05,11

Магнитные структуры и магнитные фазовые переходы в редкоземельных интерметаллидах RMn_2Si_2 (R = Sm, Tb)

© Н.В. Мушников^{1,2}, Е.Г. Герасимов^{1,2}, В.С. Гавико^{1,2}, П.Б. Терентьев^{1,2}, К.А. Язовских¹, А.Н. Пирогов^{1,2}

¹ Институт физики металлов им. М.Н. Михеева УрО РАН, Екатеринбург, Россия ² Уральский федеральный университет, Екатеринбург, Россия

E-mail: mushnikov@imp.uran.ru

С использованием магнитной нейтронографии и магнитных измерений на монокристаллах определены магнитные структуры, реализующиеся в слоистых соединениях La_{1-x} R_x Mn₂Si₂ (R =Sm, Tb) с различной концентрацией x и построены магнитные фазовые диаграммы. Показано, что формирование магнитных структур зависит не только от обменных взаимодействий, но и от типа магнитной анизотропии редкоземельного атома. Установлено, что в соединениях La_{1-x}Tb_xMn₂Si₂ с 0.2 < x < 0.5 конкуренция межслоевых Tb–Mn и Mn–Mn обменных взаимодействий и существование сильной одноосной магнитной анизотропии в подрешетках Mn и Tb приводит к фрустрированному магнитному состоянию и препятствует формированию дальнего магнитного порядка в подрешетке Tb.

Работа выполнена при поддержке гранта Российского научного фонда (проект № 15-12-10015). Нейтронографические исследования выполнены в нейтронном материаловедческом комплексе ИФМ УрО РАН на исследовательском атомном реакторе ИВВ-2М в рамках государственного задания ФАНО России (темы "Магнит" и,,Поток").

DOI: 10.21883/FTT.2018.06.45979.03M

1. Введение

В интерметаллидах типа RMn_2X_2 (R — редкоземельный металл или иттрий, X — Si или Ge) наблюдается большое разнообразие магнитных структур и магнитных фазовых переходов [1], что обусловливает интерес к исследованию их физических свойств и позволяет рассматривать эти соединения как потенциально перспективные материалы для магнитокалорических, магнитострикционных и магниторезистивных приложений [2–5]. Интерметаллиды обладают тетрагональной кристаллической структурой типа ThCr₂Si₂ (пространственная группа I4/mmm), в которой атомы каждого типа располагаются в отдельных атомных плоскостях (слоях), чередующихся вдоль тетрагональной *с*-оси в следующей последовательности: -Mn-Si-R-Si-Mn- [1].

Магнитные фазовые переходы в RMn_2X_2 обусловлены рядом причин. Одна из них связана с сильной зависимостью типа межслоевого Mn-Mn упорядочения от параметров кристаллической решетки. Эмпирически определено критическое расстояние между атомами марганца в слое $d_c \approx 0.285-0.287$ nm. В соединениях RMn_2X_2 с $d_{Mn-Mn} < d_c$ магнитные моменты Mn между соседними слоями обычно упорядочены антиферромагнитно, а в соединениях RMn_2X_2 с $d_{Mn-Mn} > d_c$ — ферромагнитно [1,6]. Кроме основного критического расстояние между атомами марганца $d_{c2} \approx 0.284$ nm [7–9]. Считается, что в соединениях RMn_2X_2 с $d_{C2} < d_{Mn-Mn} < d_c$ реализуется угловая магнитная структура внутри слоев

Мп и антиферромагнитное межслоевое упорядочение. В соединениях с $d_{\text{Mn-Mn}} < d_{c2}$ реализуется коллинеарное ферромагнитное упорядочение внутри слоев марганца и антиферромагнитное межслоевое упорядочение. Изменяя параметры кристаллической структуры соединений, используя внешнее гидростатическое давление [10,11] или "химическое давление" в квазитройных соединениях типа $R_{1-x}R_x$ Mn₂X₂ или RMn₂(Si_{1-x}Ge_x)₂ [7,9] можно управлять магнитными структурами и магнитными фазовыми переходами.

