05

Низкотемпературные магнитные свойства аморфного ферромагнитного микропровода из сплава Fe—Si—B в стеклянной оболочке и без нее

© И.А. Барабан¹, А.В. Емельянов², П.Н. Медведская¹, В.В. Родионова^{1,¶}

¹ Центр междисциплинарной деятельности "FunMagMa",

Балтийский федеральный университет им. И. Канта,

Калининград, Россия

² Национальный исследовательский центр "Курчатовский институт",

Москва, Россия

[¶] E-mail: rodionova@lnmm.ru

Представлены результаты исследования низкотемпературных магнитных свойств микропроводов, изготовленных методом Улитовского-Тейлора из сплава Fe-Si-B. Рассмотрено влияние наличия стеклянной оболочки на магнитостатические свойства образца при комнатной температуре и температуре 2 К. Сделаны выводы об особенностях температурной зависимости магнитного момента, измеренного в малых и больших магнитных полях (10 Oe-5 kOe) в диапазоне температур 2–300 К, при частичном снятии напряжений, сформированных в процессе изготовления микропровода, путем механического удаления стеклянной оболочки.

Работа поддержана Российским научным фондом, грант № 17-12-01569. А. Емельянов выражает благодарность (грант РФФИ 15-32-50822).

DOI: 10.21883/FTT.2018.06.45990.31M

1. Введение

Аморфные ферромагнитные микропровода в стеклянной оболочке с металлической жилой из сплава на основе железа проявляют свойства магнитной бистабильности в широком диапазоне своих размеров, как поперечных [1–3], так и продольных [4–6], и в широком температурном интервале [7–9]. Свойство магнитной бистабильности открывает множество перспектив практического использования микропроводов, например, в качестве чувствительного элемента сенсоров различных физических величин (напряжение, температура, магнитное поле и другие) [10,11], в качестве функционального элемента кодирующей и считывающей систем [12, 13].

Природа магнитной бистабильности аморфных ферромагниитных микропроводов в стеклянной оболочке лежит в сформированной микромагнитной структуре металлической жилы типа Ландау–Лифшица [14] в процессе изготовления микропроводов методом Улитовского-Тейлора. При этом, существенно больший объем металлической жилы занимает аксиально намагниченный керн, и незначительный объем — доменная структура с радиально направленной осью легкого намагничивания [15]. Объем концевых замыкающих доменов, возникающих в микропроводе вследствие стремления системы к минимизации магнитостатической энергии, зависит, в первую очередь, от размагничивающего поля микропровода и существенно увеличивается при увеличении форм-фактора образца (уменьшение длины или увеличение диаметра при фиксированном втором параметре) [6].

При формировании микромагнитной структуры металлической жилы и, как следствие, магнитных свойств микропровода в стеклянной оболочке в первую очередь играет роль магнитоупругая энергия $K_{me} \sim 3/2\lambda_S \sigma$ (поскольку поперечные размеры образца много меньше его продольных размеров, а материал металлической жилы находится в аморфном состоянии, то магнитостатической энергией и магнитокристаллической энергией, соответственно, можно пренебречь) [16]. Поэтому направление механических напряжений σ и знак коэффициента магнитострикции λ_S определяют направление оси легкого намагничивания. Во время изготовления микропровода методом Улитовского-Тейлора в металлической жиле микропровода наводятся механические напряжения σ , связанные с процессом быстрой закалки, разницей коэффициентов теплового расширения металла и стекла, прикладываемыми механическими напряжениями растяжения (вытяжка). Распределение компонент σ_{ii} тензора механического напряжения по радиусу металлической жилы микропровода формируется таким образом, что растягивающие аксиальные напряжения являются доминирующими в большем объеме металлической жилы провода (до $0.95 \cdot d/D$, где d — диаметр металлической жилы микропровода, D — полный диаметр микропровода в стеклянной оболочке) [16,17]. Поэтому для формирования структуры типа Ландау-Лифшица, в которой больший объем металлической жилы занимает аксиально намагниченный керн, достаточно при изготовлении микропровода выбрать высокострикционный материал с положительным коэффициентом магнитострикции λ_s , например Fe-Si-B. В этом случае металлическая жила микропровода может считаться однодоменной (при достаточной длине микропровода), процесс ее перемагничивания происходит скачком Баркгаузена — быстрым распространением доменной границы [18].

