### 05,11

# Монте-Карло-исследование влияния начальных состояний и дефектов структуры на неравновесное критическое поведение трехмерной модели Изинга

© В.В. Прудников, П.В. Прудников, П.Н. Маляренко

Омский государственный университет им. Ф.М. Достоевского, Омск, Россия

E-mail: prudnikv@univer.omsk.su

Осуществлено численное исследование влияния различных начальных значений намагниченности  $m_0$  и дефектов структуры на неравновесное критическое поведение трехмерной модели Изинга. На основе анализа временной зависимости намагниченности и двухвременной зависимости автокорреляционной функции и динамической восприимчивости выявлено существенное влияние начальных состояний на релаксацию намагниченности и эффекты старения, характеризующиеся аномальным замедлением релаксации и корреляции в системе с ростом времени ожидания. Проведено исследование нарушений флуктуационно-диссипативной теоремы и вычислены значения предельного флуктуационно-диссипативного отношения. Показано, что в неравновесном критическом поведении трехмерной модели Изинга с произвольной начальной намагниченностью  $m_0$  можно выделить два подкласса универсальности, соответствующих эволюции системы из высокотемпературного с  $m_0 = 0$  и низкотемпературного с  $m_0 = 1$  начальных состояний с характерными для этих состояний значениями предельного ФДО.

Работа поддержана Российским фондом фундаментальных исследований, проект № 17-12-00279, и грантом MD-6868.2018.2 Президента РФ. Для проведения расчетов были использованы ресурсы суперкомпьютерного комплекса МГУ им. М.В. Ломоносова и межведомственного суперкомпьютерного центра РАН.

DOI: 10.21883/FTT.2018.06.45981.05M

#### 1. Введение

Задача описания фазовых переходов и критических явлений является одной из наиболее трудных задач статистической физики. Критические явления характеризуются аномально большими по амплитудам и долгоживущими флуктуациями ряда термодинамических переменных, называемых параметрами порядка, и их эффективно сильным взаимодействием. В результате любое слабое взаимодействие становится вблизи критической точки настолько сильным, что не позволяет применять теорию возмущений. Для описания столь сложных явлений разработаны изощренные методы ренормализационной группы и є-разложения, а также теоретико-полевого подхода, дающего более точные количественные результаты для систем с фиксированной размерностью при применении методов суммирования асимптотических рядов [1-3]. Наряду с данными аналитическими подходами широко применяются методы численного описания поведения систем при фазовых переходах, особенно методы статистического моделирования Монте-Карло [4,5]. Этому способствует мощное развитие компьютерной техники и увеличение их вычислительных мощностей.

Одной из особенностей, возникающей при описании критического поведения систем, является эффект критического замедления. Он связан с аномальным увеличением времени релаксации системы *t*<sub>rel</sub> при при-

ближении к температуре  $T_c$  фазового перехода второго рода:  $t_{\rm rel} \sim |T - T_c|^{-z\nu}$ , где z,  $\nu$  — динамический критический индекс и индекс корреляционной длины соответственно. В результате система, находящаяся в критической точке, оказывается не в состоянии прийти к равновесию в течение всего процесса релаксации. Поэтому на временах  $t \ll t_{\rm rel}$  в поведении систем возникают такие необычные неравновесные явления, характерные для систем с медленной динамикой, как старение, нарушение флуктуционно-диссипативной теоремы и влияние различных начальных неравновесных состояний системы [6,7].

В настоящее время поведение систем, характеризующихся аномально медленной динамикой, вызывает большой интерес исследователей [8–10]. Хорошо известными примерами подобных систем с медленной динамикой и эффектами старения являются такие сложные неупорядоченные системы, как спиновые стекла [11,12]. Однако данные особенности неравновесного поведения значительно легче изучать на системах, испытывающих фазовые переходы второго рода, чем на спиновых стеклах.

Эффекты старения, проявляющиеся на неравновесном этапе релаксации системы с медленной динамикой, характеризуются существованием двухвременны́х зависимостей для таких функций, как автокорреляционной функции  $C(t, t_w)$  и функции отклика  $R(t, t_w)$  от времени наблюдения t и времени ожидания  $t_w$ , определяемых для спиновой системы со спиновой плотностью S(x) соотношениями

$$C(t, t_w) = \frac{1}{V} \int d^d x \left[ \langle S(x, t) S(x, t_w) \rangle - \langle S(x, t) \rangle \left\langle S(x, t_w) \rangle \right],$$
(1)

$$R(t, t_w) = \frac{1}{V} \int d^d x \left. \frac{\delta \langle S(x, t) \rangle}{\delta h(x, t_w)} \right|_{h=0},\tag{2}$$

где h — малое внешнее магнитное поле, приложенное к системе в момент времени  $t_w$ . Время ожидания определяется временем, прошедшим с момента приготовления образца до начала измерения его характеристик. В течение  $t, t_w \ll t_{\rm rel}$  во временном поведении системы проявляется влияние начальных состояний системы и эффектов старения, характеризующихся замедлением релаксационных и корреляционных процессов с увеличением "возраста" системы  $t_w$ .

Согласно общим представлениям о неравновесных процессах ожидается, что для времен  $t > t_w \gg t_{rel}$  и  $C(t, t_w) = C^{eq}(t - t_w) \ R(t, t_w) = R^{eq}(t - t_w)$ , где  $C^{eq}$  и  $R^{eq}$  являются соответствующими равновесными величинами, связанными флуктуационно-диссипативной теоремой (ФДТ)  $TR^{eq}(t) = -dC^{eq}(t)/dt$ . Принципиально важным проявлением медленной динамики является нарушение ФДТ [6,13,14], когда связь функции отклика системы на внешнее возмущение  $R(t, t_w)$  и автокорреляционной функции  $C(t, t_w)$  осуществляется через введение дополнительной величины  $X(t, t_w)$ , получившей название флуктуационно-диссипативного отношения(ФДО)

$$R(t, t_w) = \frac{X(t, t_w)}{T} \frac{\partial C(t, t_w)}{\partial t_w}.$$
(3)

Для времен с  $t > t_w \gg t_{rel}$  ФДТ устанавливает, что  $X(t, t_w) = 1$ . Однако в общем случае для времен с  $t, t_w \ll t_{rel} X(t, t_w) \neq 1$ . Асимптотическое значение ФДО, вводимое как

$$X^{\infty} = \lim_{t_w \to \infty} \lim_{t \to \infty} X(t, t_w), \tag{4}$$

является важной универсальной характеристикой неравновесных процессов в различных системах.

