05

Аппроксимация влияния эффективных магнитных параметров на коэрцитивную силу нанокристаллических пленок на основе Fe

© Е.В. Харин, Е.Н. Шефтель, В.А. Теджетов

Институт металлургии и материаловедения им. А.А. Байкова РАН, Москва, Россия E-mail: harin-eugene@ya.ru

Поступило в Редакцию 29 января 2018 г.

На основе измерений кривых намагничивания и петель гистерезиса пленок Fe, Fe₉₀N₁₀, Fe₉₅Zr₅, Fe₈₅Zr₅N₁₀, Fe₇₇Zr₇N₁₆ определены коэрцитивная сила H_c , намагниченность насыщения M_s и среднеквадратичная флуктуация поля локальной магнитной анизотропии $a^{1/2}H_a$. С использованием аппроксимации эмпирическим полиномом второй степени и диаграммы Парето наглядно представлено влияние размера зерна, поля $a^{1/2}H_a$ и намагниченности насыщения на коэрцитивную силу.

DOI: 10.21883/PJTF.2018.10.46096.17226

Магнитно-мягкие металлические пленки — важнейший функциональный материал, используемый при производстве устройств современной и перспективной микроэлектроники. Это системы записи и хранения информации, телекоммуникационные системы, системы ориентации и перемещения объектов, датчики и преобразователи магнитных полей и др. [1]. Основными тенденциями развития микроэлектроники являются миниатюризация, обеспечение быстродействия устройств, высокой чувствительности к слабым магнитным полям. В связи с этим магнитно-мягкие металлические пленки должны обладать определенным комплексом физических свойств, среди которых определяющими являются низкая коэрцитивная сила H_c и максимально возможная индукция насыщения B_s [2]. Низкая коэрцитивная сила H_c достигается в пленках высокоиндукционных магнитно-мягких сплавов на основе Fe, в которых при получении, в частности, методом магнетронного осажде-

29

ния или при последующем отжиге формируется нанокристаллическая структура с размером ферромагнитного зерна меньше длины ферромагнитного обменного взаимодействия. Такая структура обеспечивает, как описано в модели случайной магнитной анизотропии [3], снижение эффективной магнитной анизотропии (в некоторых случаях на несколько порядков), что в рамках существующих моделей магнитного гистерезиса приводит к экстремальному уменьшению коэрцитивной силы.

В соответствии с моделью случайной магнитной анизотропии величина коэрцитивной силы H_c описывается зависимостью

$$H_c \sim K_{eff}^4 D_{grain}^6 / (M_s A^3), \tag{1}$$

где D_{grain} — размер зерна, $K_{eff} = H_a M_s/2$ — локальная (действующая на масштабе размера зерна) магнитная анизотропия, H_a — поле локальной магнитной анизотропии, M_s — намагниченность насыщения, A — обменная энергия. Значения этих параметров определяются экспериментальными методами. Зависимость величины H_c от четырех параметров означает, что ее величину можно уменьшить не только за счет уменьшения размера зерна, но и за счет изменения значений других параметров, входящих в зависимость (1). При этом полезно иметь наглядное представление о вкладе каждого параметра в величину H_c .

Цель настоящей работы состоит в том, чтобы, используя один из статистических методов анализа эксперимента, применяемый для оптимизации и моделирования различных процессов, response surface methodology (RSM) [4–6], и построение диаграммы Парето, позволяющей отразить процентное соотношение набора различных величин [7,8], наглядно представить влияние размера зерна D_{grain} , поля локальной магнитной анизотропии H_a и намагниченности насыщения M_s на величину коэрцитивной силы H_c .

В работе исследованы пленки химических составов Fe, Fe₉₀N₁₀, Fe₉₅Zr₅, Fe₈₅Zr₅N₁₀, Fe₇₇Zr₇N₁₆, полученные из мишеней Fe и Fe₉₅Zr₅ методом высокочастотного реактивного магнетронного распыления. Условия распыления были следующими: мощность магнетрона 300 W, остаточное атмосферное давление $5 \cdot 10^{-6}$ mm Hg, состав рабочего газа Ar или Ar + 10% N₂, давление рабочего газа $3.5 \cdot 10^{-3}$ mm Hg, расстояние между мишенью и подложкой 50 mm, время распыления 16 min. Пленки толщиной $0.5 \,\mu$ m осаждались под углом падения ионного