В соединении LaMn₂Si₂ с немагнитным La и ферромагнитным межслоевым упорядочением магнитных моментов Mn наблюдается большая одноосная магнитная анизотропия в марганцевой подрешетке с легким направлением вдоль тетрагональной с-оси [12,13], вследствие чего суммарный отличный от нуля магнитный момент атомов Mn в слое практически всегда направлен перпендикулярно плоскости слоя вдоль с-оси. Дополнительную анизотропию при низкой температуре вносят редкоземельные атомы с частично заполненной 4*f*-электронной оболочкой, что может приводить к индуцированным магнитным полем фазовым переходам. Кроме того, важную роль в формировании магнитных структур могут иметь конкурирующие межслоевые Mn-Mn, R-Mn и *R*-*R* обменные взаимодействия. В квазитройных соединениях $La_{1-x}R_xMn_2Si_2$ при замещении La на другие редкоземельные элементы с ростом концентрации х уменьшаются внутрислоевые Mn-Mn расстояния и усиливаются *R*-Mn и *R*-*R* обменные взаимодействия, что дает широкие возможности для исследования механизмов образования и целенаправленного формирования магнитных структур [14,15].

В настоящей работе проведен сравнительный анализ магнитных свойств двух квазитройных систем $La_{1-x}R_xMn_2Si_2$, где R = Sm и Tb. В обеих системах при увеличении x расстояние между атомами Mn в слое уменьшается и проходит критическое значение d_c . В обеих системах с ростом х следует ожидать усиление обменных взаимодействий R-Mn. В то же время электронные *f*-оболочки ионов Sm и Tb характеризуются параметрами Эллиота-Стивенса разного знака, что может обеспечивать различную ориентацию магнитных моментов редкоземельных ионов. Проведены исследования магнитных моментов подрешеток, спонтанных и индуцированных магнитным полем фазовых переходов, магнитострикции. С помощью магнитных измерений и нейтронографии определены магнитные структуры и построены магнитные фазовые диаграммы.

2. Образцы и методика эксперимента

Сплавы $La_{1-x}Tb_xMn_2Si_2$ и $La_{1-x}Tb_xMn_2Si_2$ получали индукционным плавлением исходных компонент в среде аргона с последующим гомогенизирующим отжигом при температуре 900°С в течение 1 недели. По данным рентгеновского фазового анализа все образцы были однофазными и имели структуру типа ThCr₂Si₂. Температурная зависимость параметров решетки изучена на рентгеновском дифрактометре ДРОН-3м с низкотемпературной камерой.

Для магнитных измерений использовались образцы, представляющие собой квазимонокристаллические пластинки массой 7-12 mg, отобранные из массивных поликристаллических слитков. Тетрагональная *с*-ось в таких пластинках была направлена строго перпендикулярно плоскости пластинок, а в плоскости наблюдалась небольшая разориентация осей типа [100].

Магнитные измерения в диапазоне температур от 2 до 320 К и магнитных полей с напряженностью до 50 kOe проводились с использованием СКВИД-магнитометра MPMS5-XL в центре коллективного пользования ИФМ УрО РАН. Измерения магнитострикции выполнены с помощью тензорезисторов WK-09-031CF-350, соединенных в мост постоянного тока. При приложении магнитного поля вдоль с-оси квазимонокристалла измеряли изменение размера образца вдоль с-оси и в базисной плоскости. В случае приложения магнитного поля в базисной плоскости (условно вдоль а-оси, хотя для некоторых кристаллитов возможно отклонение от тетрагональной оси [100]), магнитоупругую деформацию измеряли в трех взаимно перпендикулярных направлениях: вдоль с-оси, параллельно и перпендикулярно направлению поля в базисной плоскости.

Нейтронографические исследования выполнены на порошках соединений при температурах 4.2 и 293 К на

дифрактометре Д-3 с длиной волны $\lambda = 0.2429$ nm, установленном на горизонтальном канале реактора ИВВ-2М (г. Заречный, Россия). Расчет нейтронограмм проводился с использованием программы полнопрофильного анализа "FullProf".

3. Экспериментальные результаты и их обсуждение

По данным магнитных измерений LaMn₂Si₂ при низких температурах является одноосным ферромагнетиком (F) с полем анизотропии 60 kOe [13,14]. Однако данные нейтронографии показывают, что помимо ферромагнитно упорядоченной *z*-компоненты присутствуют антиферромагнитно связанные компоненты магнитного момента марганца в базисной плоскости. В результате моменты Mn оказываются отклоненными от с-оси кристалла на угол около 50° при 4.2 К. С ростом температуры угол отклонения моментов слегка увеличивается до 62° при 293 К. Дальнейшее повышение температуры приводит к исчезновению ферромагнитной компоненты намагниченности вдоль *с*-оси при $T_{\rm C} = 305 \, {\rm K}$, в то время как антиферромагнитная компонента в плоскости существует вплоть до 470 К. Полученные нами данные для LaMn₂Si₂ хорошо согласуются с результатами предыдущих исследований [16].