Ренормгрупповые [15,16], численные [17–20] и экспериментальные [21] методы исследования критической динамики структурно неупорядоченных систем позволили к настоящему времени однозначно установить, что присутствие в системах как некоррелированных дефектов структуры, так и дефектов с эффектами дальнодействующей корреляции приводит к новым типам критического поведения и заметному усилению эффектов критического замедления по сравнению с "чистыми" системами. В связи с этим особенности неравновесного поведения, такие как эффекты старения, несомненно должны найти более яркое проявление в структурно неупорядоченных системах с новыми универсальными значениями флуктуационно-диссипативного отношения. В исследованиях влияния начальных состояний системы на характеристики неравновесного критического поведения различают высокотемпературные состояния, созданные при  $T_0 > T_c$  и характеризуемые начальной намагниченностью  $m_0 = 0$ , и низкотемпературные состояния с  $T_0 < T_c$  с  $m_0 \neq 0$ . Дальнейшая реализация неравновесного процесса характеризуется тем, что в начальный момент времени система приводится в контакт с термостатом при критической температуре  $T_c$  системы и затем с момента времени  $t_w$  проводится измерение двухвременны́х величин — автокорреляционной функции и функции отклика, на временах  $t, t_w \ll t_{rel}$ .

К настоящему времени исследование неравновесного критического поведения различных статистических систем наиболее полно проведено для случая их эволюции из высокотемпературного начального состояния (см. обзор [6]). В работах [22-24] было осуществлено численное исследование методами Монте-Карло влияния дефектов структуры на особенности неравновесного поведения трехмерной модели Изинга при ее релаксации из высокотемпературного начального состояния. Изучены эффекты старения. Проведен расчет новой универсальной характеристики неравновесного критического поведения — предельного значения  $\Phi \Box O X^{\infty}$ . Выявлена их зависимость от изменения концентрации дефектов. Показано, что присутствие дефектов структуры приводит к усилению эффектов старения и появлению трех универсальных классов неравновесного критического поведения, соответствующих чистой, слабо неупорядоченной и сильно неупорядоченной трехмерной модели Изинга, с различными значениями предельного ФДО. Однако случай неравновесной критической релаксации систем из низкотемпературного начального состояния исследован заметно хуже.

Ренормгрупповой анализ [25] неравновесной динамики диссипативной модели А в классификации Гальперина-Хоэнберга [26] показал, что начальное состояние с намагниченностью  $m_0 \neq 0$  приводит к появлению нового временно́го масштаба  $t_m \sim m_0^{-k}$  с показателем k > 0, существенно влияющего на временное поведение автокорреляционной функции и функции отклика. Описаны предельные режимы: режим с временами  $t_w < t \ll t_m$ , который всегда реализуется для случая высокотемпературного начального состояния с  $m_0 = 0$  и характеризуется соответствующим этому начальному состоянию временным поведением корреляционной функции и функции отклика, а также режим с большими по сравнению с  $t_m$  временами t и  $t_w$ , т.е.  $t_m \ll t_w < t$ . В последнем случае, соответствующем, например, приведенной начальной намагниченности системы с  $m_0 = 1$ при T<sub>0</sub> = 0, долговременное поведение автокорреляционной функции и функции отклика характеризуется новыми показателями и новым значением предельного ФДО  $X^{\infty}$ .

Проведенное нами в работах [27,28] численное исследование неравновесного критического поведения структурно неупорядоченной трехмерной модели Изинга с релаксацией из низкотемпературного полностью упорядоченного начального состояния с  $m_0 = 1$  при  $T_0 = 0$ выявило существенное влияние дефектов структуры на эффекты старения и памяти. В структурно неупорядоченных системах было выявлено сильное замедление эффектов корреляции по сравнению с чистыми системами, связанное с пиннингом доменных стенок на дефектах структуры. В результате было показано, что спадание автокорреляционной функции со временем в нарушение скейлинговой зависимости осуществляется по степенному закону критической релаксации намагниченности, а предельные значения ФДО, определяемые динамикой доменов в долговременном режиме, становятся равными нулю.

Таким образом, сильные различия в неравновесном критическом поведении систем, релаксирующих из разных начальных состояний, вызывают необходимость более детального описания влияния начального значения намагниченности. В данной работе мы представляем результаты численного Монте-Карло-исследования, позволяющего детально изучить этот вопрос для неравновесной критической динамики чистой и структурно неупорядоченной трехмерной модели Изинга.

### 2. Модель и методы

Гамильтониан ферромагнитной модели Изинга, разбавленной немагнитными атомами примеси, с учетом влияния внешнего магнитного поля *h* задается выражением

$$H = -J \sum_{\langle i,j \rangle} p_i p_j S_i S_j - h \sum_i p_i S_i, \qquad (5)$$

где J > 0 характеризует короткодействующее обменное взаимодействие между спинами  $S_i = \pm 1$ , зафиксированными в узлах решетки. В данной модели немагнитным атомам примеси сопоставляются пустые узлы. Числа заполнения  $p_i$  вводятся как случайные числа, принимающие значения 0 или 1:  $p_i$  принимается равным 1, если в узле *i* находится спин, и 0 в случае его отсутствия (магнитный атом замещен немагнитным атомом примеси). Дефекты структуры распределялись в системе каноническим образом в соответствии с функцией распределения  $P(p_i) = (1 - p)\delta(p_i) + p\delta(p_i)$ , где  $p = \langle p_i \rangle$  задает величину спиновой концентрации в системе. Положение дефектов структуры фиксировалось для отдельной примесной конфигурации.

Моделирование проводилось на кубической решетке с наложенными периодическими граничными условиями.  $N_s = pL^3$  характеризует число спинов в решетке с линейным размером *L*.

В качестве характеристик неравновесного процесса рассчитывались такие величины как намагниченность

$$M(t) = \frac{1}{V} \int d^d x \left[ \langle S(x,t) \rangle \right] = \left[ \left\langle \frac{1}{N_s} \sum_{i=1}^{N_s} p_i S_i(t) \right\rangle \right] \quad (6)$$

и автокорреляционная функция

$$C_{\rm con}(t,t_w) = \left[ \left\langle \frac{1}{N_s} \sum_{i=1}^{N_s} p_i S_i(t) S_i(t_w) \right\rangle \right] - \left[ \left\langle \frac{1}{N_s} \sum_{i=1}^{N_s} p_i S_i(t) \right\rangle \left\langle \frac{1}{N_s} \sum_{i=1}^{N_s} p_i S_i(t_w) \right\rangle \right],$$
(7)

где угловые скобки обозначают статистическое усреднение по реализациям начального состояния, квадратные — усреднение по различным конфигурациям распределения дефектов в решетке.