Химический состав, угол осаждения, подложка, термообработка (TO)	<i>D_{grain}</i> , nm	$a^{1/2}H_a$, Oe	M_s , G	H_c , Oe
Fe, 0°, покровное стекло, без ТО	39	310	1683	13
$Fe_{90}N_{10}$, 0°, покровное стекло, без TO	14.6	465	1332	90
$Fe_{95}Zr_5$, 0°, покровное стекло, без TO	34	207	1598	45
$Fe_{85}Zr_5N_{10}$, 0°, покровное стекло, без ТО	11	413	1310	40
Fe ₇₇ Zr ₇ N ₁₆ , 0°, SiO ₂ , без ТО	2.3	209	1398	6.5
Fe ₇₇ Zr ₇ N ₁₆ , 10°, Si/SiO ₂ /Si ₃ N ₄ , без ТО	3.2	204	1051	19.5
Fe ₇₇ Zr ₇ N ₁₆ , 20°, Si/SiO ₂ /Si ₃ N ₄ , без ТО	2.5	696	1428	12
Fe ₇₇ Zr ₇ N ₁₆ , 30°, SiO ₂ , без ТО	4	1131	1126	13.5
Fe ₇₇ Zr ₇ N ₁₆ , 10°, SiO ₂ , 400°C	3	201	677	1.5
Fe ₇₇ Zr ₇ N ₁₆ , 30°, SiO ₂ , 400°C	4	271	704	0.2
$Fe_{77}Zr_7N_{16}$, 20°, SiO ₂ , 500°C	7.1	491	890	0.7
Fe ₇₇ Zr ₇ N ₁₆ , 30°, Si/SiO ₂ /Si ₃ N ₄ , 500°C	11	777	933	0.5
	-	•		

Результаты анализа дифрактограмм и кривых намагничивания пленок

потока, отложенным от нормали к плоскости подложек, 0, 10, 20, 30° на подложки из покровного стекла, аморфного SiO₂ и многослойные подложки Si/SiO₂/Si₃N₄. Вакуумные отжиги проводились при температурах 400 и 500°C с выдержкой 1 h в вакууме $2 \cdot 10^{-6}$ mm Hg. Химический состав пленок определен на растровом электронном микроскопе с энергодисперсионной рентгеновской приставкой EDXRMA в вакууме 10^{-5} mm Hg. Подробное описание условий осаждения пленок, обоснование наклонного осаждения, а также исследования фазового состава и структуры пленок методом рентгенодифракционного анализа подробно изложены в ранее опубликованных авторами работах [9,10].

Магнитные свойства пленок (кривые намагничивания и петли гистерезиса) измерены на вибрационном магнитометре во внешних магнитных полях до 7 kOe при комнатной температуре. Из кривых намагничивания с использованием метода корреляционной магнитометрии [11–13] определены величины намагниченности насыщения M_s и локального поля магнитной анизотропии H_a .

По данным рентгеновской дифракции в исследованных пленках единственной ферромагнитной фазой в состоянии как после осаждения, так и после отжига является твердый раствор на основе α -Fe с ОЦК-кристаллической решеткой и значениями периода решетки

Рис. 1. Экспериментально полученная для пленки $Fe_{90}N_{10}$ зависимость M(H), представленная в координатах $M-H^{-2}$. Сплошная линия — уравнение (2).

2.86–2.91 Å в зависимости от химического состава пленки. Размер зерна ОЦК-фазы, представленный в таблице, практически не меняется при отжиге.

Для определения намагниченности насыщения M_s (см. таблицу) экспериментально полученная для каждой пленки в полях более 2 kOe кривая намагничивания M(H) была построена в координатах $M-H^{-2}$ (рис. 1). Согласно теории корреляционной магнитометрии [11], в условиях, когда автокорреляция намагниченностей соседних зерен (модель случайной анизотропии) подавлена внешним магнитным полем, зависимость $M(H^{-2})$ (рис. 1) описывается уравнением, следующим из закона Акулова,

$$M = M_s \left[1 - (1/2)(a^{1/2}H_a/H)^2 \right], \tag{2}$$

где a — дисперсия локальных осей анизотропии, которая в данном исследовании неизвестна, поэтому поле локальной магнитной анизотропии определяем как $a^{1/2}H_a$ — среднеквадратичная флуктуация эффективного поля локальной магнитной анизотропии (см. таблицу),

Рис. 2. Сравнение измеренной H_c (ось абсцисс) и предсказанной коэрцитивности H_c^m (ось ординат). Сплошная линия соответствует случаю их равенства.

коэффициент 1/2 (поправка Холыштейна–Примакова) [14] в формуле (2) используется при измерениях в полях $H \ll 4\pi M_s$ (приблизительно 20 kOe для Fe). Экстраполяция линейной в координатах $M-H^{-2}$ зависимости $M(H^{-2})$ к $H^{-2} = 0$, т.е. к полю $H = \infty$, дает величину намагниченности насыщения M_s , а тангенс наклона асимптоты величину $a^{1/2}H_a$.

Величины коэрцитивной силы исследованных пленок (см. таблицу) определены по экспериментально построенным петлям гистерезиса, представленным в ранее опубликованных авторами работах [10,15].

Применив метод RSM [4–6,8], основанный на аппроксимации произвольной зависимости эмпирическим полиномом второй степени, зависимость $H_c = f(D_{grain}, a^{1/2}H_a, M_s)$ можно представить функцией с тремя независимыми переменными x_i и слагаемыми, описывающими их парные взаимодействия:

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_{12} x_1 x_2 + b_{13} x_1 x_3$$
$$+ b_{23} x_2 x_3 + b_{11} x_1^2 + b_{22} x_2^2 + b_{33} x_3^2.$$
(3)

Рис. 3. Диаграмма Парето для слагаемых уравнения (4).

