02; 02.2

Масс-спектрометрия молекулы ксилита

© А.Н. Завилопуло, О.Б. Шпеник, О.В. Пилипчинец

Институт электронной физики НАН Украины, Ужгород, Украина E-mail: gzavil@gmail.com

Поступило в Редакцию 6 апреля 2017 г.

Описаны методика и результаты масс-спектрометрических исследований выхода положительных ионов, образованных в результате прямой и диссоциативной ионизаций молекул ксилита электронным ударом. В диапазоне массовых чисел 1-170 Da и в интервале энергий бомбардирующих электронов 5-80 eV исследовались масс-спектры молекулы ксилита при разных температурах. Впервые, исходя из энергетических зависимостей эффективных сечений образования ионов при бомбардировке электронным ударом определены энергии появления ионов-фрагментов и исследована динамика ударом, ионов-фрагментов ксилита в интервале температур испарения исходного вещества 340-400 K.

DOI: 10.21883/PJTF.2018.08.45972.16817

Многоатомный спирт ксилит (C₅H₁₂O₅), как и этиленгликоль, глицерин, инозит и сорбит, относится к группе полиолов — углеводородных спиртов с общей формулой $R-(OH)_n$, где R — углеводородный радикал, а *п* — число гидроксильных групп, содержащихся в молекуле [1]. Характерной особенностью этих спиртов является то, что гидроксильные группы присоединены к насыщенным атомам углерода. Ксилит — естественный пятиуглеродный сахарозаменитель. Благодаря своим уникальным свойствам и огромному потенциалу биологического воздействия он имеет широкую область применения. Ксилит обладает почти такой же сладостью, как сахароза, при более низкой энергоемкости (2.4 cal/g против 4.0 cal/g). Это позволяет использовать ксилит в качестве заменителя сахара в диетических продуктах питания. Отметим, что ксилит является важным промежуточным продуктом углеводного обмена в живых организмах [2]. Кроме того, в щелочной среде он обладает способностью образовывать стабильные металл-ксилитовые комплексы с некоторыми катионами, например Cu²⁺, Ca²⁺, Fe²⁺ [3].

Ранее нами были проведены систематические масс-спектрометрические исследования представителей полиолов: молекул глицери-

93

на [4] и сорбитола [5], для которых предложены схемы фрагментации, иллюстрирующие наиболее вероятные каналы образования ионовфрагментов при электронном ударе в случае, когда энергия налетающих электронов значительно превышает потенциал ионизации молекулы. В работе [1] показано, что образование оксониевых ионов при фрагментации полиолов может быть следствием локализации заряда на атоме кислорода и протекания β -разрыва (по отношению к гетероатому) молекулярного иона.

В настоящей работе представлены результаты масс-спектрометрического исследования прямой и диссоциативной ионизации молекулы ксилита электронным ударом в припороговой области энергий. Следует заметить, что в базе данных NIST [6] отсутствуют данные об энергиях ионизации и диссоциации молекулы ксилита. Представленные в [6] массспектры измерены при стандартной энергии ионизации 70 eV в диапазоне масс 26-135 Da, но не указаны температура вещества и условия, при которых эти спектры получены. Поэтому сравнение данных из базы NIST со спектрами масс, полученными в данной работе, возможно только на качественном уровне. Ранее нами было показано [4], что именно температура испарения вещества из источника молекулярного пучка является важным параметром при исследовании процессов фрагментации сложных органических молекул под действием электронов. Выбранный нами наиболее информативный масс-спектрометрический метод изучения процесса диссоциативной ионизации позволяет в одинаковых экспериментальных условиях получить полный масс-спектр исследуемой молекулы, оценить относительный вклад каждого диссоциированного фрагмента и измерить энергетические зависимости сечений прямой и диссоциативной ионизации исследуемых молекул электронным ударом.

Эксперимент выполнен на установке с монопольным масс-спектрометром [4]. Пучок молекул ксилита формировался с помощью многоканального эффузионного источника, который позволял создавать концентрацию исследуемых молекул $10^{10}-10^{11}$ сm⁻³ в области взаимодействия с электронами. Калибровка шкалы масс проводилась по изотопам атомов Ar и Xe, а шкалы энергий — по начальному участку сечения ионизации молекулы N₂. Измерения осуществлялись в два этапа: на первом исследовались масс-спектры ксилита при разных энергиях ионизирующих электронов и различных температурах источника молекулярного пучка, а на втором — энергетические зависимости от-

Рис. 1. Структурная формула молекулы ксилита.