Замещение лантана на самарий, имеющий меньший атомный радиус, приводит к уменьшению параметров решетки *a* и *c* [17]. На рис. 1 приведена концентрационная фазовая диаграмма системы $La_{1-x}Sm_xMn_2Si_2$. При комнатной температуре расстояние Mn–Mn в слое соответствует критическому значению $d_c = 0.287$ nm при концентрации самария x = 0.35. Вблизи этой концентрации основное состояние системы изменяется от ферромагнитного к антиферромагнитному (AF). Поскольку при понижении температуры параметры решетки также уменьшаются, при низкой температуре условие

Рис. 1. Концентрационная магнитная фазовая диаграмма системы $La_{1-x}Sm_xMn_2Si_2$.

 $d_{\text{Mn-Mn}} = d_c$ реализуется при меньших концентрациях *x*. Это позволяет реализовать спонтанный фазовый переход AF-F при изменении температуры в узком интервале концентраций. Температуры переходов для составов с x = 0.25 и 0.27 показаны светлыми кружками на фазовой диаграмме, рис. 1.

Легирование самарием воздействует на магнитное состояние соединений подобно внешнему гидростатическому давлению [10]. Критические температуры магнитного упорядочения в соединениях $La_{1-x}Sm_xMn_2Si_2$ с увеличением концентрации x изменяются так же, как и с ростом давления в соединении $La_{0.75}Sm_{0.25}Mn_2Si_2$. Уменьшение межатомных расстояний в обоих случаях приводит к формированию антиферромагнитного межслоевого упорядочения между проекциями магнитного момента марганца на c-ось, к уменьшению температуры Кюри T_C и к увеличению температуры Нееля T_N .

расшифровка магнитных Детальная структур $La_{1-x}Sm_xMn_2Si_2$, соответствующих различным областям фазовой диаграммы, приведена в [18]. В фазах F, AF и АF" упорядочена лишь подрешетка марганца. Для всех этих фаз существует антиферромагнитная компонента намагниченности в базисной плоскости, ориентированная вдоль направления [100]. Компонента намагниченности вдоль с-оси упорядочена ферромагнитно в фазе F, антиферромагнитно в фазе AF и равна нулю в фазе AF". При низкой температуре дополнительно происходит упорядочение в подсистеме Sm (фаза AF' на фазовой диаграмме). Магнитные моменты Sm ориентированы вдоль направления [100]. Обменное взаимодействие Sm-Mn оказывается намного слабее, чем взаимодействие в Мп подсистеме и приводит лишь к небольшому скашиванию моментов Mn в направлении [100].

В соединении La_{0.75}Sm_{0.25}Mn₂Si₂, в котором расстояние Mn-Mn в слое очень близко к критическому, при различных температурах реализуются все четыре магнитоупорядоченные фазы [10]. Подрешетка Sm упорядочена ферромагнитно ниже 14 К. В подсистеме Mn переход AF-F происходит при $T_{AF-F} = 160$ K, переход в плоскостную антиферромагнитную структуру AF" при $T_{C} = 305$ K, и наконец, переход в парамагнитное состояние наблюдается при 403 K.

Переход AF-F является фазовым переходом I-го рода и сопровождается аномалиями физических свойств. На рис. 2 приведены температурные зависимости параметров решетки La_{0.75}Sm_{0.25}Mn₂Si₂. Видно, что параметры решетки изменяются аномально при T_{AF-F} . При переходе из антиферромагнитной в ферромагнитную фазу решетка расширяется в базисной плоскости на величину $\Delta a/a \approx 1.62 \cdot 10^{-3}$ и сжимается вдоль *с*-оси на величину $\Delta c/c \approx -0.73 \cdot 10^{-3}$. Аналогичные аномалии наблюдаются на кривых теплового расширения вдоль разных направлений монокристалла [19]. При этом изменение объема положительно (ферромагнитное состояние имеет больший объем) и составляет $\Delta V/V \approx 2.5 \cdot 10^{-3}$.

Поскольку межслоевое взаимодействие Mn-Mn в RMn_2Si_2 значительно слабее внутрислоевого, приложе-

Рис. 2. Температурные зависимости параметров решетки $La_{0.75}Sm_{0.25}Mn_2Si_2$.