Однако линейная функция отклика  $R(t, t_w)$ , соответствующая определению (2), не может быть непосредственно измерена экспериментально или получена методами компьютерного моделирования. В данной работе, по аналогии с работами [22,25], была использована методика, позволяющая рассчитать функцию отклика без применения внешнего магнитного поля. Расчет обобщенной восприимчивости осуществлялся в виде интегральной функции отклика (термостатической восприимчивости)

$$\chi(t, t_w) = \int_0^{t_w} dt' R(t, t')$$
$$= \frac{1}{T_c N} \sum_i \left[ \langle p_i S_i(t) \Delta S_i(t_w) \rangle \right]. \tag{8}$$

Функция  $\Delta S_i(t_w)$  в (8) рассчитывается при моделировании состояний системы от начального момента времени t = 0 до времени ожидания  $t_w$  и определяется соотношением

$$\Delta S_i(t_w) = \sum_{s=0}^{t_w} [S_i(s) - S_i^W(s)],$$
(9)

где  $S_i^W(s) = \operatorname{th}(J\sum_{j\neq i} p_j S_j/T).$ 

С другой стороны, применение в (8) для функции отклика соотношения (3) позволяет получить, что

$$T\chi(t,t_w) = \int_0^{t_w} X(t,t') \frac{\partial C(t,t')}{\partial t'} dt' = \int_0^{C(t,t_w)} X(C) dC.$$
(10)

Таким образом, флуктуационно-диссипативное отношение может быть определено соотношением  $(T = T_c)$ 

$$X(t_w) = \lim_{C \to 0} T_c \frac{\partial \chi(t, t_w)}{\partial C(t, t_w)},$$
(11)

с помощью которого можно вычислить предельное ФДО (4), используя предел  $t_w \to \infty$ .

Для расчета характеристик неравновесного критического поведения было осуществлено компьютерное моделирование динамического процесса односпиновых переворотов в рамках статистического метода Монте-Карло. Был реализован динамический процесс односпиновых переворотов с применением алгоритма тепловой бани [29], задающим вероятность перехода спина системы в новое состояние  $S_i \to S'_i$  посредством формулы

$$W_{sp}(S_i \to S'_i) = \frac{\exp[-H(S'_i)/T]}{\sum_{S_i} \exp[-H(S_i)/T]},$$
 (12)

где суммирование по  $S_j$  в знаменателе проводится по всем возможным состояниям спина  $S_i$  до переворота. Для модели Изинга с двумя возможными состояниями  $S_j = \pm 1$  указанную вероятность переворота можно записать в виде

$$W_{sp} = \frac{\exp(-H(S_i)/T)}{\exp(H(S_i)/T) + \exp(-H(S_i)/T)}$$
(13)

с реализацией так называемой глауберовской динамики. В качестве единицы времени динамического процесса выбирается шаг Монте-Карло на спин (MCS/s), который определяет  $N_s$  последовательных переворотов спинов в узлах решетки.

В данной работе проведено моделирование неравновесного поведения как "чистой", так и структурно неупорядоченной модели Изинга со случайно распределенными по узлам замороженными точечными немагнитными дефектами структуры. Моделирование осуществлялось на трехмерной кубической решетке с линейным размером L = 128 при спиновых концентрациях p = 1.0, 0.95, 0.8, 0.6 и 0.5 и соответствующих им критических температурах  $T_c(p)$ :  $T_c(1.0) = 4.5114(1)$  [30],  $T_c(0.95) =$  $= 4.26267(4), T_c(0.8) = 3.4995(2), T_c(0.6) = 2.4241(1),$  $T_c(0.5) = 1.84509(6)$  [3]. Формировались начальные состояния системы со значениями намагниченности, равными  $m_0 = 0.02; 0.05; 0.1; 0.25; 0.4; 0.7$  и 1.0. На ранней стадии эволюции системы корреляционная длина еще достаточно мала и конечность размера моделируемой системы оказывается несущественной. Поэтому применение в исследованиях решетки с достаточно большим линейным размером L = 128 позволяет пренебрегать конечномерными эффектами по сравнению с их проявлением при моделировании равновесных критических явлений [18].

### Влияние начальных состояний и дефектов структуры на критическую релаксацию намагниченности

Одним из необычных свойств неравновесного критического поведения систем, релаксирующих из высокотемпературного начального состояния с  $m_0 \ll 1$ , является увеличение намагниченности со временем наблюдения, удовлетворяющему степенному закону  $M(t) \sim t^{\theta'}$  на временах  $t < t_{\rm cr} \sim m_0^{-1/(\theta' + \beta/z\nu)}$  (пример такого поведения намагниченности M(t) для трехмерной модели Изинга с различными спиновыми концентрациями приведен в работе [22] на рис. 1. Здесь  $\beta$ ,  $\nu$  — известные статические индексы, определяющие равновесное критическое поведение намагниченности и корреляционной

длины, *z* — динамический критический индекс, характеризующий критическое замедление времени релаксации системы.

Действительно, в соответствии с теорией скейлинга сингулярная часть потенциала Гиббса, определяющая состояние системы в критической области,

$$\Phi_{\rm sing}(t,\,\tau,\,h,\,m_0) = b^{-1} \Phi_{\rm sing}(b^{a_t}t,\,b^{a_\tau}\tau,\,b^{a_h}h,\,b^{a_m}m_0), \quad (14)$$

характеризуется обобщенной однородностью относительно основных термодинамических переменных: времени t, приведенной температуры  $\tau$ , поля h и начальной намагниченности  $m_0$ , b — фактор подобия,  $a_i$  — показатели подобия.

Как следствие этого, в критической точке ( $\tau = 0, h = 0$ ) при выборе  $b = t^{-1/a_t}$  намагниченность  $M = -\delta \Phi / \delta h$ характеризуется следующей временной зависимостью:

$$M(t, m_0) = -\delta \Phi / \delta h = t^{(1-a_h)/a_t} \tilde{F}_M(m_0 t^{-a_m/a_t})$$
  
\$\sim t^{-\beta/z\varvet} F\_M(t/t\_m), (15)\$

где  $F_M(t/t_m)$  — скейлинговая функция намагниченности. Разложение правой части в (15) по малой величине  $m_0 t^{-a_m/a_t}$  приводит к степенной зависимости

$$M(t) \sim t^{(1-a_h-a_m)/a_t} \sim t^{\theta'}.$$
 (16)

Все  $a_i$ , за исключением  $a_t$   $(a_t = -z)$  и  $a_m$ , можно связать с известными статическими критическими индексами. Поэтому в [31] был введен новый независимый динамический критический индекс  $\theta'$ , который, как было выявлено при ренормгрупповом описании неравновесного критического поведения системы, принимает положительные значения.

Временну́ю зависимость для намагниченности (15) в итоге можно записать в следующей скейлинговой форме:

$$M(t, t_m) = A_M t^{-\beta/z\nu} F_M(t/t_m), \qquad (17)$$

вводя новый временной масштаб  $t_m \sim m_0^{a_t/a_m} = B_m m_0^{-k}$ , определяемый начальным значением намагниченности. Показатели k и  $\theta'$  связаны соотношением  $k = 1/(\theta' + \beta/(z\nu)) > 0$ . Скейлинговая функция  $F_M(t/t_m)$  является конечной при  $t/t_m \to 0$ ,  $A_M$  — неуниверсальная амплитуда, значения которой фиксируются условием  $F_M(0) = 1$ .

