### 13,18

# Электронная и магнитная структура интеркалированных пленок графена

© С.М. Дунаевский<sup>1,2</sup>, Е.Ю. Лобанова<sup>3,4</sup>, Е.К. Михайленко<sup>3,4</sup>, И.И. Пронин<sup>3</sup>

1 Национальный исследовательский центр "Курчатовский институт",

Петербургский институт ядерной физики им. Б.П. Константинова,

Гатчина, Россия

<sup>2</sup> Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина),

Санкт-Петербург, Россия

<sup>3</sup> Физико-технический институт им. А.Ф. Иоффе РАН,

Санкт-Петербург, Россия

<sup>4</sup> Санкт-Петербургский политехнический университет Петра Великого,

Санкт-Петербург, Россия

E-mail: smd2000@mail.ru

В рамках теории спинового функционала плотности (SDFT) выполнены *ab initio* расчеты электронного спектра системы графен-кобальт-никель. В работе представлены дисперсионные кривые  $E_{\sigma n}(\mathbf{k})$ , на основе которых определены парциальные и полные плотности состояний валентных электронов, вычислены значения магнитных моментов всех атомов в суперячейке. Показано, что энергетическое положение "конуса Дирака", обусловленного  $p_z$ -состояниями графена, слабо зависит от числа слоев Со, интеркалированного в межслоевой зазор между кобальтом и графеном.

DOI: 10.21883/FTT.2018.06.46000.08M

#### 1. Введение

Уникальные свойства графена (Gr) позволяют рассматривать его в качестве одного из наиболее перспективных материалов современной спинтроники [1-4]. Для практического использования графена необходимо понимать, как модифицируется его электронная структура при взаимодействии с различными подложками. В частности, применение графена неизбежно ведет к необходимости создания контакта графен/металл или графен/изолятор. Модификация свойств таких гетероструктур выполняется путем интеркаляции системы графен/подложка атомами других веществ. Так, интеркаляция графена переходными металлами перспективна для изготовления туннельных магнитных переходов и структур графен/ферромагнитный металл/подложка с перпендикулярной магнитной анизотропией. Ввиду того, что формирование ферромагнитных слоев под графеном представляет особый интерес для развития спинтроники, интеркаляция пленок графена (на никеле) железом, кобальтом и кремнием в последние годы стала объектом активных экспериментальных и теоретических исследований [5,6].

Одним из наиболее популярных интерфейсов графен/металл является система Gr/Ni(111) [7]. Это обусловлено тем, что в силу малого отличия постоянных решетки графена и никеля высококачественный графен может быть получен на поверхности Ni(111) методом химического осаждения из газовой фазы (CVD). Теоретическое и экспериментальное исследование графена на никеле показало, что при контакте с никелем электронная структура графена значительно модифицируется. Это обусловлено гибридизацией *d*-состояний никеля с *s*-

и *p*-состояниями углерода, которая разрушает линейную дисперсию состояний вблизи точки *K*. Интеркаляция системы Gr/Ni(111) атомами железа исследовалась в работах [8,9]. Ранее, однако, "из первых принципов" теоретически был рассмотрен только случай интеркаляции системы Gr/Ni(111) одним монослоем (ML) железа. В работе [10], где мы изучили эволюцию электронного строения интерфейса Gr/Ni(111) в процессе его интеркаляции железом, этот диапазон был расширен до пяти монослоев. Так как нам неизвестны расчеты электронной структуры Gr/Ni(111), интеркалированной кобальтом, то в настоящей работе впервые представ-



**Рис. 1.** Атомная структура систем Gr/Co/Ni(111) и Gr/Fe/Ni(111). На видах сверху выделены "поверхностные" элементарные ячейки. Показаны атомы углерода подрешеток *A* и *B*.



Рис. 2. Спектр  $E_{\sigma n}(\mathbf{k})$  и плотность состояний (DOS) систем: (a) — Gr/Ni(111), (b) — Gr/1MLCo/Ni(111), (c) — Gr/3MLCo/Ni(111), (d) — Gr/5MLCo/Ni(111).



Рис. 3. Вклады  $p_z$ -состояний в спектр  $E_{\sigma n}(\mathbf{k})$  двух подрешеток углерода для: (*a*) — Gr/5MLCo/Ni(111), (*b*) — Gr/5MLFe/Ni(111).

лены спектры  $E_{\sigma n}(\mathbf{k})$ , полные (DOS) и парциальные (PDOS) плотности состояний, позволяющие находить числа заполнения атомных орбиталей в системе, атомные магнитные моменты и полные энергии системы Gr/Co/Ni(111).