Исследования низкотемпературных и высокотемпературных свойств представляют интерес как с фундаментальной (например, [19,20]), так и с практической (расширение диапазона действия различных магнитных датчиков, основанных на композитных микропроводах) точек зрения. Поэтому целью данной работы было исследование магнитных свойств аморфных микропроводов с металлической жилой из сплава Fe-Si-B в напряженном состоянии и с частично снятыми напряжениями в диапазоне температур от 2 К до 300 К.

2. Детали проведения эксперимента

Аморфные ферромагнитные микропровода из сплава Fe_{77.5}B₁₅Si_{7.5} были изготовлены методом Улитовского– Тейлора [21]. Поперечные размеры микропровода были измерены с помощью сканирующего электронного микроскопа (SEM), совмещенного с двулучевой электронно-ионной системой сверхвысокого разрешения СгоязВеат XB 540. SEM изображение исследуемого микропровода представлено на рис. 1, поперечные размеры образца: $d = 9.5 \mu$ m, $D = 28.7 \mu$ m, где d — диаметр металлической жилы микропровода, D — полный диаметр микропровода в стеклянной оболочке, d/D = 0.33.

Магнитные свойства исходных микропроводов в стеклянной оболочке и микропроводов с частично снятыми напряжениями путем механического удаления стеклянного покрытия были исследованы с помощью SQUID-магнитометра Quantum Design MPMS-7 в диапазоне температур 2–300 К, в магнитных полях до 5 kOe. Температура во время проведения измерений при охлаждении менялась со скоростью 5 К в минуту, режим измерения петель гистерезиса — sweep без терморегулирования. Был использован следующий алгоритм

Рис. 1. SEM изображение аморфного микропровода из сплава Fe–Si–B в стеклянной оболочке.

проведения измерения магнитных свойств для исходного образца длиной 6 mm:

 $-M(H, 300 \text{ K})H_{\text{max}} = \pm 12 \text{ Oe};$ -M(E, 12 Oe)300 K-2 K; $-M(H, 2 \text{ K})H_{\text{max}} = \pm 12 \text{ Oe};$ $-M, (H, 2 \text{ K})H_{\text{max}} = \pm 600 \text{ Oe};$ $-M(H, 300 \text{ K})H_{\text{max}} = \pm 600 \text{ Oe},$ -M(T, 600 Oe)300 K-2 K; $-M(H, 2 \text{ K})H_{\text{max}} = \pm 5000 \text{ Oe};$ -M(T, 5000 Oe)300 K-2 K,

где M(H, x K) — зависимость магнитного момента от величины внешнего магнитного поля при фиксированной температуре x (x = 2,300 K) в диапазоне полей H_{max} ; M(T, y Oe) — зависимость магнитного момента от температуры в магнитном поле y Oe(y = 12,600,5 kOe) при охлаждении образца от 300 K до 2 K. После проведения цикла измерений с образца было удалено стеклянное покрытие, и были проведены измерения магнитных свойств образца с частично снятыми напряжениями по тому же алгоритму. Снятие стеклянного покрытия производилось механическим методом путем помещения микропровода в стеклянной оболочке между двумя покровными стеклами и легкого надавливания.

Для удобства анализа особенностей магнитных свойств микропровода в стеклянной оболочке и без нее петли гистерезиса и температурные зависимости магнитного момента представлены в нормированном на магнитный момент насыщения при 2 К виде.

