность состояний части, $\rho(\omega, k_{y}) = -\pi^{-1} \operatorname{Im} G(\omega, k_{y}) = 0.$ $\alpha^2 > 1$ заменить $\sqrt{1-\alpha^2}$ на $i\sqrt{\alpha^2-1}$. нужно $G(\omega, k_y) = (W - i\sqrt{4t^2 - W^2})/2t^2.$ следует, соответствующая Тогда плотность $\rho(\omega, k_{\rm v}) = \sqrt{4t^2 - W^2} / 2\pi t^2$.

Перейдем теперь к случаю двухатомной квадратной решетки. Выражения для функций Грина $G_0^{A(B)}(m)$ приведены в Приложении, п. 1. Для "поверхностных" функций Грина $G_0^{A(B)}$ полубесконечных решеток справедливы

формулы (5), (7) и (8) с заменой G_0 , G и α^2 на $G_0^{A(B)}$, $G^{A(B)}$ и \mathcal{G}^2 .

3. Гетероконтакты: общие соотношения

3.1. Контакт одноатомных решеток. Начнем с простейшего случая ГС, образованной состыковкой двух полубесконечных одноатомных решеток: левой (L) с $m \leq -1$ и правой (R) с $m \geq 0$, различающихся только значениями энергий атомных s-орбиталей, равными соответственно ε_L и ε_R . Эти решетки, характеризуемые для простоты одинаковым расстоянием a между б. с., связаны между собой матричными элементами $\tilde{T}(-1,0) = \tilde{T}(0,-1) = \tilde{t}$. Такая система моделирует контакт двух 2D-металлов. Ниже в функциях Грина мы опускаем аргументы ω и k_y , знак "тильда" относится к ГС.

Воспользовавшись уравнением Дайсона $\tilde{G} = G + G\tilde{T}\tilde{G}$, получим

$$\tilde{G}(-1, -1) = G(-1, -1) + G(-1, -1)\tilde{T}(-1, 0)\tilde{G}(0, -1),$$

$$\tilde{G}(0, -1) = G(0, 0)\tilde{T}(0, -1)\tilde{G}(-1, -1), \tag{12}$$

откуда

$$\tilde{G}(-1, -1) = G(-1, -1)[1 - \tilde{t}^2 G(-1, -1)G(0, 0)]^{-1}.$$
(13)

Аналогичным образом найдем

$$\tilde{G}(0,0) = G(0,0)[1 - \tilde{t}^2 G(-1,-1)G(0,0)]^{-1}.$$
 (14)

Обозначив $G(-1,-1)\equiv G_L, \quad G(0,0)\equiv G_R$ и $\tilde{G}(-1,-1)\equiv \tilde{G}_L,\, \tilde{G}(0,0)\equiv \tilde{G}_R,$ из выражений (13), (14) получим

$$\tilde{G}_{L(R)}(\Omega_{L(R)}) = \frac{G_{L(R)}(\Omega_{L(R)})}{1 - \tilde{t}^2 G_L(\Omega_L) G_R(\Omega_R)}, \tag{15}$$

где $\Omega_{L(R)}=\omega-\varepsilon_{L(R)}.$ Положим $(1-\tilde{t}^2G_LG_R)^{-1}\equiv\Xi(C)=(G_++G_-)/2$, где $G_\pm^{-1}=1\pm\tilde{t}\sqrt{G_LG_R}.$ Переходя в случае $W_{L(R)}^2\leq 4t^2$ к комплексному представлению функций Грина $G_{L(R)}=t^{-1}\exp(i\varphi_{L(R)})$, где $\varphi_{L(R)}=\arctan(1-\varphi_{L(R)})$ и $W_{L(R)}=\Omega_{L(R)}+2t\cos(k_v\alpha)$, получим

$$G_{\pm} = \frac{1 \pm \tau \cos \phi \mp i\tau \sin \phi}{1 \pm 2\tau \cos \phi + \tau^2},\tag{16}$$

где безразмерная константа связи $\tau = \tilde{t}/t$ и $\phi = (\phi_L + \phi_R)/2$. Плотности состояний, соответствующие функциям Грина (15), равны

$$\tilde{\rho}_{L(R)} = -(\pi t)^{-1}(\cos \varphi_{L(R)} \operatorname{Im} C + \sin \varphi_{L(R)} \operatorname{Re} C), \quad (17)$$

где $\operatorname{Re} C=(1-\tau^2\cos2\phi)/A$, $\operatorname{Im} C=\tau^2\sin2\phi/A$ и $A=1-2\tau^2\cos2\phi+\tau^4$. Легко показать, что при

 $^{^1}$ Здесь мы не вводим в матричные элементы множители вида $\exp\left(i\vartheta(k_y)\right),\;$ так как они не существенны для произведения $T(-1,0)\,T(0,-1)=t^2.$ Поэтому, не теряя общности, можно положить T(-1,0)=T(0,-1)=t.