ние магнитного поля в AF фазе вызывает индуцированный магнитным полем фазовый переход AF-F. Как видно из рис. 2, такой переход должен сопровождаться большой объемной и анизотропной магнитострикцией. Для поликристаллического образца изоструктурного соединения SmMn₂Ge₂ ранее сообщалось, что объемная магнитострикция составляет 1.3 · 10⁻³, в то время как анизотропная магнитострикция мала [5]. На рис. 3 приведены полевые зависимости намагниченности и магнитострикции квазимонокристалла La_{0 75}Sm_{0 25}Mn₂Si₂, измеренные вдоль с-оси и в базисной плоскости при *T* = 4.2 K. Независимо от направления приложенного магнитного поля индуцированный переход AF'-F сопровождается резким расширением решетки в базисной плоскости и сжатием вдоль с-оси, в полном соответствии с данными по тепловому расширению (рис. 2). Величина и знак анизотропной магнитострикции зависят от ориентации магнитного поля: $\lambda_a = 1.2 \cdot 10^{-3}$, $\lambda_c = -2.1 \cdot 10^{-3}$. Объемная магнитострикция положительна, не зависит от направления приложенного поля и составляет $\omega = 2.8 \cdot 10^{-3}$. С ростом температуры объемная магнитострикция изменяется незначительно [20]. Следовательно, она нечувствительна к величине межслоевого обменного взаимодействия Mn-Mn и определяется только взаимной ориентацией магнитных моментов Мп в соседних слоях.

Обменное взаимодействие между магнитными подрешетками Sm и Mn оказывается относительно слабым в La_{1-x}Sm_xMn₂Si₂, поскольку магнитные моменты Sm ориентированы почти перпендикулярно результирующим магнитным моментам слоев Mn. B системе с Tb реализуется иная ситуация. Подрешетка Tb обладает анизотропией типа "легкая *с*-ось", что позволяет реализовать более сильное обменное взаимодействие Tb-Mn (I_{Tb-Mn}). B TbMn₂Si₂ при низкой температуре I_{Tb-Mn} превосходит по величине межслоевое обменное взаимодействие между слоями Mn I_{Mn-Mn} , в результате чего

Рис. 3. Полевые зависимости намагниченности (a) и объемной ω и анизотропной λ магнитострикции (b) вдоль разных кристаллографических направлений для La_{0.75}Sm_{0.25}Mn₂Si₂ при 4.2 K.

формируется ферримагнитная структура [21,22]. В системе $La_{1-x}Tb_xMn_2Si_2$ с ростом концентрации тербия происходит постепенное усиление межслоевых Tb-Mn обменных взаимодействий, что приводит к существенным отличиям в формировании магнитных структур в системе с Tb. Проведенный анализ нейтронограмм позволил расшифровать магнитные структуры, реализующиеся в соединениях $La_{1-x}Tb_xMn_2Si_2$ с разной концентрацией Tb.

При температуре 293 К в соединениях с x = 0, 0.1, 0.2наблюдается ферромагнитное межслоевое упорядочение магнитных моментов марганца F, а в соединениях с x = 0.27, 0.4 и 1 —- антиферромагнитное AF (рис. 4). Внутри слоев марганца реализуются угловые магнитные структуры с антиферромагнитным упорядочением проекций магнитных моментов марганца в базисной плоскости для всех соединений, кроме соединения с x = 1, в котором наблюдается коллинеарное магнитное упорядочение магнитных моментов марганца внутри слоя (AF_i).

Изменение магнитной структуры в $La_{1-x}Tb_xMn_2Si_2$ с ростом концентрации тербия при T = 293 K согласуется с имеющимися в литературе представлениями

о существовании критических расстояний между атомами марганца в слое в соединениях RMn₂Si₂. С ростом концентрации Tb в $La_{1-x}Tb_xMn_2Si_2$ расстояние *d*_{Mn-Mn} между атомами Mn монотонно уменьшается и проходит критические значения $d_c = 0.287 \,\mathrm{nm}$ при x = 0.24 и $d_{c2} = 0.284$ nm при x = 0.5 (рис. 5). В соединениях с $d_{Mn-Mn} > d_c$ наблюдается ферромагнитное межслоевое Mn-Mn упорядочение F, в соединениях с $d_{c2} < d_{Mn-Mn} < d_c$ антиферромагнитное AF и в соединении $d_{\text{Mn-Mn}} < d_{c2}$ антиферромагнитное с коллинеарным упорядочением магнитных моментов марганца в плоскости AF_i. Переход AF-AF_i, вероятно, является фазовым переходом II-го рода. В области составов 0.27 < x < 0.5, где с ростом концентрации происходит уменьшение расстояний между атомами Mn от d_c до d_{c2} , наблюдается и наиболее резкое уменьшение угла θ раствора угловой магнитной структуры в слоях марганца (см. табл. 1).