Нами было осуществлено исследование неравновесной критической релаксации намагниченности M(t) в чистой и структурно неупорядоченной модели Изинга для широкого набора начальных состояний с намагниченностями  $0 < m_0 \le 1$ . Результаты проведенных расчетов представлены на рис. 1 для систем со спиновыми концентрациями p = 1.0, 0.8 и 0.6. Графики M(t) наглядно демонстрируют существенные как качественные, так и количественные отличия в релаксации намагниченности из высокотемпературного начального состояния с  $m_0 \ll 1$ , низкотемпературного



**Рис. 1.** Неравновесная критическая релаксация намагниченности M(t) из различных начальных состояний с намагниченностями  $m_0$  для систем со спиновыми концентрациями p = 1.0 (*a*), p = 0.8 (*b*) и p = 0.6 (*c*).

полностью упорядоченного состояния с  $m_0 = 1$  и промежуточных состояний с  $0.1 \le m_0 \le 0.6$ . Видно, что кривые релаксации для систем, стартовавших из начальных состояний  $m_0 \neq 1$ , асимптотически стремятся к кривой релаксации из низкотемпературного начального состояния с  $m_0 = 1$ . При этом для систем с  $m_0 \ll 1$ на этапе неравновесной эволюции наблюдается характерный рост намагниченности, описываемый степенным законом  $M(t) \sim t^{\theta'}$  с  $\theta' = 0.111(4)$  для p = 1.0,  $\theta' = 0.127(16)$  для p = 0.8 и  $\theta' = 0.167(18)$  для p = 0.6. При временах  $t > t_{\rm cr} \equiv t_m \sim m_0^{-k}$  данный этап эволюции сменяется режимом, характеризуемым степенной временной зависимостью намагниченности  $M(t) \sim t^{-\beta/\nu_z}$ . При эволюции системы из начального упорядоченного состояния с  $m_0 = 1$  временная зависимость намагниченности в критической точке сразу определяется степенной зависимостью  $M(t) \sim t^{-\beta/\nu_z}$  со значениями показателя  $\beta/vz$ , зависящими от спиновой концентрации p. Было определено, что  $\beta/\nu z = 0.243(6)$  для p = 1.0,  $\beta/\nu z = 0.224(10)$ для p = 0.8 и  $\beta/\nu z = 0.176(13)$ для p = 0.6. Промежуточные состояния с  $0.1 \le m_0 \le 0.6$  характеризуются коротким этапом роста намагниченности по закону  $M(t) \sim t^{\theta'}$  с последующим переходом к более длительному этапу релаксации по закону  $M(t) \sim t^{-\beta/\nu z}$ .

На сводном рис. 2 представлены графики критической релаксации намагниченности M(t) для систем с различными значениями  $m_0$  и спиновыми концентрациями



**Рис. 2.** Неравновесная критическая релаксация намагниченности M(t) из различных начальных состояний для систем со спиновыми концентрациями p = 1.0, 0.8, 0.6 и 0.5.



Рис. 3. Зависимость скейлинговой функции  $F_M(tm_0^k) = t^{\beta/(z\nu)}M(t, t_m)$  от переменой  $x = tm_0^k$  для систем со спиновыми концентрациями p = 1.0 (*a*), p = 0.8 (*b*) и p = 0.6 (*c*).

p = 1.0, 0.8, 0.6 и 0.5, обобщающие влияние дефектов структуры на релаксацию трехмерной модели Изинга. Видно, что наличие дефектов структуры замедляет релаксацию системы, приводя к увеличению времени релаксации с ростом концентрации дефектов.

На рис. 3 представлены результаты численной проверки предсказания временной скейлинговой зависимости (17) для намагниченности  $M(t, t_m)$  как функции начальных значений намагниченности  $m_0$  для чистой модели Изинга и систем с p = 0.8 и p = 0.6. Для графиков скейлинговой функции  $F_M(x) = t^{\beta/(zv)}M(t, t_m)$ от переменной  $x = tm_0^k$  наблюдается "коллапс" данных, полученных для различных m<sub>0</sub>, на единой универсальной кривой, вид которой зависит от спиновой концентрации р системы. Универсальные кривые для скейлинговой функции  $F_M(x)$ , построенные в двойном логарифмическом масштабе, характеризуются линейным начальным участком, соответствующим степенной зависимости  $F_M(x) \sim x^{1/k}$ . По наклону данных линейных участков были рассчитаны следующие значения показателя k для трехмерной модели Изинга: k = 2.77(2)для p = 1.0, k = 2.83(3) для p = 0.8 и k = 3.08(7) для p = 0.6.

## Влияние начальных состояний на эффекты старения и нарушения флуктуационно-диссипативной теоремы

В настоящее время известно, что при эволюции из низкотемпературного начального состояния с  $m_0 \neq 0$  неравновесное критическое поведение автокорреляционной функции и динамической восприимчивости характеризуется следующими скейлинговыми зависимостями [25,27,32]

$$C(t, t_w, t_m) = A_C (t - t_w)^{a + 1 - d/z} (t/t_w)^{\theta - 1} F_C (t_w/t, t/t_m),$$
  

$$\chi(t, t_w, t_m) = A_{\chi} (t - t_w)^{a + 1 - d/z} (t/t_w)^{\theta - 1} F_{\chi} (t_w/t, t/t_m),$$
(18)

где  $t_m = B_m m_0^{-k}$  — введенный ранее временной масштаб, определяемый начальным значением намагниченности,  $t_w$  — время ожидания,  $t - t_w$  — время измерения. Показатели k,  $\theta$ , a связаны с критическими индексами рассматриваемой системы:  $k = 1/(\theta + a + \beta/(v_z)) > 0$ ,  $a = (2 - \eta - z)/z$ ,  $\theta = \theta' - (2 - z - \eta)/z$ . Скейлинговые функции  $F_C(t_w/t, t/t_m)$  и  $F_{\chi}(t_w/t, t/t_m)$  являются конечными при  $t_w \to 0$  и  $t/t_m \to 0$ ,  $A_C$  и  $A_{\chi}$  — неуниверсальные амплитуды, значения которых фиксируются условиями  $F_C(0, 0) = 1$ ,  $F_{\chi}(0, 0) = 1$ .

Величины  $C(t, t_w, t_m)$  и  $\chi(t, t_w, t_m)$  являются обобщенно однородными функциями трех временны́х масштабов  $t - t_w, t_w$  и  $t_m$ . Когда выполняется следующее их соответствие  $t_w < t \ll t_m$ , реализуемое для случая эволюции из высокотемпературного начального состояния с  $m_0 = 0$ , зависимости (18) для  $C(t, t_w, t_m)$  и  $\chi(t, t_w, t_m)$  переходят в соотношения, соответствующие этому случаю [6,24]. Случай эволюции из высокотемпературного начального состояния с  $m_0 = 0$  был детально исследован нами методами Монте-Карло для чистой и структурной неупорядоченной трехмерной модели Изинга в работах [23,24,32].