 $W_{L(R)}^2 \leq 4t^2$ имеем $\sin \varphi_{L(R)} = -\sqrt{4t^2 - W_{L(R)}^2} / 2t$ и $\cos \varphi_{L(R)} = W_{L(R)} / 2t$. В случае $W_{L(R)}^2 > 4t$ в формуле (17) и аналогичных выражениях, приведенных ниже, следует формально положить $\sin \varphi_{L(R)} = 0$ и $\cos \varphi_{L(R)} = \left(W_{L(R)} - \sqrt{W_{L(R)}^2 - 4t^2}\right) / 2t$. Отметим, что условия $W_{L(R)}^2 \leq 4t^2$ и $W_{L(R)}^2 > 4t^2$ эквивалентны неравенствам $|\Omega_{L(R)}| \leq 4L$ и $|\Omega_{L(R)}| > 4t$. Некоторые характерные частные случаи рассмотрены в Приложении, $\Pi 2$.

3.2. Контакт одноатомной и двухатомной решеток. Перейдем теперь к ГС, образованной состыковкой полубесконечных левой одноатомной ($L, m \leq -1$, энергия орбитали $|s\rangle_L$ равна ε) и правой двухатомной ($R, m \geq 0$, энергии орбиталей $|s_A\rangle_R$ и $|s_B\rangle_R$ равны соответственно ε_A и ε_B) полубесконечных квадратных решеток, для которых расстояние между б.с. равно α . Матричные элементы связи орбиталей $|s\rangle_L$ и $|s_{A(B)}\rangle_R$ равны \tilde{t} . Такая ГС моделирует контакт 2D-металла и полупроводника с шириной запрещенной зоны $E_g = |\varepsilon_A - \varepsilon_B|$ (см. (2)).

Считая, что в узле 0 находится атом A(B), можно повторить выкладки (12)-(14) и получить по аналогии с (15) четыре функции Грина вида

$$ilde{G}_{LA'(RA)}(\Omega_{L(RA)}) = rac{G_{L(RA)}(\Omega_{L(RA)})}{1 - ilde{t}^2 G_L(\Omega_L) G_{RA}(\Omega_{RA})},$$

$$\tilde{G}_{LB'(RB)}(\Omega_{L(RB)}) = \frac{G_{L(RB)}(\Omega_{L(RB)})}{1 - \tilde{t}^2 G_L(\Omega_L) G_{RB}(\Omega_{RB})}, \quad (18)$$

где $\Omega_L = \omega - arepsilon, \; \Omega_{RA(B)} = \omega - arepsilon_{A(B)}; \;$ индекс $L\!A'(B')$ у функций Грина $\tilde{G}_{LA'(RA)}$ и $\tilde{G}_{LB'(RB)}$ отвечает состоянию атома края L-решетки, взаимодействующего соответственно с атомами А и В края R-решетки. Таким образом, поставленная задача в нашей схеме сводится к двум независимым задачам о взаимодействии одноатомных полубесконечных решеток, рассмотренным в разделе 3.1, а именно: задаче об L-решетке, характеризуемой s-состоянием с энергией ε , связанной с R-решеткой, характеризуемой s-состояниями с энергиями ε_A и ε_B . Поэтому все полученные в 3.1 выражения справедливы, если заменить нижние индексы: у функции Грина G_L на LA'(RA) и LB'(RB), у функции Грина G_R — на RAи RB, у энергетических параметров Ω_R на Ω_{RA} , Ω_{RB} и ε_R на ε_A , ε_B соответственно. Положив $\varepsilon_A + \varepsilon_B = 0$, т.е. поместив начало отсчета энергии в середину запрещенной зоны 2D-полупроводника, и варьируя значение ε , получим различные варианты энергетической диаграммы системы. В соответствии с общим правилом $ilde{
ho}_{\mathit{LA'}(\mathit{RA})} = \pi^{-1} \mathrm{Im} ilde{G}_{\mathit{LA'}(\mathit{RA})}$ и $ilde{
ho}_{\mathit{LB'}(\mathit{RB})} = \pi^{-1} \mathrm{Im} ilde{G}_{\mathit{LB'}(\mathit{RB})}.$

3.3. Контакт двухатомных решеток. Рассмотрим, наконец, контакт двухатомных полубесконечных решеток, правая из которых (R-решетка) по-прежнему характеризуется энергиями s-орбиталей ε_A и ε_B атомов A и B соответственно ($E_{gR}=2\Delta_R=|\varepsilon_A-\varepsilon_B|$), а левая (L-решетка) — энергиями ε_C и ε_D , отвечающими s-орбиталям атомов C и D ($E_{gL}=2\Delta_L=|\varepsilon_C-\varepsilon_D|$). Будем считать, что между собой связаны атомы A

и C, B и D, а матричные элементы связи равны \tilde{t} . Легко сообразить, что четыре соответствующих задаче функции Грина имеют вид

$$\tilde{G}_{C(A)}(\Omega_{C(A)}) = \frac{G_{C(A)}(\Omega_{C(A)})}{1 - \tilde{t}^2 G_C(\Omega_C) G_A(\Omega_A)},
\tilde{G}_{D(B)}(\Omega_{D(B)}) = \frac{G_{D(B)}(\Omega_{D(B)})}{1 - \tilde{t}^2 G_D(\Omega_D) G_B(\Omega_B)},$$
(19)