При T = 4.2 K в соединениях La_{1-x}Tb_xMn₂Si₂ взаимодействия внутри марганцевой подсистемы также зависят

Рис. 4. Магнитные структуры в соединениях $La_{1-x}Tb_xMn_2Si_2$ при температуре 293 К.

Рис. 5. Концентрационная зависимость расстояний между атомами марганца в слое $d_{\text{Mn-Mn}}$ в соединениях La_{1-x}Tb_xMn₂Si₂ по данным рентгеновской дифракции.

x	Магнитная структура	$\mu^x_{\mathrm{Mn}}(\mu_{\mathrm{B}})$	$\mu^{z}_{\mathrm{Mn}}(\mu_{\mathrm{B}})$	θ (deg)	$\mu_{ m Mn}(\mu_{ m B})$	$\mu_{ ext{Tb}}(\mu_{ ext{B}})$	$R_{\rm Bragg}$	R _{magn}	χ^2
0	F	1.70(1)	0.90(4)	62	1.92(3)	_	3.13	5.58	3.75
0.1	F	1.41(2)	0.54(9)	69	1.51(4)	0	4.29	5.62	6.11
0.2	F	1.42(2)	0.60(8)	67	1.54(4)	0	4.18	6.88	5.81
0.27	AF	0.95(2)	1.02(2)	43	1.39(2)	0	1.5	8.81	2.51
0.4	AF	0.31(9)	1.47(3)	12	1.50(4)	0	4.01	11.0	3.52
1.0	AF_i	0.00(0)	1.83(3)	0	1.83(3)	0	8.01	19.1	2.82

Таблица 1. Параметры магнитной структуры соединений La_{1-x}Tb_xMn₂Si₂ при температуре 293 К

Таблица 2. Параметры магнитной структуры соединений $La_{1-x}Tb_xMn_2Si_2$ при температуре 4.2 K, вычисленные в предположении существования магнитного упорядочения в подрешетке Tb в соединениях с x > 0

x	Магнитная структура	$\mu^x_{ m Mn}(\mu_{ m B})$	$\mu^{z}_{\mathrm{Mn}}(\mu_{\mathrm{B}})$	θ (deg)	$\mu_{\mathrm{Mn}}(\mu_{\mathrm{B}})$	$\mu_{ ext{Tb}}(\mu_{ ext{B}})$	$R_{\rm Bragg}$	$R_{ m magn}$	χ^2
0	F	2.06(2)	1.81(3)	49	2.74(3)	_	5.41	5.21	4.10
0.2	F + AF	1.09(1)	0.91(2)	50	1.42(2)	0.3(5)	6.58	16.0	7.20
0.27	AF	1.15(3)	1.84(3)	32	2.18(3)	1.0(8)	4.81	10.8	4.90
0.4	AF	0.66(5)	2.08(3)	18	2.18(3)	0.7(6)	5.56	16.1	2.46
1.0	F'	1.27(2)	0.85(5)	56	1.53(3)	8.9(1)	4.44	5.24	5.64

Таблица 3. Параметры магнитной структуры соединений $La_{1-x}Tb_xMn_2Si_2$ при температуре 4.2 K, вычисленные в предположении отсутствия магнитного упорядочения в подрешетке Tb в соединениях с x < 1

x	Магнитная структура	$\mu^x_{ m Mn}(\mu_{ m B})$	$\mu^{z}_{\mathrm{Mn}}(\mu_{\mathrm{B}})$	θ (deg)	$\mu_{ m Mn}(\mu_{ m B})$	$\mu_{ ext{Tb}}(\mu_{ ext{B}})$	$R_{ m Bragg}$	$R_{ m magn}$	χ^2
0	F	2.06(2)	1.81(3)	49	2.74(3)	_	5.41	5.21	4.10
0.2	F + AF	1.09(1)	0.90(2)	50	1.41(2)	-	6.58	17.0	7.22
0.27	AF	1.15(3)	1.85(3)	32	2.18(3)	—	4.5	9.35	4.90
0.4	AF	0.65(5)	2.08(2)	17	2.18(3)	_	2.46	13.8	2.46
1.0	F'	1.27(2)	0.85(5)	56	1.53(3)	8.9(1)	4.44	5.24	5.64