В противоположном случае с временами  $t - t_w$  и  $t_w$ , бо́льшими по сравнению с  $t_m$ , т.е. для  $t_m \ll t_w < t$ , который реализуется для случая эволюции из низкотемпературного полностью упорядоченного начального состояния с  $m_0 = 1$ , скейлинговые зависимости (18) принимают вид

$$C(t, t_w) = \bar{A}_C (t - t_w)^{a + 1 - d/z} (t/t_w)^{\bar{\theta} - 1} \bar{F}_C (t_w/t),$$
  

$$\chi(t, t_w) = \bar{A}_{\chi} (t - t_w)^{a + 1 - d/z} (t/t_w)^{\bar{\theta} - 1} \bar{F}_{\chi} (t_w/t), \quad (19)$$

где введен новый показатель  $\bar{\theta} = -\beta \delta/(vz)$ =  $-(1 + a + \beta/(vz))$ , а  $\bar{F}_{C,\chi}$  являются универсальными скейлинговыми функциями, получающимися из  $F_{C,\chi}(t_w/t, t/t_m)$  в (18) при предельно бо́льших значениях переменной  $t/t_m$ .

В режиме старения, реализующемся для времен  $t - t_w \sim t_w \gg t_m$ , корреляционная функция и функция отклика описываются соотношениями

$$C(t, t_w) \sim t_w^{-2\beta/z\nu} F_C(t/t_w),$$
  

$$\chi(t, t_w) \sim t_w^{-2\beta/z\nu} \tilde{F}_{\chi}(t/t_w),$$
(20)

со скейлинговыми функциями  $\tilde{F}_{C,\chi}(t/t_w)$ , которые убывают на долговременном этапе их изменения с  $t - t_w \gg t_w \gg t_m$  в соответствии со степенным законом

$$\tilde{F}_{C,\chi}(t/t_w) \sim (t/t_w)^{-\phi}, \qquad (21)$$

где показатель  $\phi = d/z - a + \beta \delta/z \nu$  [25].

Отметим, что для чистой трехмерной модели Изинга при неравновесной критической эволюции из высокотемпературного начального состояния с  $m_0 = 0$ скейлинговая функция  $\tilde{F}_C(t/t_w)$  характеризуется значительно более медленным убыванием со временем по степенному закону  $\tilde{F}_C(t/t_w) \sim (t/t_w)^{-c_a}$  с показателем  $c_a = d/z - \theta' = 1.333(40)$  [24], чем при эволюции из низкотемпературного начального состояния с  $m_0 = 1$  с показателем  $\phi_c = 2.742(32)$  [27].

В работах [24,27] нами было показано, что присутствие дефектов структуры приводит к усилению эффектов старения, проявляющемуся в сильном замедлении эффектов корреляции в структурно неупорядоченных системах по сравнению с чистой системой при увеличении времени ожидания tw. При этом для высокотемпературного начального состояния значения показателя  $c_a$ , характеризующего временное спадание скейлинговой функции  $F_C(t/t_w)$ , уменьшаются с ростом концентрации дефектов, принимая значения  $c_a = 1.230(28)$  для спиновой концентрации p = 0.95,  $c_a = 1.237(22)$  для  $p = 0.8, c_a = 0.982(30)$  для p = 0.6 и  $c_a = 0.896(64)$ для p = 0.5 [24]. Для случая низкотемпературного начального состояния было выявлено [27], что в структурно неупорядоченных системах спадание скейлинговой функции  $F_C(t/t_w)$  со временем в нарушение зависимости (2) осуществляется по степенному закону критической релаксации намагниченности с показателем  $c_a(p) = \beta/zv$  со значениями  $c_a = 0.232(7)$  для p = 0.95,  $c_a=0.229(10)$ для  $p=0.8,\,c_a=0.175(6)$ для p=0.6и  $c_a = 0.175(10)$  для p = 0.5. Эти сильные изменения в поведении автокорреляционной функции были связаны с пиннингом доменных стенок на дефектах структуры, происходящим при неравновесном изменении доменной структуры системы. Показано, что для структурно неупорядоченных систем должна реализовываться более сложная, чем в (19) и (20), форма скейлинговой зависимости автокорреляционной функции с  $F_C(t/t_w^{\mu})$ , соответствующая эффектам "сверхстарения" с показателем  $\mu = 2.30(6)$  для слабо неупорядоченных систем с p = 0.95, 0.8 и  $\mu = 2.80(7)$  для сильно неупорядоченных систем с *p* = 0.6, 0.5 [27,28].

Вычисленные в работах [23,24] для случая высокотемпературного начального состояния значения предельного ФДО  $X^{\infty} = 0.380(13)$  для чистой системы с p = 1.0,  $X^{\infty} = 0.413(7)$  и  $X^{\infty} = 0.413(11)$  для слабо неупорядоченных систем с p = 0.95 и 0.8,  $X^{\infty} = 0.446(8)$  и  $X^{\infty} = 0.441(13)$  для сильно неупорядоченных систем с p = 0.6 и 0.5 показали, что неравновесное критическое поведение чистых, слабо и сильно неупорядоченных систем, описываемых трехмерной моделью Изинга, принадлежит к различным универсальным классам критического поведения (см. детальное обсуждение в работах [23,32–34]).

Для случая эволюции из низкотемпературного начального состояния было определено значение предельного ФДО  $X^{\infty} = 0.784(5)$  для чистой системы, в то время как для структурно неупорядоченных систем предельные значения ФДО, определяемые динамикой доменов в долговременном режиме, становятся равными нулю [27,28].

Представленные в [24,27] результаты для двух крайних начальных состояний системы с начальными намагниченностями  $m_0 = 0$  и  $m_0 = 1$  демонстрируют сильное влияние как начальных состояний, так и дефектов структуры на характеристики неравновесного критического поведения систем, описываемых трехмерной моделью Изинга. Это делает исключительно интересной задачу по проведению исследований влияния различных начальных состояний с промежуточными значениями начальной намагниченности  $0 < m_0 < 1$  и дефектов структуры



**Рис. 4.** Неравновесная зависимость автокорреляционной функции  $C(t, t_w = t/3, t_m)$  для систем с концентрацией спинов p = 1.0 (*a*), p = 0.8 (*b*) и p = 0.6 (*c*).

на универсальные характеристики неравновесного критического поведения трехмерной модели Изинга.