где $\Omega_{C(D)}=\omega-\varepsilon_{C(D)},\ \Omega_{A(B)}=\omega-\varepsilon_{A(B)}.$ Такая ГС отвечает гетеропереходу на контакте двух полупроводников. Варьируя значения параметров $\varepsilon_A,\ \varepsilon_B,\ \varepsilon_C$ и $\varepsilon_D,$ можно получить 2D-аналоги объемных (см., например, [14]) и эпитаксиальных [15] ГС. Соответствующие плотности состояний равны $\tilde{\rho}_{C(A)}=\pi^{-1}\mathrm{Im}\,\tilde{G}_{C(A)}$ и $\tilde{\rho}_{D(B)}=\pi^{-1}\mathrm{Im}\,\tilde{G}_{D(B)}.$

4. Полуэллиптические плотности состояний: оценки

Все полученные выше функции Грина \tilde{G} , G и плотности состояний $\tilde{\rho}$, ρ зависят как от энергии ω , так и от волнового вектора k_y . Для расчета электронного заполнения атомов m-го y-ряда атомов и перехода заряда между атомными рядами, параллельными линии контакта, необходимы зависящие только от энергии функции Грина $\tilde{G}(\omega)$, $G(\omega)$ и плотности состояний $\tilde{\rho}(\omega)$, $\rho(\omega)$. Проинтегрировать точно выражение (8) по k_y не представляется, однако, возможным. Поэтому прибегнем к дальнейшим упрощениям и воспользуемся модельной полуэллиптической плотностью состояний, предложенной в [16] (см. также [17])

$$\rho(\Omega) = -\frac{1}{\pi} \operatorname{Im} G(\Omega)$$

$$= \frac{1}{4\pi t^2} \begin{cases} (16t^2 - \Omega^2), & |\Omega| \le 4t, \\ 0, & |\Omega| > 4t, \end{cases} \tag{20}$$

$$\operatorname{Re} G(\Omega) = rac{1}{4\pi t^2} egin{cases} \Omega, & |\Omega| \leq 4t, \ \Omega + (\Omega^2 - 16t^2)^{1/2}, & \Omega < -4t, \ \Omega - (\Omega^2 - 16t^2)^{1/2}, & \Omega > -4t, \end{cases}$$

где $\Omega=\omega-\varepsilon$. По своей структуре выражения (20) и (21) относятся к одномерным структурам. 2D-характер этих выражений определяется тем, что сплошной спектр лежит в пределах $|\Omega| \leq 4t$, а не $|\Omega| \leq 2t$ как в 1D-случае. Отметим, что $\rho_{\max} = \rho(\Omega=0) = (\pi t)^{-1}$ и $|{\rm Re}\,G|_{\max} = |{\rm Re}(\Omega=\pm 4)| = (\pi t)^{-1}$.

Исходя из соотношений (15) для контакта двух одноатомных полубесконечных решеток, представим плотность состояний системы в виде

$$\tilde{\rho}_{L(R)} = -\frac{1}{\pi} \frac{\text{Re } G_{L(R)} \cdot [2] + \text{Im } G_{L(R)} \cdot [1]}{[1]^2 + [2]^2}, \tag{22}$$

где $[1] = 1 - t^2 (\operatorname{Re} G_L \operatorname{Re} G_R - \operatorname{Im} G_L \operatorname{Im} G_R),$ $[2] = t^2 \times (\operatorname{Re} G_L \operatorname{Im} G_R - \operatorname{Re} G_R \operatorname{Im} G_L)$ и все входящие в (22) величины зависят только от энергии.

С.Ю. Давыдов

Для моделирования функции Грина и плотности состояний полубесконечной двухатомной решетки нужно преобразовать выражения (20) и (21), заменив в них $\rho(\Omega)$ и Re $G(\Omega)$ на $\rho_{A(B)}(\Omega_{A(B)})$ и Re $G_{A(B)}(\Omega_{A(B)})$, где

Рис. 1. Контакт одноатомных полубесконечных 2D-решеток: приведенные плотности состояний $\bar{\rho}_{L(R)} = \tilde{\rho}_{L(R)} \cdot 2t$ в функции от безразмерной энергии $\bar{\omega} = \omega/2t$ при $\bar{\varepsilon}_L = \varepsilon_L/2t = -1$ (центр зоны проводимости левой одноатомной решетки), $\bar{\varepsilon}_R = \varepsilon_R/2t = 1$ (центр зоны проводимости правой одноатомной решетки) и $\tau = \tilde{t}/t = 1$.

Рис. 2. Контакт одноатомной и двухатомной полубесконечных 2D-решеток: приведенные плотности состояний $\bar{\rho}_{L(R)} = \tilde{\rho}_{LA'(RA)} \cdot 2t$ в функции от безразмерной энергии $\bar{\omega} = \omega/2t$ при $\bar{\varepsilon}_L = \varphi_L/2t = 0$ (центр зоны проводимости левой одноатомной решетки), $\bar{\varepsilon}_R = \varepsilon_A/2t = -3$ (центр валентной зоны правой двухатомной решетки) и $\tau = \tilde{t}/t = 1$.