### 2. Метод расчета

*Ab initio* расчеты были выполнены в рамках метода псевдопотенциала, реализованного в пакете Quantum Espresso [11] (PWscf). В расчетах использовалось обобщенное градиентное разложение (GGA) и псевдопотенциалы PBE (см. [11]). Максимальная энергия плоских волн в разложения волновых функций была выбрана равной 200 Ry. В ходе самосогласованных вычислений применялось Monkhorst-Pack разбиение зоны Бриллюэна на  $7 \times 7 \times 2$  точек. Начальные конфигурации валентных электронов имели вид:  $2s^2p^2$  (C),  $3s^2p^63d^84s^2$  (Ni),  $3s^2p^63d^74s^2$  (Co). Для моделирования поверхности Ni(111) использовалась двумерная гексагональная решетка Браве с постоянной, равной 2.42 Å, показанная

на рис. 1. На виде сверху выделены "поверхностные" элементарные ячейки, а также показаны атомы углерода подрешеток *A* и *B*. В работе [10] нами было показано, что именно для такого расположения пленки графена на никеле полная энергия системы минимальна.

Суперячейка включала в себя семь атомов никеля, от одного до пяти атомов кобальта (по одному атому на слой) и два атома углерода. Расстояние между верхним слоем атомов кобальта и графеном было принято равным 2.07 Å. Ширина вакуумного зазора равнялась 14 Å. Для всех рассмотренных систем была выполнена структурная оптимизация.

### 3. Результаты и их обсуждение

На рис. 2 представлены результаты расчета спектра  $E_{\sigma n}(\mathbf{k})$  и полной плотности состояний систем Gr/Co/Ni(111) для двух проекций спина  $g_{\sigma}(E)$ . Результаты расчета зонной структуры исходной системы Gr/Ni(111) показаны на рис. 2, *а*. Результаты, иллю-



**Рис. 4.** Атомные магнитные моменты для атомов разных слоев систем Cr/Co/Ni(111) (крестики) и Cr/Fe/Ni(111) (квадраты): (a) - 1 MLCo(Fe), (b) - 3 MLCo(Fe), (c) - 5 MLCo(Fe). Магнитные моменты углерода не превышают значения  $0.05 \mu_B$ . Число атомов Ni, моделирующих подложку, во всех случаях равнялось семи.

стрирующие эволюцию энергетической структуры системы с интеркаляцией атомов кобальта, приведены на рис. 2, b-d. За начало отсчета по шкале энергий принята энергия Ферми  $E_{\rm F}$ . Из сопоставления зонной структуры систем Gr/Co/Ni(111) и Gr/Ni(111) видно, что разница между дисперсионными кривыми, построенными для разных проекций спина, незаметная для системы

Gr/Ni(111), становится существенной при внедрении атомов кобальта и особенно заметно проявляется вблизи уровня Ферми. В результате перекрытия p-орбиталей атомов углерода с 3d-орбиталями металла вблизи уровня Ферми существует большое число заполненных гибридизованных зон, что и обеспечивает основные изменения энергетической структуры при увеличении числа интеркалированных слоев кобальта. При выполнении численных расчетов предполагалось, что при интеркаляции атомов кобальта в межслоевое пространство между никелем и графеном получающиеся пленки кобальта повторяют структуру подложки Ni(111).

Для каждого значения  $E_{\sigma n}(\mathbf{k})$  может быть рассчитан вклад в соответствующую полную волновую функцию  $\psi_{\sigma n}(\mathbf{k})$  той или иной атомной орбитали. В первую очередь всех интересует вопрос существования "конуса Дирака", обусловленного вкладом *p<sub>z</sub>*-орбиталей углерода. В качестве примера на рис. З показаны соответствующие вклады p<sub>z</sub>-орбиталей поверхностных атомов углерода из двух подрешеток графена в зонную структуру вблизи точки К систем Gr/5MLCo/Ni(111) и Gr/5MLFe/Ni(111). Атомы углерода подрешетки А находятся в положении "fcc" относительно атомов подложки, атомы подрешетки В — в положении "top". Видно, что гибридизация состояний углерода и металлов проявляется сильнее для атомов углерода, находящихся непосредственно над атомами подложки (подрешетка В). При этом разница между плотностями для двух проекций спина проявляется сильнее для системы Gr/Co/Ni(111). На рисунке можно видеть подобие "конусов Дирака" вблизи точки К, которые из-за взаимодействия для разных проекций спина оказываются сдвинуты относительно друг друга. Качественно, вклад от *p*<sub>z</sub>-орбиталей согласуется с экспериментальными картинами фотоэлектронной спектроскопии с угловым разрешением (ФЭСУР). Для системы Gr/Fe/Ni данные ФЭСУР представлены в [12]. Из спектров  $E_{\sigma n}(\mathbf{k})$  и DOS нами были вычислены числа заполнения всех атомных орбиталей в системе и найдены атомные магнитные моменты Co, Ni и углерода. На рис. 4 показаны атомные магнитные моменты для всех слоев системы Gr/Ni(111), интеркалированной одним (a), тремя (b) и пятью (c) монослоями Co (крестики) или Fe (квадратики). Магнитные моменты углерода для всех систем не превышают значения  $0.05\mu_{B}$ . Магнитные моменты на семи атомах никеля колеблются относительно известного значения для объема, равного  $0.63\mu_B$ . Для всех систем наблюдается увеличение магнитного момента интеркалированных атомов, находящихся в контакте с атомами никеля.