3. Результаты экспериментов

Петли гистерезиса микропровода в стеклянной оболочке, измеренные при комнатной температуре, в магнитных полях до 600 Ое и до 12 Ое показаны на рис. 2 и на вставке рис. 2 соответственно. Петля гистерезиса исходного образца — прямоугольной формы, что говорит об исходной магнитной бистабильности микропровода в стеклянной оболочке. Полученные результаты согласуются с существующим представлением: микропровод с металлической жилой диаметром 9.5 µm, состава Fe_{77.5}B₁₅Si_{7.5}, отношением диаметров 0.33 и длиной 6 mm находится в бистабильном состоянии. Критическая длина магнитной бистабильности при комнатной температуре для микропроводов со схожими параметрами — порядка 1-3 mm [6]. При снятии стеклянного покрытия с микропровода петля гистерезиса становится S-образной, коэрцитивная сила уменьшается. Это говорит об изменении преимущественного механизма перемагничивания микропровода с

Рис. 2. Петли гистерезиса микропровода Fe-Si-B в стеклянной оболочке и без нее, измеренные при комнатной температуре в магнитных полях до 600 Ос и до 12 Ос.

Рис. 3. Петли гистерезиса микропровода Fe-Si-B в стеклянной оболочке и без нее, измеренные при температуре 2K в магнитных полях до 600 Ос и до 5 kOe.

быстрого распространения доменной стенки на вращение вектора магнитного момента: вследствие частичного снятия напряжений металлической жилы микропровода происходит перераспределение компонент напряжения по радиусу металлической жилы микропровода и, как следствие, уменьшается объем области с аксиальным направлением намагниченности, увеличивается объем периферии с магнитным моментом, направленным по радиусу микропровода.

Интересно отметить, что способ удаления стеклянного покрытия, т.е. механизм и скорость частичного снятия напряжений металлической жилы, играет ключевую роль в формировании свойств микропровода с частично снятыми напряжениями. В работе [2] показано, что последовательное утонение стеклянного покрытия с помощью плавиковой кислоты вплоть до его полного удаления не приводит к изменению механизма перемагничивания микропровода — петля гистерезиса сохраняет свою прямоугольную форму. Уменьшение коэрцитивной силы в этом случае может быть объяснено незначительным смещением доменной стенки между аксиально намагниченным керном и радиально намагниченной периферией внутри металлической жилы микропровода, которое приводит к незначительному уменьшению объема керна.

Охлаждение образца до температуры 2К также меняет преимущественный механизм перемагничивания. Петля гистерезиса микропровода в стеклянной оболочке, измеренная при температуре 2 К, имеет S-образную форму: на рис. 3 представлены петли гистерезиса микропровода в стеклянной оболочке и без нее, измеренные при температуре 2 К. В случае уменьшения температуры измерения изменение механизма перемагничивания происходит из-за увеличения роли магнитостатической энергии: с уменьшением температуры намагниченность насыщения образца возрастает, размагничивающее поле — растет, за счет чего объем концевых доменов увеличивается [4] и перемагничивание происходит, в том числе, поворотом вектора намагниченности концевых доменов. Однако объем аксиально намагниченного керна металлической жилы, не занятого концевыми доменами, увеличивается, о чем свидетельствует рост коэрцитивной силы при уменьшении температуры как для микропровода в стеклянной оболочке, так и для микропровода с удаленным покрытием. В случае микропровода длиной 6 mm вклад концевых доменов становится существенным. Для более длинных образцов микропроводов (17 mm) из сплава Fe-Si-B с близкими поперечными размерами бистабильные петли гистерезиса наблюдаются вплоть до температуры 2 К [7] и 77 К [22], что связано с их существенно меньшим размагничивающим фактором.

Снятие стеклянного покрытия приводит к увеличению наклона петли гистерезиса и уменьшению коэрцитивной силы, что, как и в случае измерений, проведенных при комнатной температуре, свидетельствует о перераспределении внутренних механических напряжений и уменьшении объема аксиально намагниченного керна.