Рис. 3. Контакт двухатомных полубесконечных 2D-решеток: приведенные плотности состояний $\bar{\rho}_{L(R)} = \tilde{\rho}_{L(R)} \cdot 2t$ в функции от безразмерной энергии $\bar{\omega} = \omega/2t$ при $\bar{\varepsilon}_L = \varepsilon_C/2t = -5$ (центр валентной зоны левой двухатомной решетки), $\bar{\varepsilon}_R = \varepsilon_A/2t = -3$ (центр валентной зоны правой двухатомной решетки) и $\tau = \tilde{t}/t = 1$.

 $\Omega_{A(B)}=\omega-arepsilon_{A(B)}$. При этом ширина запрещенной зоны равна $E_g=arepsilon_B-arepsilon_A-8t$ ($arepsilon_B>arepsilon_A$). Затем для расчета следует воспользоваться формулами (18). Аналогичным образом для контакта двухатомных решеток в выражения (19) нужно ввести $ho_{A(B)}(\Omega_{A(B)})$, $\operatorname{Re} G_{A(B)}(\Omega_{A(B)})$ и $ho_{C(D)}(\Omega_{C(D)})$ и $\operatorname{Re} G_{C(D)}(\Omega_{C(D)})$, где $\Omega_{C(D)}=\omega-arepsilon_{C(D)}$, потребовав, чтобы $E_{gL}=arepsilon_D-arepsilon_C-8t>0$ ($arepsilon_D-arepsilon_C$). Подчеркнем, что в настоящей аппроксимации энергии $arepsilon_A$ ($arepsilon_B$) и $arepsilon_{C(D)}$ отвечают центрам валентных зон (зон проводимости), тогда как в формулах (2), (18), (19), (П3) и (П4) энергии $arepsilon_A$ и $arepsilon_B$ соответствуют краям этих зон.

Используя в качестве $\operatorname{Re} G_{L(R)}$ и $\operatorname{Im} G_{L(R)}$ выражения (20), (21), получим плотность состояний системы $\tilde{\rho}_{L(R)}(\omega)$, представленную на рис. 1—3 для рассмотренных выше ΓC и достаточно общего случая перекрытия функций $\rho_L(\omega)$ и $\rho_R(\omega)$ по энергии². При контакте одноатомных решеток (рис. 1) и выборе начала отсчета энергии в виде $\varepsilon_L + \varepsilon_R = 0$ имеем симметричную относительно нуля энергии картину, моделирующую контакт 2D-металлов.

Плотности состояний для ГС, образованной контактом одноатомной и двухатомной решеток, представлены на рис. 2 для случая, когда зона проводимости одноатомной цепочки (2D-металла) полностью перекрывает

 $^{^2}$ Подчеркнем, что все полученные в п.3 формулы для функций Грина и плотностей состояний, зависящих от $\omega,\,k_y,\,$ могут быть переписаны для функций Грина и плотностей состояний, зависящих только от ω

Рис. 4. Зависимость приведенных энергий уровней взаимодействующих димеров $\omega_{1,2}^*$ от приведенной энергии ε^* при $\tau=1$ (a) и от квадрата безразмерной константы связи τ^2 при $\varepsilon^*=1$ (b).

запрещенную зону двухатомной решетки (2D-полупроводника). При этом в силу заданной нами симметрии ($\varepsilon=\varepsilon_A+\varepsilon_B=0$) на рис. 2 изображена только левая половина графика, относящаяся к валентной зоне двухатомной решетки. Правая половина графика представляет собой зеркальное отражение левой половины относительно нуля энергии.

Рис. З демонстрирует плотности состояний ГС, отвечающие контакту двухатомных решеток, моделирующему гетеропереход между двумя 2D-полупроводниками. Рассмотрен случай так называемого охватывающего (straddling) перехода [14,15] с совмещенными центрами запрещенных зон. Так же как и на рис. 2, изображена только левая половина симметричного относительно нуля энергии графика, относящаяся к валентным зонам. Запрещенная зона ГС совпадает с минимальной запрещенной зоной, соответствующей правой двухатомной решетке.

Сходство графиков на рис. 1-3 обусловлено тем обстоятельством, что во всех случаях рассматриваются, по сути, контакты двух "цепочек", функции Грина которых описываются выражениями (20), (21). Отсюда же вытекают и особенности симметрии приведенных графиков.