от критических расстояний d_c и d_{c2} , достигаемых при более низких концентрациях Тb вследствие температурного сжатия кристаллической решетки. При $d_{\mathrm{Mn}-\mathrm{Mn}} \approx d_c$ в соединении с x = 0.2 наблюдается смесь фаз с ферромагнитным F и антиферромагнитным AF' межслоевым Mn-Mn магнитным упорядочением. В соединениях с x = 0.27 и 0.4 формируется антиферромагнитное межслоевое упорядочение магнитных моментов атомов марганца (AF'). В соединении с x = 1, межслоевое упорядочение Mn-Mn вновь становится ферромагнитным (F'). Внутри слоев марганца реализуются угловые магнитные структуры с антиферромагнитным упорядочением проекций магнитных моментов марганца в базисной плоскости для всех соединений, кроме TbMn₂Si₂, в котором наблюдается ферромагнитное внутрислоевое и антиферромагнитное межслоевое упорядочение проекций магнитного момента марганца в базисной плоскости.

Численные результаты расчетов нейтронограмм приведены в табл. 1–3. Величина полного магнитного момента марганца при T = 4.2 K уменьшается с ростом *x* от 2.74 μ_{B} в LaMn₂Si₂ до 1.53 μ_{B} в TbMn₂Si₂, а его проекция на с-ось в соединениях с ферромагнитным межслоевым Mn–Mn упорядочением составляет $0.85-1.81 \mu_{\rm B}$, что согласуется с результатами магнитных измерений на монокристаллах и нейтронографических исследований на бинарных сплавах LaMn₂Si₂ и TbMn₂Si₂ [18,21]. Рассчитанный магнитный момент Tb µ_{Tb} в TbMn₂Si₂ практический равен магнитному моменту свободного иона Тb (9 $\mu_{\rm B}$). Однако для составов с x < 1 магнитный момент Tb, определенный из расчета нейтронограмм, оказывается необычно малым в отличие от ожидаемого значения $\mu_{\text{Tb}} = x \cdot 9 \,\mu_{\text{B}}$ (см. табл. 2). На нейтронограммах отсутствуют дополнительные рефлексы, которые можно было бы связать с антиферромагнитным упорядочением в подсистеме Тb. Более того, если предположить, что магнитный момент Тb равен нулю для составов с x = 0.2, 0.27 и 0.4, то соответствие расчетных и экспериментальных нейтронограмм лишь улучшается (табл. 3).

Результаты магнитных измерений, выполненных на квазимонокристаллических образцах, подтверждают выводы нейтронографических исследований. На рис. 6

Рис. 6. Концентрационная зависимость спонтанного магнитного момента в соединениях $La_{1-x}Tb_xMn_2Si_2$ при 4.2 K.

Рис. 7. Варианты возможного межслоевого упорядочения магнитных моментов Tb и Mn в случае $d_{\text{Mn-Mn}} < d_c$, $I_{\text{Tb-Mn}} < I_{\text{Mn-Mn}}$ (*a*) и $d_{\text{Mn-Mn}} < d_c$, $I_{\text{Tb-Mn}} > I_{\text{Mn-Mn}}$ (*b*).

приведена концентрационная зависимость спонтанного магнитного момента соединений $La_{1-x}Tb_xMn_2Si_2$, определенная из кривых размагничивания, измеренных вдоль *с*-оси, при T = 4.2 К. Видно, что зависимость имеет немонотонный характер. Спонтанный магнитный момент обращается в нуль при концентрации Tb x = 0.27 и 0.4. Вклад от подрешетки марганца в спонтанный момент отсутствует вследствие антиферромагнитного межслоевого упорядочения Mn. Кривые намагничивания при 4.2 К для этих соединений имеют вид, типичный для ансамбля парамагнитных ионов, и хорошо описываются функцией Бриллюэна с магнитным моментом 9 $\mu_{\rm B}$.