#### 4. Заключение

В настоящей работе впервые рассмотрено изменение электронного спектра и атомных магнитных моментов системы Gr/Co/Ni(111) с ростом числа N монослоев кобальта, интеркалированных в межслоевое пространство графен-никель. Для N = 1-5 ML Со представлены

ab initio спин-поляризованные дисперсионные кривые  $E_{\sigma n}(\mathbf{k})$ , соответствующие плотности состояний валентных электронов, локальные магнитные моменты никеля, кобальта и графена в случае их ферромагнитного упорядочения. Кроме того, нами выделен вклад pz-состояний графена в спектр  $E_{\sigma n}(\mathbf{k})$ . Форма этих вкладов для спиновых подзон вблизи точки К зоны Бриллюэна напоминает искаженный "конус Дирака", вершина которого находится значительно ниже уровня Ферми. Для состояний со спином "вверх" конус сдвигается к большим энергиям связи по сравнению с состояниями со спином "вниз". Это свидетельствует о том, что интеркаляция графена кобальтом приводит к появлению конечной спиновой поляризации электронных состояний углерода. Обнаружено, что в интеркалированной пленке кобальта (железа) наибольшими магнитными моментами обладают атомы, непосредственно контактирующие с графеном и никелем.

Численные расчеты проведены с использованием вычислительных ресурсов суперкомпьютерного центра СПбПУ.

## Список литературы

- [1] A.K. Geim, K.S. Novoselov. Nature Mater. 6, 183 (2007).
- [2] J. Wintterlin, M.-L. Bocquet. Surf. Sci. 603, 1841 (2009).
- [3] J. Ryu, Y. Kim, D. Won, N. Kim, J.S. Park, E.-K. Lee, D. Cho, S.-P. Cho, S.J. Kim, G.H. Ryu, H.-A.-S. Shin, Z. Lee, B.H. Hong, S. Cho. ACS Nano 8, 950 (2014).
- [4] A. Varykhalov, J. Sanchez-Barriga, D. Marchenko, P. Hlawenka, P.S. Mandal, O. Rader, Nature Commun. 6, 7610 (2015).
- [5] M. Weser, E.N. Voloshina, K. Horn, Y.S. Dedkov. Phys. Chem. Chem. Phys. **13**, 7534 (2011).
- [6] N. Rougemaille, A.T. N'Diaye, J. Coraux, C. Vo-Van, O. Fruchart, A.K. Schmid. Appl. Phys. Lett. 101, 142403 (2012).
- [7] G. Bertoni, L. Calmels, A. Altibelli, V. Serin. Phys. Rev. B 71, 075402 (2004)
- [8] Yu.S. Dedkov, A.M. Shikin, V.K. Adamchuk, S.L. Molodtsov, C. Laubschat, A. Bauer, G. Kaindl. Phys. Rev. B 64, 035405 (2001).
- [9] C. Riedl, C. Coletti, T. Iwasaki, A.A. Zakharov, U. Starke. Phys. Rev. Lett. 103, 246804 (2009).
- [10] И.И. Пронин, С.М. Дунаевский, Е.Ю. Лобанова, Е.К. Михайленко. ФТТ **59**, *10*, 2037 (2017).
- [11] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch. J. Phys.: Condens. Matter **21**, 395502 (2009).
- [12] G.S. Grebenyuk, O.Yu. Vilkov, A.G. Rybkin, M.V. Gomoyunova, B.V. Senkovskiy, D.Yu. Usachov, D.V. Vyalikh, S.L. Molodtsov, I.I. Pronin. Appl. Surf. Sci. **392**, 715 (2017).

Публикация материалов Конференции завершена.