5. Модель взаимодействующих димеров: переход заряда

Идя по пути дальнейшего упрощения задачи, рассмотрим простейшую модель (toy model) латеральной структуры, состоящей из двух димеров: левого (L), составленного из атомов с номерами -2 и -1 с энергией

s-состояния ε_L , и правого (R), образованного атомами с номерами 1 и 2 с энергией s-состояния ε_R . Для обоих димеров межатомная энергия перехода электрона равна t. Легко показать [18], что функции Грина таких димеров (в отсутствии взаимодействия между ними) равны $G_{L(R)}^{\dim} = g_{L(T)}/1(1-t^2g_Lg_R)$, где $g_{L(G)} = (\Omega_{L(R)}+is)^{-1}$, $\Omega_{L(R)} = \omega - \varepsilon_{L(R)}$, а соответствующие плотности состояний, нормированные на два электрона s-орбитали, есть $\rho_{L(R)}^{\dim} = \delta(\Omega_{L(R)}-t)+\delta(\Omega_{L(R)}+t)$, где $\delta(\ldots)$ — дельтафункция Дирака. Включим теперь между атомами -1 и 1 взаимодействие \tilde{t} . Воспользовавшись уравнением Дайсона, получим функции Грина четырехатомной цепочки (см. Приложение, $\Pi 3$).

$$G_{-2,-2} = g_L \left(1 - g_L^2 t^2 - \frac{g_L^3 g_R t^2 \tilde{t}^2}{1 - g_R^2 t^2 - g_L g_R \tilde{t}^2} \right)^{-1}, \quad (23)$$

$$G_{-1,-1} = g_L \left(1 - g_L^2 t^2 - g_L g_R \tilde{t}^2 - \frac{g_L g_R^3 t^2 \tilde{t}^2}{1 - g_R^2 t^2} \right)^{-1}, \quad (24)$$

Функции Грина G_{22} и G_{11} получаются из выражений (23) и (24) путем замены g_L на g_R и g_R на g_L . Спектр системы определяется полюсами функций Грина, которые удовлетворяют уравнению

$$1 - (g_L^2 + g_R^2)t^2 - g_L g_R \tilde{t}^2 + g_L^2 g_R^2 t^4 = 0.$$
 (25)

Корни этого уравнения приведены в Приложении, п. 3. На рис. 4 представлены зависимости безразмерной энергий 2-х положительных уровней системы $\omega_{1,2}^*$ от $\varepsilon^* = \varepsilon/t$ (a) и τ^2 (b); два отрицательных уровня имеют энергии $\omega_3^* = -\omega_2^*$ и $\omega_4^* = -\omega_1^*$. Особенности функций $\omega_{1,2}^*(\varepsilon^*,\tau^2)$ обсуждаются в п. 3 Приложения.

1394 С.Ю. Давыдов

Рис. 5. Зависимости чисел заполнения n_i атомов i=-2,-1,1,2 от приведенной энергии ε^* при $\tau=1$ (a) и от квадрата безразмерной константы связи τ^2 при $\varepsilon^*=1$ (b) при $-\omega_2^*<\varepsilon_F^*<\omega_2^*$.

Плотность состояний атомов четырехатомной цепочки, нормированная на два электрона, равна

$$\rho_i(\omega) = \sum_k n_{ii}^k \delta(\omega - \omega_k), \qquad (26)$$

где

$$n_{ii}^{k} = \frac{2A_{ii}(\omega_k)}{\prod\limits_{k' \neq k} (\omega_k - \omega_{k'})},$$
(27)

 $\begin{array}{l} A_{-1-1}=(\omega+\varepsilon)[(\omega-\varepsilon)^2-t^2],\,A_{-2-2}=(\omega-\varepsilon)^2(\omega+\varepsilon)\\ -[(\omega+\varepsilon)t^2+(\omega-\varepsilon)\tilde{t}^2],\quad A_{11}=(\omega-\varepsilon)[(\omega+\varepsilon)^2-t^2],\\ A_{22}=(\omega+\varepsilon)^2(\omega-\varepsilon)-[(\omega-\varepsilon)t^2+(\omega+\varepsilon)\tilde{t}^2],\,\,\text{индексы}\\ i=-1,\,-2,\,1,\,2\,\,\,\text{нумеруют атомы, индексы}\\ k=1,\,2,\,3,\\ 4-\text{корни уравнения}\ (25). \end{array}$

На рис. 5 приведены зависимости чисел заполнения атомов $n_i=\int\limits_{-\infty}^{arepsilon_F}
ho_i(\omega)d\omega$ от параметров задачи $arepsilon^*$ (a)и τ (b) в предположении, что приведенный уровень Ферми системы $\varepsilon_F^* = \varepsilon_F/t$ лежит в интервале $(-\omega_2^*, \omega_2^*)$, так что при нулевой температуре заполняются только уровни $-\omega_1^*$ и $-\omega_2^*$. Здесь, как и в случае, изображенном на рис. 4 (см. обсуждение в Приложении, π . 3), нулевое значение τ следует понимать как предел $au o 0^+$. При этом число заполнения уровней атомов -2и -1 равно 1.5, а число заполнения атомов 1 и 2 равно 0.5. Из рис. 5, a ясно видно, что с ростом ε^* заполнение атомов -2 и -1, а 1 и 2 убывает, что вполне объясняется сдвигами уровней (рис. 4). Рис. 5, bиллюстрирует нарастание заполнения атомов -2 и 1 и убыль заполнения атома -1 и 2 с ростом константы связи au. Наибольшие изменения заряда наблюдаются для крайних атомов (-2 и 2) четырехатомной цепочки, тогда как переход заряда для внутренних атомов (-1 и 1) достаточно мал.