Полученные данные позволяют предположить, что при низких температурах магнитное упорядочение в La_{1-x}Tb_xMn₂Si₂ обусловлено взаимодействиями как в марганцевой, так и в тербиевой подсистемах. Для составов с $x \le 0.4$ антиферромагнитное межслоевое взаимодействие в марганцевой подсистеме I_{Mn-Mn} доминирует. Обменные взаимодействия Tb-Mn стремятся выстроить магнитные моменты Тb антипараллельно моментам Мn каждого из соседних слоев. Как подрешетка Tb, так и подрешетка Mn обладают сильной одноосной магнитной анизотропией. В результате возникает фрустрированное состояние магнитных моментов Tb при $0.2 < x \le 0.4$, как это схематически изображено на рис. 7, а, и магнитного упорядочения в подсистеме Tb не возникает. С ростом *х* взаимодействие Tb-Mn усиливается. Как только выполняется условие I_{Mn-Mn} < I_{Tb-Mn} при x > 0.5 (рис. 7, *b*), возникает возврат к ферромагнитному межслоевому Mn-Mn упорядочению F', несмотря на то что расстояние Mn-Mn для таких составов существенно меньше критического.

Полученные нами результаты позволили построить концентрационную магнитную фазовую диаграмму соединений $La_{1-x}Tb_xMn_2Si_2$, на которой можно выделить пять различных магнитоупорядоченных состояний. Эта диаграмма представлена на рис. 8. Линии на диаграмме соответствуют температуре Нееля T_N , парамагнитной температуре Кюри T_p , температуре спонтанного перехода антиферромагнетик—ферромагнетик T_{AF-F} и температуре упорядочения магнитных моментов подрешетки тербия T_{Tb} для случая, когда подрешетка Mn упорядочена ферромагнитно. Обозначения фаз на этой диаграмме соответствуют типам межслоевого Mn—Mn магнитного упорядочения. В состояниях AF, AF' и AF'' магнитные моменты атомов марганца в соседних

Рис. 8. Концентрационная магнитная фазовая диаграмма соединений $La_{1-x}Tb_xMn_2Si_2$. Стрелками схематически показано взаимное магнитное упорядочение между магнитными моментами слоя Tb (длинная стрелка) и соседних слоев Mn (короткие стрелки).

слоях упорядочены антиферромагнитно, а в состояниях F и F' — ферромагнитно. Во всех фазах результирующие магнитные моменты направлены вдоль с-оси, за исключением фазы АГ", в которой магнитные моменты марганца лежат в базисной плоскости. Смена типа межслоевого Mn-Mn магнитного упорядочения при температурах выше T_{Tb} от ферромагнитного F к антиферромагнитному AF с ростом концентрации выше *x* > 0.2 обусловлена уменьшением расстояний между атомами марганца до расстояний меньше критического. При температурах ниже *T*_{Tb} значительное влияние на формирование магнитной структуры в соединениях начинает оказывать конкуренция Tb-Mn, Tb-Tb и межслоевых Mn-Mn обменных взаимодействий и магнитная анизотропия, что, по-видимому, приводит к смене типа Мп-Мп межслоевого упорядочения от антиферромагнитного (AF') к ферромагнитному (F') в соединениях с высокими концентрациями x, несмотря на то что в них $d_{\mathrm{Mn-Mn}} < d_c$.

4. Заключение

Проведенный сравнительный анализ магнитных свойств соединений $La_{1-x}R_xMn_2Si_2$ (R = Sm и Tb) показал, что формирование магнитных структур зависит не только от величины обменных взаимодействий, но и от типа анизотропии. В $La_{1-x}Sm_xMn_2Si_2$, где магнитные подрешетки Sm и Mn дают вклады в анизотропию разного знака, обменные взаимодействия Sm-Mn слабы и магнитные структуры в основном определяются взаимодействием в подсистеме Mn и критическим расстоянием между ионами марганца в слое. При спонтанном или индуцированном магнитным полем переходе из антиферромагнитного в ферромагнитное состояние в составах с близким к критическому расстоянием Mn-Mn возникает сильная объемная и анизотропная магнитострикция обменной природы. В $La_{1-x}Tb_xMn_2Si_2$ с одноосной магнитной анизотропией редкоземельной подрешетки и сильным Tb-Mn обменным взаимодействием при низких температурах смена типа межслоевого Mn-Mn магнитного упорядочения с увеличением концентрации Тb происходит дважды. В промежуточной области концентраций 0.2 < x < 0.5 конкуренция межслоевых Tb-Mn и Mn-Mn обменных взаимодействий и одноосная магнитная анизотропия в подрешетках Mn и Tb приводят к формированию фрустрированного магнитного состояния и препятствуют возникновению дальнего магнитного порядка в редкоземельной подрешетке.