Магнитные характеристики, оценка которых производилась по петлям гистерезиса, измеренным при комнатной температуре и при температуре 2 К, представлены в таблице. Для исследуемых образцов объем аксиально намагниченного керна рассчитывается из коэффициента прямоугольности петли гистерезиса [23]: $V_r/V_S = K \cdot 100\%$, где V_r — объем аксиально намагниченного керна, V_S — объем металлической жилы микропровода. Таким образом, при комнатной температуре удаление стеклянной оболочки, т.е. частичное снятие напряжений в металлической жиле, приводит к уменьшению объема аксиально намагниченного керна с 90% до 60% за счет роста объема периферии с радиально намагниченной структурой. Понижение температуры приводит к изменению механизма перемагничивания и Магнитные характеристики аморфного микропровода Fe-Si-B в стеклянной оболочке и без нее. (Оценки проводились по измеренным при 2 и 300 К петлям гистерезиса. H_C — коэрцитивная сила, K — коэффициент прямоугольности, H_S — поле насыщения)

Микропровод	H_C , Oe		K		H_S , Oe	
	$T = 300 \mathrm{K}$	$T = 2 \mathrm{K}$	$T = 300 \mathrm{K}$	$T = 2 \mathrm{K}$	$T = 300 \mathrm{K}$	$T = 2 \mathrm{K}$
В стекле Без стекла	1.1 0.4	7.9 2.3	0.9 0.6	0.010 0.003	3 285	1070 1420

существенному уменьшению объема аксиально намагниченного керна за счет роста концевых доменов — до 1% и 0.3% соответственно, для образцов в напряженном состоянии и с частично снятыми напряжениями.

Температурные зависимости магнитного момента, измеренные в магнитных полях 12 Oe, 600 Oe и 5 kOe, представлены на рис. 4. При изучении температурных зависимостей магнитные свойства образца формируются с учетом конкуренции тепловой, магнитостатической и зеемановской энергий. Типичная зависимость ферромагнетика от температуры в поле, большем поля насыщения образца, наблюдается для измерений, проведенных в поле 5 kOe, для двух образцов микропровода — в стеклянной оболочке и после ее удаления: с понижением температуры магнитный момент увеличивается вследствие уменьшения тепловой энергии. Зависимости магнитного момента от температуры расходятся в низких температурах при измерении магнитного момента микропровода в стеклянной оболочке и без нее в магнитном поле 600 kOe. Для образца в стеклянной оболочке магнитный момент уменьшается при температуре ниже 100 К, для образца с удаленным покрытием ниже 140 К. Это связано с тем, что зеемановской энергии становится недостаточно, чтобы конкурировать с увеличением магнитостатической энергии вследствие увеличения магнитного момента при уменьшении темпе-

Рис. 4. Температурные зависимости магнитного момента микропровода в стеклянной оболочке и без нее. Измерения проводились при охлаждении образца от 300 К до 2 К.

ратуры образца, что приводит к росту концевых доменов (большему — в случае снятия стеклянного покрытия, как обсуждалось ранее). При исследовании зависимости магнитного момента от температуры в магнитном поле 12 Ое наблюдается уменьшение магнитного момента при температурах меньше 200 К и 270 К для микропровода в стеклянной оболочке и после ее удаления соответственно до околонулевого значения: зеемановской энергии недостаточно для удержания магнитного момента вдоль оси микропровода, магнитостатическая энергия преобладает — рост концевых доменов настолько существенен, что проекция магнитного момента практически равна нулю.

4. Заключение

В работе были изучены особенности магнитных свойств аморфного ферромагнитного микропровода, изготовленного из сплава Fe—Si—B, в напряженном состоянии и после частичного снятия механических напряжений металлической жилы путем удаления стеклянного покрытия. Обсуждены механизмы изменения свойств образцов при понижении температуры. Установлено, что частичное снятие напряжений приводит к изменению преимущественного механизма перемагничивания, что, в том числе, существенным образом сказывается на низкотемпературных свойствах образца.

Авторы выражают благодарность Н.С. Перову, А.П. Жукову и А.Н. Талденкову за плодотворные дискуссии.