6. Заключительные замечания

В настоящей статье мы рассмотрели свободные латеральные ГС. В принципе, полученные результаты нетрудно обобщить на эпитаксиальные структуры. Для этого нужно в выражениях (1), (2), (23)-(25), $(\Pi 9)$, (П10) добавить в знаменатели одноатомных функций Грина g, $g_{A(B)}$, $g_{C(D)}$, g_{ii} сдвиги и уширения атомных уровней $\Lambda(\omega)$ и $\Gamma(\omega)$, возникающие вследствие взаимодействия контактирующих решеток с подложкой [11,12,15,18,19]. Воспользовавшись приведенной здесь схемой, сравнительно просто рассмотреть также контакты графеноподобных структур (как свободных, так и эпитаксиальных). При этом следует учитывать два вида контактов: зигзагообразные и крестообразные. Отметим, что для графеноподобных ГС можно воспользоваться кластерной моделью [19] аналогично тому, как в настоящей работе использовались димеры.

ПРИЛОЖЕНИЕ

1. Производя стандартную замену

$$N_x^{-1} \sum_{k_x} (\ldots) \to \frac{a}{2\pi} \int_{-\pi/a}^{\pi/a} dk_x(\ldots), \tag{\Pi1}$$

для бесконечной одноатомной решетки из выражения (6) получим при $\alpha^2 = 4t^2/W^2 < 1$, где

 $W = \Omega + 2t \cos(k_{\nu}\alpha), \ \Omega = \omega - \varphi, \ \alpha = 2t/W$ следующее выражение [20]:

$$G_0(\omega, m, k_y) = rac{1}{\pi W} \int\limits_0^\pi rac{\cos(mx)dx}{1 + lpha \cos x} = rac{1}{W} rac{1}{\sqrt{1 - lpha^2}} I_m,$$

$$I_m = \left(\frac{\sqrt{1 - \alpha^2} - 1}{\alpha}\right)^{|m|}.\tag{\Pi2}$$

В случае, когда $\alpha^2 > 1$ нужно заменить $\sqrt{1-\alpha^2}$ на $i\sqrt{\alpha^2-1}$.

Для бесконечной двухатомной решетки выражение для функции Грина (2) может быть переписано в виде

$$G_0^{AA(BB)}(\omega) = (C_{A(B)})^{-1} \frac{1}{1 - \beta \cos(2k_x \alpha)},$$
 (II3)

 $C_{A(B)} = g_{B(A)}Q, \quad \beta = 2t^2/Q \quad \text{if} \quad Q = g_A^{-1}g_B^{-1}$ $-2t^2(2+\cos(2k_{\nu}\alpha))$. Тогда вместо (П2) для $\beta < 1$ получим

$$\begin{split} G_0^{A(B)}(\omega, m, k_y) &= \frac{1}{\pi g_{B(A)} Q} \int_0^{\pi} \frac{\cos(mx) dx}{1 - \beta \cos x} \\ &= \frac{1}{C_{A(B)}} \frac{1}{\sqrt{1 - \beta^2}} \left(\frac{1 - \sqrt{1 - \beta^2}}{\beta} \right)^{|m|}. \end{split}$$
 (\Pi4)

При $\beta^2 > 1$ нужно заменить $\sqrt{1-\beta^2}$ на $i\sqrt{\beta^2-1}$.

2. Рассмотрим некоторые частные случаи контакта одноатомных решеток, отметив, для начала, что плотность состояний полубесконечной одноатомной квадратной решетки равна

$$\rho_{L(R)} = -\pi^{-1} \text{Im} \, G_{L(R)} = -(\pi t)^{-1} \sin \varphi_{L(R)}. \tag{\Pi5}$$

В случае слабой связи контактирующих решеток, т.е. при $\tau^2 \ll 1$, в нулевом порядке по τ^2 плотность состояний (17) переходит в (П5). В первом порядке по τ^2 имеем Re $C \approx 1 + \tau^2 \cos 2\phi$ и Im $C \approx \tau^2 \sin 2\phi$, так что вместо (17) получим

$$\tilde{\rho}_{L(R)} \approx \rho_{L(R)} - (\tau^2/\pi t) \sin(\varphi_{L(R)} + 2\phi),$$
 (Π6)

или $\tilde{\rho}_L \approx \rho_L - \tau^2/\pi t$) $\sin(2\varphi_L + \varphi_R)$ и $\tilde{\rho}_R \approx \rho_R - \tau^2/\pi t$) $imes \sin(2\phi_R+\phi_L)$. Отметим, что условие $au^2\ll 1$ отвечает ван-дер-ваальсовой связи между компонентами ГС.