носительных сечений диссоциативной и прямой ионизации в диапазоне энергий электронов 5–80 eV.

Как известно [7], при столкновении электрона с многоатомной молекулой возникает нестабильный молекулярный ион M^+ , который, как правило, затем спонтанно распадается на более простой ион и нейтральный остаток (атом, молекула). Наиболее общим направлением фрагментации сложных молекул при электронном ударе является простой разрыв связей углеводородного скелета с образованием ионов оксониевого типа, а также дегидратация молекулярного и фрагментных ионов. Наличие гидроксильной группы увеличивает вероятность диссоциативного распада молекул при ионизации электронным ударом, что обычно приводит к отсутствию в масс-спектре материнского молекулярного пика M^+ [7]. Эта характерная особенность электронной ионизации многоатомных спиртов наблюдалась нами раньше при исследовании моносахаридов: пентозы — глицерин и сорбитол [4,5], гексозы — глюкоза и аскорбиновая кислота [8,9].

Рассмотрим процесс взаимодействия электрона с молекулой ксилита. Ионизация молекулы ксилита связана с удалением *n*-электрона, присутствующего в атоме кислорода, поэтому в электронно-невозбужденном состоянии заряд и неспаренный электрон локализованы на атоме кислорода [7]. Такая система является нестабильной, поэтому молекулярный ион M^+ спонтанно распадается на фрагменты.

Структурная формула молекулы ксилита показана на рис. 1. В ней имеются три вершины, связанные с атомом углерода. Если предположить, что первый ион-фрагмент имеет массу $m/z = 31([CH_2OH]^+)$, то

Рис. 2. Масс-спектр молекулы ксилита при различных температурах. *T*, K: *a* — 370, *b* — 382, *c* — 395.

остальные осколочные ионы должны появляться с интервалами 30 Da (ион-фрагмент [CHOH]⁺), т. е в масс-спектре интенсивными будут ионы с $m/z = 61([CHOHCH_2OH]^+), m/z = 91([CHOHCHOHCH_2OH]^+), m/z = 121([CHOHCHOHCHOHCH_2OH]^+). Это предположение о фор$ мировании ионов-фрагментов с малыми массами подтверждается тем $фактом, что, как указывалось выше, молекулярный ион <math>C_5H_{12}O_5^+$

(m/z = 152) отсутствует в масс-спектре, измеренном нами в интервале 1–170 Da.

На рис. 2 показаны масс-спектры молекулы ксилита в диапазоне массовых чисел 10-135 Da, измеренные при разных температурах (энергия ионизирующих электронов 70 eV). Как видно из рисунка, в соответствии со структурной формулой (рис. 1) общей характеристикой масс-спектров является наличие групп линий, среди которых выделяются масс-пики, соответствующие ионам с m/z = 31, 43, 61, 91, 121 и продуктам вторичной фрагментации осколочных ионов: CO^+ (m/z = 28) и СН₃⁺ (*m*/*z* = 15). Наличие гидроксильных групп ОН в молекуле ксилита приводит к формированию ионов молекулярной воды (H₂O⁺) и гидроксония (H_3O^+) с m/z = 18 и 19 соответственно. Максимальная интенсивность в масс-спектре при $T = 395 \,\mathrm{K}$ (рис. 2, *c*) соответствует иону $C_2H_5O_2^+$ (m/z = 61), который является комплиментарным иону CH_3O^+ (m/z = 31). Эти ионы образуются при простом разрыве связи С-С молекулы ксилита, при этом заряд преимущественно локализован на фрагменте с большей молекулярной массой. Малая вероятность процессов фрагментации, для которых промежуточный однозарядный молекулярный ион распадается на легкий заряженный и тяжелый

Рис. 3. Энергетическая зависимость сечения образования иона-фрагмента $C_2H_5O_2^+$ молекулы ксилита. На вставке — начальный участок кривой (шаг по энергии 0.2 eV).