Учет влияния различных начальных состояний в режиме старения с  $t - t_w \sim t_w$  приводит к модификации скейлинговых соотношений (20) для автокорреляционной функции и восприимчивости к следующему виду:

$$C(t, t_w, t_m) = t_w^{-\frac{2\beta}{\nu_z}} \tilde{F}_C(t/t_w, t/t_m),$$
  

$$\chi(t, t_w, t_m) = t_w^{-\frac{2\beta}{\nu_z}} \tilde{F}_{\chi}(t/t_w, t/t_m).$$
(22)

Для выявления предсказываемой соотношениями (22) зависимости  $C(t, t_w, t_m)$  и  $\chi(t, t_w, t_m)$  от начальных значений намагниченности  $m_0$  удобно в качестве времени ожидания  $t_w$  выбрать величину, пропорциональную времени наблюдения, например  $t_w = t/3$ . Тогда с учетом, что  $t_m \sim m_0^{-k}$ , скейлинговые зависимости в (22) для данных функций примут вид

$$C(t, t_w = t/3, t_m) = t^{-\frac{2\beta}{\nu_z}} G_C(tm_0^k),$$
  

$$\chi(t, t_w = t/3, t_m) = t^{-\frac{2\beta}{\nu_z}} G_{\chi}(tm_0^k),$$
(23)

где  $G_C(tm_0^k)$  и  $G_{\chi}(tm_0^k)$  — скейлинговые функции.

При расчете временны́х зависимостей для автокорреляционной функции и динамической восприимчивости неравновесное поведение систем исследовалось на временах до 3000 шагов Монте-Карло на спин. При моделировании чистой модели Изинга с p = 1.0 вычисляемые величины усреднялись по 1500 прогонкам. При моделировании структурно неупорядоченных систем усреднение проводилось по 500 примесным конфигурациям и 5 прогонкам для каждой примесной конфигурации.

На рис. 4 и 5 представлены графики временны́х зависимостей автокорреляционной функции  $C(t, t_w = t/3, t_m)$  и динамической восприимчивости  $\chi(t, t_w = t/3, t_m)$  для систем с концентрацией спинов p = 1.0, 0.8 и 0.6 для различных начальных состояний. Эффекты старения в поведении данных функций наглядно проявляются через отклонение зависимостей  $C(t, t_w = t/3, t_m)$  и  $\chi(t, t_w = t/3, t_m)$  от степенной (при постоянном значении  $t_w$ ), имеющей вид прямой в двойном логарифмическом масштабе, и характеризуются замедлением корреляции и релаксации системы с увеличением ее "возраста"  $t_w$ . Из представленных на рисунках графиков видно, что в поведении автокорреляционной функции эффекты старения проявляются сильнее, чем



**Рис. 5.** Неравновесная зависимость динамической восприимчивости  $\chi(t, t_w = t/3, t_m)$  для систем с концентрацией спинов p = 1.0 (a), p = 0.8 (b) и p = 0.6 (c).

в поведении восприимчивости. Кроме того, из анализа данных графиков можно сделать вывод, что с ростом начального значения намагниченности  $m_0$  эффекты старения усиливаются, причем в структурно неупорядоченных системах это явление более ярко выражено по сравнению с чистой моделью Изинга за счет пиннинга доменных стенок на дефектах структуры [27].

Для проверки реализации скейлинговых соотношений (23), на примере автокорреляционной функции, нами были построены зависимости  $C(t, t/3, t_m)t^{2\beta/(vz)}$  от переменной  $x = tm_0^k$  с использованием значений критических показателей  $\beta/zv$  и k, определенных выше на основе анализа временно́го поведения намагниченности для систем с соответствующими спиновыми концентрациями. Результаты, представленные на рис. 6, a для чистой модели Изинга, демонстрируют "коллапс" данных, полученных для различных  $m_0$ , на универсальной кривой, характеризуемой скейлинговой функцией  $G_C(tm_0^k)$ . Это указывает на выполнение скейлинговых соотношений (22) и (23) с реализацией так называемого канонического старения [10].

Однако временное поведение автокорреляционной функции для структурно неупорядоченных систем, пред-

ставленное на рис. 6, b и c, демонстрирует нарушение скейлингового соотношения (23), что связано с существенным влиянием дефектов структуры на корреляционные свойства системы на неравновесном этапе ее эволюции при старте из низкотемпературных начальных состояний с  $m_0 \neq 0$ . Представление зависимости  $C(t, t_w = t^{1/\mu}, t_m) t^{rac{2eta}{\mu z v}}$  от  $x = t^\mu m_0^k$  позволяет при значении показателя  $\mu = 2.30(6)$  для систем с p = 0.95, 0.8 и  $\mu = 2.80(7)$  для систем с p = 0.6, 0.5 [27] получить совпадение данных для скейлинговой функции  $G_C(t^{\mu}m_0^k)$ на соответствующих универсальных кривых при значениях начальной намагниченности  $0.25 \le m_0 \le 1$  и распределение данных в виде параллельно расположенных графиков для  $0.02 \le m_0 \le 0.1$  (рис. 7). Это указывает на то, что в структурно неупорядоченных системах для автокорреляционной функции реализуется более сложная скейлинговая зависимость вида

$$C(t, t_w = t^{1/\mu}, t_m) = t^{-\frac{2\beta}{\mu z \nu}} \tilde{G}_C(t^{\mu} m_0^k).$$
(24)

Такой случай скейлинговой зависимости, характеризуемой показателем  $\mu > 1$ , классифицируется в теории неравновесных процессов как соответствующий явлению "сверхстарения" [10].



Рис. 6. Зависимости скейлинговой функции  $G_C(tm_0^k) = C(t, t_w = t/3, t_m)t^{2\beta/(v_z)}$  от переменной  $x = tm_0^k$  для систем с p = 1.0 (*a*), p = 0.8 (*b*) и p = 0.6 (*c*), демонстрирующие "коллапс" полученных для различных  $m_0$  данных для чистой системы с p = 1.0 и нарушение "коллапса" для структурно неупорядоченных систем с p = 0.8 и 0.6.

Наблюдаемое для начальных состояний с  $0.25 \le m_0 \le 1$ изменение режима поведения автокорреляционной функции на долговременном этапе с  $t \gg t_w$  связано с сильным замедлением эффектов корреляции вследствие пиннинга доменных стенок на дефектах структуры в процессе неравновесного изменения доменной структуры системы. Данная особенность в поведении автокорреляционной функции была выявлена нами ранее в структурно неупорядоченной трехмерной модели Изинга, эволюционирующей из низкотемпературного полностью упорядоченного начального состояния с  $m_0 = 1$  с реализацией для  $C(t, t_w)$  эффектов сверхстарения [27]. Для начальных состояний с  $0.02 \le m_0 < 0.1$  поведение автокорреляционной функции не меняется как на этапе старения с  $t \sim t_w$ , так и на долговременном этапе с  $t \gg t_w$  и характеризуется одним режимом поведения.