Положив $\varepsilon_L = \varepsilon_R = \varepsilon$, получим и $ho=
ho_L=
ho_R,$ откуда найдем $ilde{
ho}= ilde{
ho}_L= ilde{
ho}_Rpprox
ho[1+ au^2(3-4(\pi t)
ho^2)].$ При $W^2=4t^2$ плотность состояний ho максимальна и равна $ho_{\max} = (\pi t)^{-1}.$ Отсюда следует, что при том же условии плотность состояний $\tilde{\rho}$ имеет минимум, равный $\tilde{\rho}_{\min} \approx \rho (1 - \tau^2)$. Таким образом, одногорбая плотность состояний в результате взаимодействия становится двугорбой. Это аналог возникновения связывающих и антисвязывающих состояний при взаимодействии двух уровней.

Пусть теперь $\delta \varepsilon = \varepsilon_{\it R} - \varepsilon_{\it L} \ge 8t$. Это означает, что в интервале энергий, где $\rho_L \neq 0$, имеем $\rho_R = 0$, и, наоборот, $ho_{\it R}
eq 0$ в области, отвечающей $ho_{\it L} = 0$. Тогда $ilde{
ho}_{L(R)}pprox
ho_{L(R)}ig\{1+(au^2/\pi t^2)[W_{R(L)}(W_{R(L)}-\sqrt{W_{R(I)}^2-4t^2})]ig\}.$ В пределе сильной связи при $au^2\gg 1$ имеем

 $\operatorname{Re} C \approx -\cos 2\phi/\tau^2$ и $\operatorname{Im} C \approx -\sin 2\phi/\tau^2$, откуда

$$\tilde{\rho}_{L(R)} \approx \rho_{R(L)}/\tau^2.$$
 (П7)

В этом случае следует рассматривать связанные \tilde{t} -взаимодействием L- и R-края контактирующих решеток как единую систему с плотностью состояний $ilde{
ho}_{\Sigma} = ilde{
ho}_L + ilde{
ho}_R pprox
ho_{\Sigma}/ au^2$, где $ho_{\Sigma} =
ho_L +
ho_R$. Подчеркнем, что предел $au^2\gg 1$ является искусственным и приведен здесь в чисто иллюстративных целях.

При $\tau = 1$ получаем Re C = 1/2 и Im $C = \operatorname{ctg} \phi/2$, так

$$\tilde{\rho}_{L(R)} = (\rho_{R(L)} - \cos \varphi_{L(R)} \operatorname{ctg} \phi / \pi t) / 2. \tag{\Pi8}$$

При $\varepsilon_L = \varepsilon_R = \varepsilon$ получим $\varphi_L = \varphi_R = \varphi$, $\rho = \rho_L = \rho_R$ и $ilde{
ho}_L = ilde{
ho}_R = ilde{
ho},$ откуда $ilde{
ho} = 1/2(\pi t)^2
ho$. Для случая $\delta arepsilon = arepsilon_R - arepsilon_L \geq 8t$ учтем, в области, где $ho_L
eq 0$, $ho_{\it R}=0$ имеем ${
m ctg}\,\phi={
m ctg}(\phi_{\it L}/2);$ в области, где $ho_L=0, \quad
ho_R
eq 0 \quad$ имеем $\operatorname{ctg} \phi = \operatorname{ctg} (\phi_R/2).$ $\tilde{\rho}_{L(R)} = [\rho_{L(R)} - \cos \varphi_{L(R)} \cot (\varphi_{L(R)}/2)/\pi t]/2.$ что условие $\tau=1$ отвечает ситуации, когда расстояние между атомами краев левой и правой подрешеток равно a.

3. Для четырехатомной цепочки, образованной двумя димерами, введем функции Грина G_{ij} , где индексы iи j пробегают значения -2, -1, 1 и 2. Воспользуемся уравнением Дайсона G = g + gTG, где $g_{ij} = g_{ii}\delta_{ij}$, $g_{-2-2}=g_{-1-1}=g_L,\,g_{11}=g_{22}=g_R,\,\delta_{ij}$ — символ Кронекера, $\hat{T}\hat{T}^+=\tilde{t}^2$ для взаимодействия атомов -1 и 1 и в $\hat{T}\hat{T}^+ = \tilde{t}^2$ остальных случаях. В результате получим

$$G_{-2-2} = g_{-2-2} \left(1 - g_{-2-2}g_{-1-1}t^2 - \frac{g_{-2-2}g_{-1-1}^2g_{11}t^2\tilde{t}^2}{1 - g_{11}g_{22}t^2 - g_{11}g_{-1-1}\tilde{t}^3} \right)^{-1}. \tag{\Pi9}$$

$$G_{-1-1} = g_{-1-1} \left(1 - g_{-2-2}g_{-1-1}t^2 - g_{-1-1}g_{11}\tilde{t}^2 - \frac{g_{-1-1}g_{11}^2g_{22}t^2\tilde{t}^2}{1 - g_{11}g_{22}t^2} \right)^{-1}. \tag{\Pi10}$$

Функции Грина G_{22} и G_{11} получаются из выражений (П9) и (П10) путем замены знаков индексов ij на противоположные. Переходя от g_{ij} к функциям Грина g_L и G_R , получим выражения (23) и (24).