незаряженный фрагменты согласно [10], объясняется тем, что эти процессы имеют более высокую пороговую энергию, чем процессы с образованием тяжелого заряженного и легкого нейтрального фрагментов.

Как следует из рис. 2, масс-спектры ксилита провляют существенные различия при изменении температуры от 370 до 395 К. Так, при температуре 370 К, которая близка к температуре плавления ксилита, максимальный пик соответствует молекулярному иону воды (рис. 2, *a*), с ростом температуры этот пик уменьшается. При T = 382 К максимальным становится пик, отвечающий иону-фрагменту CH_3^+ (рис. 2, *b*), а при T = 395 К максимальным является пик, соответствующий иону-фрагменту $C_2H_5O_2^+$ (рис. 2, *c*). С целью выяснения влияния температуры на процесс образования молекулярных ионов-фрагментов нами измерены температурные зависимости для наиболее интенсивных ионных фрагментов в более широком диапазоне T = 340-410 К. Эти зависимости имеют различный вид и особенности с ростом температуры. Для ионов молекулы воды температурная зависимость в начале измеряемого диапазона имеет резкий подъем, а затем слабый линейный

Энергии появления *E*_{AP} ионов-фрагментов и энергия ионизации *E*_{IE} молекулы ксилита

Ион	Масса иона, <i>m/z</i>	Энергия появления <i>E</i> _{AP} , eV
$C_2H_5O_2^+$	61	10.85 ± 0.25
$C_2H_3O^+$	43	11.76 ± 0.25
$\rm CH_3O^+$	31	12.57 ± 0.25
H_2O^+	18	13.14 ± 0.25
CH_3^+	15	12.97 ± 0.25
$C_5H_{12}O_5^+$	152	$E_{IE} = 10.35 \pm 0.25$

рост. Что касается температурных зависимостей ионных фрагментов CH_3^+ , CH_3O^+ , $C_2H_3O^+$ и $C_2H_5O_2^+$, то для них наблюдается почти плавный рост в области T = 340-370 K, затем динамика меняется и при T = 390 K начинается резкий рост интенсивности этих линий. Такое поведение температурных зависимостей можно объяснить тем, что процессы образования воды и оксониевых катионов являются конкурирующими [11].

Настроив масс-спектрометр на прохождение ионов определенной массы, мы измеряли энергетические зависимости относительных сечений ионизации и диссоциативной ионизации ионов-фрагментов молекулы ксилита в интервале энергий налетающих электронов 5-80 eV с разным шагом по энергии: в припороговой области 5-20 eV шаг равен 0.2 eV, а в области 20-80 eV - 1.0 eV. При отключенных потенциалах на отклоняющих электродах масс-спектрометра измерялся полный (суммарный) ток на коллектор ионов, образованных в результате ионизации молекулы ксилита электронами. Таким образом измерена энергетическая зависимость полного относительного сечения образования положительных ионов молекулы ксилита (функция ионизации).

Энергетическая зависимость относительного сечения образования иона $C_2H_5O_2^+$ — одного из самых интенсивных в масс-спектре (рис. 2, *c*) — показана на рис. 3, а на вставке приведен пороговый участок кривой, по которому определяется энергия появления E_{AP} ионов. Характерным для данной энергетической зависимости является довольно резкий рост сечения у порога, а также наличие особенностей

в виде небольших изломов. Интересно заметить, что общий ход этой кривой практически совпадает с ходом энергетической зависимости полного сечения образования положительных ионов молекулы ксилита при ионизации электронным ударом.