Отсюда можно сделать вывод, что поведение автокорреляционной функции для систем, релаксирующих из начальных состояний с различными значениями начальной намагниченности *m*<sub>0</sub>, характеризуется принадлежностью к двум подклассам универсального неравновесного критического поведения. Один из них соответствует типу низкотемпературного начального состояния, включаю-

Физика твердого тела, 2018, том 60, вып. 6

щего в себя состояния с  $0.25 \le m_0 \le 1$ . В этом случае скейлинговая временная зависимость автокорреляционной функции для чистой модели Изинга описывается соотношениями теории канонического старения, а для структурно неупорядоченной модели Изинга — теории сверхстарения. Другой подкласс универсального неравновесного критического поведения соответствует типу высокотемпературного начального состояния, включающего в себя состояния с  $m_0 < 0.1$ . В этом случае автокорреляционная функция описывается скейлинговыми формами, соответствующими каноническому старению, для систем со всеми значениями спиновых концентраций. Случай начальной намагниченности  $m_0 = 0.1$  является переходным, когда поведение автокорреляционной функции на временах  $t \ge t_w$  соответствует типу неравновесного критического поведения с высокотемпературным начальным состоянием, а на долговременном этапе с  $t \gg t_w$  — низкотемпературному типу начальных состояний. С увеличением концентрации дефектов поведение автокорреляционной функции для системы с  $m_0 = 0.1$ все более соответствует подклассу высокотемпературного начального состояния. Аналогичные свойства были выявлены и для динамической восприимчивости.



**Рис. 7.** Эффекты "сверхстарения", наблюдаемые в зависимости скейлинговой функции  $G_C(t^{\mu}m_0^k) = C(t, t_w = t^{1/\mu}, t_m)t^{2\beta/\mu_z\nu}$  от переменной  $x = t^{\mu}m_0^k$ , с  $\mu = 2.30$  для слабо неупорядоченных систем с p = 0.95 (*a*), p = 0.8 (*b*), и  $\mu = 2.80$  для сильно неупорядоченных систем с p = 0.6 (*c*) и p = 0.5 (*d*).

Данные особенности в неравновесном критическом поведении автокорреляционной функции и динамической восприимчивости мы связываем с пиннингом доменных стенок на дефектах структуры в процессе неравновесного изменения доменной структуры системы.

На следующем этапе было осуществлено исследование влияния различных начальных состояний на значения предельного ФДО. Рассчитывалась временная зависимость динамической восприимчивости  $\chi(t, t_w, t_m)$  и автокорреляционной функции  $C(t, t_w, t_m)$  для различных значений начальных намагниченностей  $m_0$  при времени ожидания, равном  $t_w = t/9$ , которое лучше соответствует условию  $t - t_w \gg t_w$  для долговременного этапа эволюции системы — области универсальности неравновесной динамики. Представленная на рис. 8 параметрическая зависимость  $T_c \chi$  от C позволяет получить предельное ФДО  $X^{\infty}$  при  $C \to 0$  в соответствии с соотношением (11).

Из графиков на рис. 8 видно, что в случае начальных состояний с намагниченностью  $0.02 \le m_0 \le 0.1$  системы со всеми спиновыми концентрациями характеризуются линейной зависимостью  $T_c \chi$  от C и предельными значениями ФДО, представленными в таблице. Эти значе-

Значения предельного ФДО  $X^{\infty}(p, m_0)$  для систем с различными спиновыми концентрациями p при различных значениях начальной намагниченности  $m_0$ 

| <i>m</i> 0 | $X^{\infty}(p,m_0)$ |                 |           |                |           |
|------------|---------------------|-----------------|-----------|----------------|-----------|
|            | p = 1.0             | <i>p</i> = 0.95 | p = 0.8   | <i>p</i> = 0.6 | p = 0.5   |
| 0.02       | 0.381(38)           | 0.410(17)       | 0.412(21) | 0.423(19)      | 0.438(28) |
| 0.05       | 0.392(32)           | 0.413(12)       | 0.414(18) | 0.427(11)      | 0.440(18) |
| 0.1        | 0.401(35)           | 0.423(16)       | 0.425(27) | 0.434(17)      | 0.445(13) |
| 0.25       | 0.762(39)           | 0               | 0         | 0              | 0         |
| 0.4        | 0.773(41)           | 0               | 0         | 0              | 0         |
| 0.7        | 0.775(45)           | 0               | 0         | 0              | 0         |
| 1.0        | 0.779(44)           | 0               | 0         | 0              | 0         |

ния в пределах погрешности совпадают со значениями, вычисленными для высокотемпературного начального состояния  $X^{\infty} = 0.390(12)$   $(p = 1.0), X^{\infty} = 0.415(18)$  (p = 0.8) и  $X^{\infty} = 0.443(6)$  (p = 0.6) [23]. В случае начальных состояний с намагниченностью  $0.25 \le m_0 \le 1$  предельное значение ФДО для чистой системы (p = 1.0) хорошо согласуется с найденным в работе [27] значени-



**Рис. 8.** Параметрическая зависимость  $T_c \chi(t, t_w = t/9, t_m)$  от автокорреляционной функции  $C(t, t_w = t/9, t_m)$  для систем с p = 1.0 (a), p = 0.8 (b) и p = 0.6 (c) при ряде значений начальной намагниченности  $m_0$ 

ем  $X^{\infty} = 0.784(5)$  для низкотемпературного полностью упорядоченного состояния с  $m_0 = 1$ . Для структурно неупорядоченных систем с начальными намагниченностями  $0.25 \le m_0 \le 1$  предельное ФДО  $X^{\infty} = 0$ , что связано с сильным замедлением корреляционных эффектов на временах  $t \gg t_w \gg 1$  вследствие пиннинга доменных стенок на дефектах структуры [27].

Таким образом, можно сделать следующий вывод: неравновесное критическое поведение трехмерной модели Изинга с произвольной начальной намагниченностью  $m_0$  можно разделить на два подкласса универсальности, соответствующих высокотемпературному и низкотемпературному начальным состояниям с характерными для этих состояний значениями предельного ФДО  $X^{\infty}$ . При  $0.25 \le m_0 \le 1$  система характеризуется предельными значениями ФДО, вычисленными для случая низкотемпературного начального состояния с  $m_0 = 1$ , которые равны  $X^{\infty} = 0.784(5)$  для чистой системы и нулю для структурно неупорядоченных систем. При  $0.02 \le m_0 \le 0.1$  значения ФДО совпадают с найденными для случая  $m_0 \ll 1$  значениями  $X^{\infty} = 0.390(12)$ для чистой модели Изинга,  $X^{\infty} = 0.415(18)$  для слабо

Физика твердого тела, 2018, том 60, вып. 6

неупорядоченных систем и  $X^{\infty} = 0.443(6)$  для сильно неупорядоченных систем [22–24].

### 5. Заключение

В заключение отметим, что в результате численных исследований выявлено существенное влияние начальных состояний на неравновесную критическую динамику трехмерной модели Изинга.

Показано, что в критической релаксации намагниченности начальные состояния с намагниченностями  $0 < m_0 < 1$  приводят к двум принципиально разным режимам релаксации, характеризующимся на временах  $t \ll t_m \sim m_0^{-k}$  степенным ростом намагниченности  $M(t) \sim t^{\theta'}$ , а на временах  $t \gg t_m$  степенным убыванием намагниченности  $M(t) \sim t^{-\theta'}$ .