Проанализируем теперь спектр системы, определяемый корнями уравнения (25), для чего положим $-\varepsilon_L = \varepsilon_R = \varepsilon > 0$. Тогда уравнение (П11) сводится к уравнению $\omega^4 - 2\omega^2 b + c = 0$, где $b = \varepsilon^2 + t^2 + \tilde{t}^2/2$, $c=(\varepsilon^2-t^2)^2+\varepsilon^2\tilde{t}^2$. Это уравнение имеет четыре решения: $\omega_{1,2}^* = \sqrt{b^* \pm R^*}$ и $\omega_{4,3}^* = -\sqrt{b^* \pm R^*}$, где $\omega_k^* =$ $=\omega_k/t$ $(k=1, 2, 3, 4), R^*=\sqrt{4\varepsilon^{*2}+\tau^2(1+\tau^2/4)},$

 $b^*=b/t^2$ и $\varepsilon^*=\varepsilon/t$. Легко показать, что $(b^*)^2-(R^*)^2==\left((\varepsilon^*)^2-1\right)^2+ au^2(\varepsilon^*)^2\geq 0.$

На рис. 3 демонстрируется зависимость приведенных энергий $\omega_{1,2}^*$ от $\varepsilon^* = \varepsilon/t$ (a) и τ^2 (b). Как следует из рис. 3, функции $\omega_1^*(\varepsilon^*)$ и $\omega_{1,2}^*(\tau^2)$ являются монотонно возрастающими, тогда как функция $\omega_2^*(\varepsilon^*)$ имеет минимум. Такая зависимость имеет место только при значениях au^2 , удовлетворяющих неравенству $4 \ge au^2 (1 + au^2 / 4)$; значение ε^* , отвечающее минимуму, есть $(\varepsilon^*)_{\min} = [4 - au^2 (1 + au^2/4)]^{1/2}/2$. При $\varepsilon^* o \infty$ получаем $\omega_{1,2} \to \sqrt{(\varepsilon^*)^2 \pm \varepsilon^*}$; при $\tau \to \infty$ имеем $\omega_1^* \propto \tau$, $\omega_2^* \propto \varepsilon^*$. Нулевое значение τ (рис. 3, b) следует понимать как предел $au o 0^+$, что отвечает взаимодействующим с бесконечно малой константой связи димерам. При этом, согласно правилам квантовой механики, состояния изолированных димеров, соответствующие приведенным энергиям +1 и -1, группируются в четыре состояния с безразмерными энергиями +2, -2 и 0 (дважды вырожденное состояние).

Список литературы

- [1] A.K. Geim, I.V. Grigorieva. Nature **499**, 419 (2013).
- [2] H. Wang, F. Liu, W. Fu, Z. Fang, W. Zhou, Z. Liu Nanoscale 6, 12250 (2014).
- [3] И.В. Антонова. ФТП 50, 67 (2016).
- [4] J. Wang, F. Ma, M. Sun. RSC Adv. 7, 16801 (2017).
- [5] Q. Sun, Y. Dai, Y. Ma, N. Yin, W. Wei, L. Yu, B. Huang. 2D Materials 3, 035017 (2016).
- [6] J. Zhang, W. Xie, X. Xu, S. Zhang, J. Zhao. Chem. Mater 28, 5022 (2016).
- [7] Y. Zhao, Z. Wan, X. Xu, S.R. Patil, U. Hetmaniuk, M.P. Anantram. Sci. Rep. 5, 10712 (2015).
- [8] S. Bruzzone, D. Logoteta, G. Fiori, G. Iannaccone. Sci. Rep. 5, 14519 (2015).
- [9] G.C. Loh, R. Pandey. J. Mater. Chem. C 3, 5918 (2015).
- [10] Z.-Y. Ong, G. Zhang, Y.-W. Zhang. Phys. Rev. B 93, 075406 (2016).
- [11] С.Ю. Давыдов, А.А. Лебедев, О.В. Посредник. Элементарное введение в теорию наносистем. Лань, СПб (2014). 192 с.
- [12] С.Ю. Давыдов. Теория адсорбции: метод модельных гамильтонианов. Изд-во СПбГЭТУ ЛЭТИ, СПб (2013). 235 с.; twirpx.com/file/1596114/
- [13] D. Kalkstein, P. Soven. Surf. Sci. 26, 85 (1971).
- [14] Ф. Бехштедт, Р. Эндерлайн. Поверхности и границы раздела полупроводников. Мир, М. (1990). 488 с.
- [15] С.Ю. Давыдов. ФТТ 58, 1182 (2016).
- [16] D.M. Newns. Phys. Rev. 178, 1123 (1969).
- [17] T.L. Einstein, J.R. Schrieffer. Phys. Rev. B 7, 8, 3629 (1973).
- [18] С.Ю. Давыдов. ФТТ 54, 2193 (2012).
- [19] С.Ю. Давыдов. ФТТ 59, 1650 (2017).
- [20] И.С. Градштейн, И.М. Рыжик. Таблицы интегралов, сумм, рядов и произведений. Наука, М. (1971). 1108 с.

Редактор Т.Н. Василевская