Энергетические пороги появления ионов можно определить двумя основными методами: методом фотоионизации и методом ионизации электронным ударом. В основе последнего лежит определение той энергии на энергетической зависимости сечения ионизации, начиная с которой сечение отлично от нуля. Точность определения этой энергии зависит от трех основных факторов: скорости роста сечения в зависимости от энергии бомбардирующих электронов у порога; моноэнергетичности (ΔE) электронного пучка; точности калибровки шкалы энергий электронов. Следовательно, для точного нахождения порога ионизации к измеренной энергетической зависимости сечения прямой и диссоциативной ионизации необходимо применить определенную процедуру, минимизирующую влияние этих факторов. Нами для определения энергии появления (ионизации) применялась процедура подгонки методом наименьших квадратов с использованием алгоритма Levenberg-Marquardt [12]. По этой методике для всех ионов-фрагментов молекулы ксилита нами определены энергии появления (E_{AP}) . Заметим, что в базе данных NIST [6], так же как и для глицерина [4], эти данные отсутствуют. Как отмечено выше, наиболее интенсивными в масс-спектре являются ионы-фрагменты с m/z = 31, 43 и 61 (рис. 2). Ион CH_3O^+ (m/z = 31) является характерным для спиртов и всегда присутствует в их масс-спектрах [7]. Образование иона-фрагмента $C_2H_3O^+$ (*m*/*z* = 43) проходит при элиминировании молекулы воды от иона $C_2H_5O_2^+$ (m/z = 61). Измеренные нами энергии появления указанных фрагментов, а также потенциал ионизации молекулы ксилита приведены в таблице. Полученные значения величин ЕАР можно объяснить изменением геометрии и межатомных расстояний в ионизированной молекуле по сравнению с нейтральной, что приводит к существенному снижению энергии связи С-С. Формирование иона-фрагмента CH₃⁺, по-видимому, происходит в процессе вторичной диссоциации, сопровождающейся миграцией протона.

Таким образом, можно заключить, что масс-спектрометрические исследования полиолов дают исчерпывающую информацию об их уникальных свойствах, позволяют оценить степень фрагментации в процессе взаимодействия с электронами, определить параметры меж-

молекулярных связей. Впервые по пороговому участку энергетической зависимости эффективного сечения ионизации молекулы ксилита определен потенциал ионизации, а по пороговым участкам относительных сечений диссоциативной ионизации — потенциалы появления наиболее интенсивных в масс-спектре ионов-фрагментов.

Список литературы

- Chen X., Jiang Z.-H., Chen S., Qin W. // Int. J. Biol. Sci. 2010. V. 6. N 7. P. 834–844. doi:10.7150/ijbs.6.834
- [2] Mareczky Z., Fehér A., Fehér C., Barta Z., Réczey K. // Period. Polytech. Chem. Eng. 2016. V. 60. N 1. P. 54–59. doi: 10.3311/PPch.8116
- [3] Norkus E., Vaiciuniene J., Vuorinen T., Gaidamauskaset E., Reklaitisal J., Jääskeläinen A.S., Crans D.C. // Carbohyd. Res. 2004. V. 339. P. 599–605. doi: 10.1016/j.carres.2003.12.003
- [4] Завилопуло А.Н., Шпеник О.Б., Маркуш П.П., Контрош Е.Э. // ЖТФ. 2015. Т. 85. В. 7. С. 13–19.
- [5] Chernyshova I., Markush P., Zavilopulo A., Shpenik O. // Eur. Phys. J. D. 2015.
 V. 69. N 3. P. 80–84. doi: 10.1140/epjd/e2015-50641-7
- [6] NIST Standard Reference Database; http:// www.webbook. nist.gov
- [7] Лебедев А.Т. Масс-спектрометрия в органической химии. М.: БИНОМ, 2003. 493 с.
- [8] Шпеник О.Б., Завілопуло А.М., Агафонова А.С., Романова Л.Г. // Доповіді НАН України. 2008. № 5. С. 96–101.
- [9] Завилопуло А.Н., Романова Л.Г., Шпеник О.Б., Агафонова А.С. // ЖТФ. 2009. Т. 79. В. 4. С. 19–24.
- [10] Афросимов В.В., Басалаев А.А., Березовская Е.А., Панов М.Н., Смирнов О.В., Тулуб А.В. // ЖТФ. 2006. Т. 76. В. 12. С. 16–24.
- [11] Nimlos M.R., Blanksby S.J., Qian X., Himmel M.E., Johnson D.K. // J. Phys. Chem. A. 2006. V. 110. N 18. P. 6145–6156. doi: 10.1021/jp060597q
- [12] Fiegele T., Hanel G., Torres I., Lezius M., Märk T.D. // J. Phys. B: At. Mol. Opt. Phys. 2000. V. 33. P. 4263–4283; http://iopscience.iop.org/0953-4075/33/20/306