Выявлено, что с ростом начального значения намагниченности происходит усиление эффектов старения, характеризующих увеличение времени релаксации и времени корреляции с ростом времени ожидания  $t_w$  — "возраста" системы. В структурно неупорядоченных системах по сравнению с чистой моделью Изинга наблюдаются существенные изменения в поведении автокорреляционной функции и динамической восприимчивости, характеризуемые сильным замедлением их временно́го спадания. Данные особенности в поведении автокорреляционной функции и восприимчивости характеризуются эффектами сверхстарения и связаны с пиннингом доменных стенок на дефектах структуры в процессе неравновесного изменения доменной структуры системы.

Было показано, что для начальных состояний системы со значениями намагниченности в интервале  $0.25 \le m_0 \le 1$  предельные значения ФДО, определяемые динамикой доменов в долговременном режиме и пиннингом доменных стенок на дефектах структуры, становятся равными нулю. Для начальных состояний с  $0.02 \le m_0 \le 0.1$  динамика доменной структуры не проявляется в долговременном режиме неравновесного критического поведения системы. В результате предельные значения ФДО совпадают между собой для разных  $m_0$  в этом интервале и с найденными ранее для высокотемпературного начального состояния значениями ФДО, соответствующими различным классам универсальности критического поведения чистой модели Изинга, слабо и сильно неупорядоченных систем [22–24].

Впервые выявлено, что в неравновесном критическом поведении трехмерной модели Изинга с произвольной начальной намагниченностью  $m_0$  можно выделить два подкласса универсальности, соответствующих эволюции системы из высокотемпературного и низкотемпературного начальных состояний с характерными для этих состояний значениями предельного ФДО  $X^{\infty}$ .

### Список литературы

- К. Вильсон, Дж. Когут. Ренормализационная группа и *ε*-разложение. Мир, М. (1975). 256 с.; УФН 146, 459 (1985).
- [2] А.Н. Васильев. Квантовополевая ренорм-группа в теории критического поведения и стохастической динамике. Издво ПИЯФ, СПб. (1998). 774 с.
- [3] В.В. Прудников, П.В. Прудников, А.Н. Вакилов. Теоретические методы описания неравновесного критического поведения структурно неупорядоченных систем. Физматлит, М. (2013). 316 с.
- [4] D.P. Landau, K. Binder. A Guide to Monte Carlo simulations in statistical physics. Cambridge University Press, Cambridge (2009). 471 p.
- [5] В.В. Прудников, А.Н. Вакилов, П.В. Прудников. Фазовые переходы и методы их компьютерного моделирования. Физматлит, М. (2009). 224 с.
- [6] P. Calabrese, A. Gambassi. J. Phys. A 38, R133 (2005).
- [7] В.В. Прудников, П.В. Прудников, М.В. Мамонова. УФН 187, 817 (2017).
- [8] L.C.E. Struik. Physical ageing in amourphous polymers and other materials. Elsevier, Amsterdam (1978). 229 p.
- [9] A.J. Bray. Adv. Phys. 43, 357 (1994).
- [10] M. Henkel, M. Pleimling. Non-equilibrium phase transitions. Springer, Heidelberg (2010). 544 p.

- [11] E. Vincent, J. Hammann, M. Ocio, J.P. Bouchaud, L.F. Cugliandolo. Lect. Notes Phys. 492, 184 (1997).
- [12] L. Berthier, G. Biroli. Rev. Mod. Phys. 83, 587 (2011).
- [13] L. Berthier, J. Kurchan. Nature Phys. 9, 310 (2013).
- [14] L.F. Cugliandolo, D.S. Dean, J. Kurchan. Phys. Rev. Lett. 79, 2168 (1997).
- [15] П.В. Прудников, В.В. Прудников, И.А. Калашников, С.С. Циркин. ЖЭТФ 133, 1251 (2008).
- [16] П.В. Прудников, В.В. Прудников, И.А. Калашников, М.В. Рычков. ЖЭТФ 137, 287 (2010).
- [17] В.В. Прудников, П.В. Прудников, А.Н. Вакилов, А.С. Криницын. ЖЭТФ 132, 417 (2007).
- [18] P.V. Prudnikov, V.V. Prudnikov, A.S. Krinitsyn, A.N. Vakilov, E.A. Pospelov, M.V. Rychkov. Phys. Rev. E 81, 011130 (2010).
- [19] P.V. Prudnikov, V.V. Prudnikov, B. Zheng, S.V. Dorofeev, V.Yu. Kolesnikov. Progr. Theor. Phys. 117, 973 (2007).
- [20] P.V. Prudnikov, M.A. Medvedeva. Progr. Theor. Phys. 127, 369 (2012).
- [21] N. Rosov, C. Hohenemser, M. Eibschutz. Phys. Rev. B 46, 3452 (1992).
- [22] В.В. Прудников, П.В. Прудников, Е.А. Поспелов. Письма в ЖЭТФ 98, 693 (2013).
- [23] В.В. Прудников, П.В. Прудников, Е.А. Поспелов. ЖЭТФ 145, 462 (2014).
- [24] V.V. Prudnikov, P.V. Prudnikov, E.A. Pospelov, A.N. Vakilov. Phys. Lett. A **379**, 774 (2015).
- [25] P. Calabrese, A. Gambassi, F. Krzakala. J. Stat. Mech. (2006) P06016.
- [26] P.C. Hohenberg, B.I. Halperin. Rev. Mod. Phys. 49, 435 (1977).
- [27] В.В. Прудников, П.В. Прудников, Е.А. Поспелов, П.Н. Маляренко. Письма в ЖЭТФ 102, 192 (2015).
- [28] V.V. Prudnikov, P.V. Prudnikov, E.A. Pospelov. J. Stat. Mech. (2016) 043303.
- [29] W. Janke. In: Computational Many Particle Physics / Eds H. Fehske, R. Schneider, A. Weibe. Lecture Notes in Physics. Springer, Berlin (2008). V. 739. P. 79–140.
- [30] A.M. Ferrenberg, D.P. Landau. Phys. Rev. B 44, 5081 (1991).
- [31] H.K. Janssen, B. Schaub, B. Schmittmann. Z. Phys. B 73, 539 (1989).
- [32] P.V. Prudnikov, V.V. Prudnikov, E.A. Pospelov, P.N. Malyarenko, A.N. Vakilov. Prog. Theor. Exp. Phys. 2015, 053A01 (2015).
- [33] В.В. Прудников, А.Н. Вакилов. Письма в ЖЭТФ 55, 709 (1992); ЖЭТФ 103, 962 (1993).
- [34] А.К. Муртазаев, И.К. Камилов, А.Б. Бабаев. ЖЭТФ 126, 1377 (2004).