Список литературы

- [1] A. Szytuła. In: Handbook of Magnetic Materials / Ed. K.H.J. Buschow. **6**, Elsevier, Amsterdam (1991). P. 85.
- [2] B. Emre, I. Dincer, Y. Elerman, S. Aksoy. Solid State Sci. 22, 1 (2013).

- [3] Bibekananda Maji, Mayukh K. Ray, K.G. Suresh, S. Banerjee. J. Appl. Phys. 116, 213913 (2014).
- [4] Chunsheng Fang, Guoxing Li, Jianli Wang, W.D. Hutchison, Q.Y. Ren, Zhenyan Deng, Guohong Ma, Shixue Dou, S.J. Campbell, Zhenxiang Cheng. Sci. Rep. 7, 45814 (2017).
- [5] Го Гуанхуа, Р.З. Левитин, В.В. Снегирев, Д.А. Филиппов. ФТТ 43, 477 (2001).
- [6] H. Fujii, T. Okamoto, T. Shigeoka, N. Iwata. Solid State Commun. 53, 715 (1985).
- [7] B. Emre, I. Dincer, M. Hoelzel, A. Senyshyn, Y. Elerman. J. Magn. Magn. Mater. **324**, 622 (2012).
- [8] M.F. Md Din, J.L. Wang, Z.X. Cheng, S.X. Doul, S.J. Kennedy, M. Avdeev, S.J. Campbell. Sci. Rep. 5, 11288 (2015).
- [9] J.L. Wang, L. Caron, S.J. Campbell, S.J. Kennedy, M. Hofmann, Z.X. Cheng, M.F. Md Din, A.J. Studer, E. Bruck, S.X. Dou. Phys. Rev. Lett. 110, 217211 (2013).
- [10] E.G. Gerasimov, N.V. Mushnikov, T. Goto. Phys. Rev. B 72, 064446 (2005).
- [11] J. Kaštil, Z. Arnold, O. Isnard, Y. Skourski, J. Kamarád, J.P. Itié. J. Magn. Magn. Mater. 424, 416 (2017).
- [12] E.G. Gerasimov, R.Y. Umetsu, N.V. Mushnikov, A. Fujita, T. Kanomata. J. Phys.: Condens. Matter 19, 486202 (2007).
- [13] E.G. Gerasimov, M.I. Kurkin, A.V. Korolyov, V.S. Gaviko. Physica B **322**, 297 (2002).
- [14] E.G. Gerasimov, N.V. Mushnikov, P.B. Terentev, K.A. Yazovskikh, I.S. Titov, V.S. Gaviko, Rie Y. Umetsu. J. Magn. Magn. Mater. 422, 237 (2017).
- [15] M. Hofmann, S.J. Campbell, S.J. Kennedy. J. Phys.: Condens. Matter 12, 3241 (2000).
- [16] M. Hofmann, S.J. Campbell, S.J. Kennedy, X.L. Zhao. J. Magn. Magn. Mater. 176, 279 (1997).
- [17] E.G. Gerasimov, V.S. Gaviko, V.N. Neverov, A.V. Korolyov. J. Alloys Comp. 343, 14 (2002).
- [18] E.G. Gerasimov, Yu.A. Dorofeev, V.S. Gaviko, A.N. Pirogov, A.E. Teplykh, Junghwan Park, C.S. Choi, Unggirl Kong. Phys. Met. Metallogr. 94, 161 (2002).
- [19] N.V. Mushnikov, E.G. Gerasimov, P.B. Terentev, V.S. Gaviko, K.A. Yazovskikh, A.M. Aliev. J. Magn. Magn. Mater. 440, 89 (2017).
- [20] N.V. Mushnikov, E.G. Gerasimov. J. Alloys Comp. 676, 74 (2016).
- [21] T. Shigeoka, N. Iwata, H. Fujii, T. Okamoto. J. Magn. Magn. Mater. 54–57, 1343 (1986).
- [22] Guoxing Li, Jianli Wang, Zhenxiang Cheng, Qingyong Ren, Chunsheng Fang, Shixue Dou. Appl. Phys. Lett. 106, 182405 (2015).