Список литературы

- [1] M. Vazquez, A.P. Zhukov. J. Magn. Magn. Mater. 160, 223 (1996).
- [2] S. Corodeanu, T.-A. Ovari, H. Chiriac. IEEE Trans. Magn. 50, 11, 2007204 (2014).
- [3] V. Rodionova, I. Baraban, K. Chichay, A. Litvinova, N. Perov. J. Magn. Magn. Mater. 422, 216 (2017).
- [4] A.P. Zhukov, M. Vazquez, J. Velazquez, H. Chiriac, V. Larin. J. Magn. Magn. Mater. 151, 1–2, 132 (1995).
- [5] N.S. Perov, A.A. Radkovskaya, A.S. Antonov, N.A. Usov, S.A. Baranov, V.S. Larin, A.V. Torcunov. J. Magn. Magn. Mater. 196–197, 385 (1999).
- [6] J. Ye, R.P. del Real, G. Infante, M. Vazquez. J. Appl. Phys. 113, 043904 (2013).

- [7] M. Vazquez, A.P. Zhukov, K.L. Garcia, K.R. Pirota, A. Ruiz, J.L. Martinez, M. Knobel. Mater. Sci. Eng. A 375–377, 1145 (2004).
- [8] R. Varga, K.L. Garcia, A. Zhukov, M. Vazquez, P. Vojtanik. Appl. Phys. Lett. **83**, *13*, 2620 (2003).
- [9] I.G. Serrano, A. Hernando, P. Marin. J. Appl. Phys. 115, 033903 (2014).
- [10] V. Zhukova, M. Ipatov, A. Zhukov. Sensors 9, 9216 (2009).
- [11] A. Zhukov. Adv. Functional Mater. 16, 5, 675 (2006).
- [12] Magnetic Nano- and Microwires / Ed. M. Vazquez. Woodhead Publishing, Elsevier Ltd., Oxford (2015).
- [13] A. Zhukov, J. González, M. Vázquez, V. Larin, A. Torcunov. In: Encyclopedia of Nanoscience and Nanotechnology / Ed. H.S. Nalwa. American Scientific, Stevenson Ranch, CA (2004). Ch. 62, V. 6. P. 365–367.
- [14] J. Yamasaki, F.B. Humphrey, K. Mohri, H. Kawamura, H. Takamure, R. Malmhall, J. Appl. Phys. 63, 8, 3949 (1988).
- [15] A. Zhukov, V. Zhukova. Magnetic sensors and applications based on thin magnetically soft wires with tunable magnetic properties. Int. Frequency Sensor Association Publishing (2014). V. 154.
- [16] H. Chiriac, T.-A. Ovari, A. Zhukov. J. Magn. Magn. Mater. 254–255, 469 (2003).
- [17] A.S. Antonov, V.T. Borisov, O.V. Borisov, A.F. Prokoshin, N.A. Usov. J. Phys. D 33, 1161 (2000).
- [18] A. Zhukov, J.M. Blanco, M. Ipatov, A. Chizhik, V. Zhukova. Nanoscale Res. Lett. 7, 223 (2012).
- [19] R. El Kammouni, I. Iglesias, K. Chichay, P. Svec, V. Rodionova, M. Vazquez. J. Appl. Phys. 116, 093902 (2014).
- [20] P. Klein, K. Richter, R. Varga, M. Vázquez. J. Alloys Comp. 569, 9 (2013).
- [21] V.S. Larin, A.V. Torcunov, A. Zhukov, J. Gonzalez, M. Vazquez, L. Panina. J. Magn. Magn. Mater. 249, 1–2, 39 (2002).
- [22] J. Olivera, R. Varga, P. Vojtanik, V.M. Proda, M.L. Sanshez, B. Hernando, A. Zhukov. J. Magn. Magn. Mater. **320**, 2534 (2008).
- [23] M. Vázquez, D.-X. Chen. IEEE Trans. Magn. 31, 2, 1229 (1995).