Для сравнения влияния переменных D_{grain} , $a^{1/2}H_a$ и M_s их значения, полученные для всех исследованных пленок, были нормированы на максимальные значения соответствующих переменных (см. таблицу). В результате регрессионного анализа данных, представленных в таблице, был получен полином

$$\begin{aligned} H_c^m &= 68 + 215 D_{grain} - 291 a^{1/2} H_a - 154 M_s - 63 D_{grain} a^{1/2} H_a \\ &+ 264 D_{grain} M_s + 277 a^{1/2} H_a M_s - 443 D_{grain}^2 + 93 (a^{1/2} H_a)^2 + 76 M_s^2. \end{aligned}$$

Чтобы проверить адекватность моделирования коэрцитивной силы с помощью уравнения (4), в него были подставлены нормированные данные из таблицы и рассчитаны величины H_c^m (рис. 2), которые сравнивались с измеренными величинами H_c (см. таблицу). Из рис. 2 видно, что упрощение степенной зависимости (1) до квадратичной (4) дает удовлетворительный результат в диапазоне величин $H_c \approx 1-100$ Ое.

Для построения диаграммы Парето (рис. 3) были рассчитаны вклады *P_n* в коэрцитивную силу каждого слагаемого полинома (4)

$$P_n = 100(b_n^2 / \Sigma b_n^2), \quad n \neq 0,$$
 (5)

где b_n — коэффициенты полинома (4). При построении диаграммы Парето величины P_n отсортировывались по убыванию.

Как видно из рис. 3, величина P для D_{grain}^2 более чем в 2 раза превышает вклад любого другого слагаемого. Это означает, что степенная зависимость от размера зерна оказывает наибольшее влияние на величину коэрцитивной силы H_c ; далее в порядке убывания следует локальная магнитная анизотропия $a^{1/2}H_a$, а затем их произведения на намагниченность насыщения $a^{1/2}H_aM_s$ и $D_{grain}M_s$. Эти четыре слагаемых (первые четыре столбца на рис. 3) дают накопленную долю $\Sigma P_n > 80\%$ в коэрцитивной силе (горизонтальная линия на рис. 3).

Таким образом, исследованы нанокристаллические пленки на основе Fe, легированные Zr и N, с единственной ферромагнитной ОЦК-фазой с размером зерна 2–40 nm. Определены коэрцитивная сила H_c , намагниченность насыщения M_s и среднеквадратичная флуктуация поля локальной магнитной анизотропии $a^{1/2}H_a$. С помощью эмпирического полинома оценены вклады от размера зерна, поля $a^{1/2}H_a$ и M_s в величину H_c . Моделирование коэрцитивной силы полиномом удовлетворительно согласуется с экспериментом. Построена диаграмма Парето для слагаемых этого полинома. Показано, что степенная зависимость от размера зерна имеет наибольшее влияние на величину H_c .

Работа выполнена при частичной финансовой поддержке РФФИ (18-03-00502а).

Список литературы

- Fujii Sh., Nishijima K., Satoh H., Yamamoto S. // J. Magn. Magn. Mater. 2015. V. 379. P. 256–259.
- [2] Шефтель Е.Н., Шалыгина Е.Е., Усманова Г.Ш., Утицких С.И., Мукашева М.А., Inoue М., Fujikawa R. // Письма в ЖТФ. 2007. Т. 33. В. 20. С. 54–72.
- [3] Herzer G. // Acta Mater. 2013. V. 61. N 3. P. 718–734.
- [4] Ebrahimi B., Shojaosadati S.A., Ranaie S.O., Mousavi S.M. // Process. Biochem. 2010. V. 45. N 1. P. 81–87.

- [5] Ahmadi S., Manteghian M., Kazemian H., Rohani S., Darian J.T. // Powder Technol. 2012. V. 228. P. 163–170.
- [6] Sun L., Wan S., Yu Z., Wang L. // Sep. Purif. Technol. 2014. V. 125. P. 156-162.
- [7] Wilkinson L. // Am. Statist. 2006. V. 60. P. 332-334.
- [8] Ghazanfari M.R., Kashefi M., Jaafari M.R. // J. Magn. Magn. Mater. 2016. V. 409. P. 134–142.
- [9] Harin E.V., Sheftel E.N. // Solid State Phenom. 2015. V. 233-234. P. 619-622.
- [10] Шефтель Е.Н., Харин Е.В., Теджетов В.А., Усманова Г.Ш., Крикунов А.И. // Металлы. 2016. № 5. С. 54–60.
- [11] Исхаков Р.С., Комогорцев С.В., Балаев А.Д., Чеканова Л.А. // Письма в ЖТФ. 2002. Т. 28. В. 17. С. 37–44.
- [12] Iskhakov R.S., Komogortsev S.V. // Phys. Met. Metallogr. 2011. V. 112. N 7. P. 666–681.
- [13] Komogortsev S.V., Iskhakov R.S. // J. Magn. Magn. Mater. 2017. V. 440. P. 213– 216.
- [14] Holstein T., Primakoff H. // Phys. Rev. 1941. V. 59. N 4. P. 388-395.
- [15] Харин Е.В., Шефтель Е.Н. // Физика металлов и металловедение. 2015. Т. 116. № 8. С. 795-802.