О структуре целочисленных холловских полосок в неоднородных 2D-электронных системах

© В. Шикин

Институт физики твердого тела Российской академии наук, 142432 Черноголовка, Московская обл., Россия

(Поступила в Редакцию 28 марта 2002 г. В окончательной редакции 3 июня 2002 г.)

> Излагается формализм, обобщающий известные результаты для "несжимаемых" целочисленных полосок в пространственно неоднородных 2D-электронных системах на случаи конечной температуры, немалых градиентов электронной плотности и т.д. В частности, введено понятие "качества" данной целочисленной полоски, пропорционального производной dn(x)/dx в центральной части канала (здесь n(x) — распределение электронной плотности внутри канала). Для хорошо определнных каналов такая производная должна стремиться к нулю. Если же возникает заметный "наклон" в распределении n(x), то канал, обладающий свойствами квантового эффекта Холла, перестает существовать. Определены критические условия, достаточные для разрушения целочисленности канала. Результаты расчетов используются для интерпретации существующих экспериментальных данных.

> Работа частично финансировалась Российским фондом фундаментальных исследований (грант № 02-02-17082).

1. Хорошо известно, что в пространственно неоднородных 2D-электронных системах при наличиии магнитного поля, нормального 2D-плосокости, возможно образование так называемых "несжимаемых" целочисленных каналов, определяющих наличие квантового эффекта Холла (КЭХ) в подобных образцах. Эта идея высказывалась разными авторами (см. [1-5]), однако наиболее удачно оформлена до конечных аналитических формул в работах [4,5]. Здесь же указаны основные ограничения, в рамках которых теория [4,5] имеет смысл. Речь идет об идеальном бесспиновом электронном газе при конечной температуре (что позволяет не учитывать известные электронные корреляции, ведущие к дробному КЭХ) и квазиклассичности пространственной неоднородности электронной плотности. Последнее обстоятельство в действительности только подразумевается, но, сформулированное в явном виде, оно означает, что теория [4,5] верна, если неоднородное возмущение $e\varphi(x)$ электронного движения присутствует лишь в квазиклассическом определении электронного спектра ϵ_l

$$\epsilon_l = \hbar \omega_c (l + 1/2) + e \varphi(x_0), \tag{1}$$

где $\varphi(x)$ — локальное значение электропотенциала, x_0 — положение центра электронной орбиты в *p*-пространстве.

На самом деле в общем случае необходим учет и сдвига x'_0 положения центра орбиты электрона

$$x'_{0} = x_{0} - \frac{mc^{2}}{e^{2}H^{2}}e\varphi'(x_{0}), \qquad (1a)$$

возникающего в пространственно неоднородных задачах. Здесь H — магнитное поле, m — эффективная масса электрона, c — скорость света.

Целью данной работы является снятие некоторых ограничений теории [4,5]. Оказывается, имеется возможность сохранить в расчетах конечность температуры, учесть в определении электрохимического потенциала $\mu(x)$ неоднородности (1) и (1а) и (техническая деталь) выйти за рамки предположения

$$dn_l(x)/dx \to 0, \tag{2}$$

существенно используемого в [4,5] при построении электростатики целочисленного канала.

Среди ожидаемых результатов наиболее интересно определение критических условий, необходимых для существования целочисленного канала. Простейшая оценка снизу ширины $2a_{\min}$ несжимаемой полоски в рамках концепции [4,5] очевидна:

$$a_{\min} \ge l_H,$$
 (3)

где l_H — магнитная длина. В самом деле, каждая из полосок шириной $2a_l$ характеризуется своим локальным целочисленным значением магнитного фактора заполнения v_l . Понятие v_l хорошо определено на расстояниях больше магнитной длины. Следовательно, на меньших расстояниях полуфеноменологическая теория [4,5] "несжимаемых" каналов теряет смысл.

Можно, однако, предположить, что требование (2) (а значит, и неравенство (3)) не является необходимым при описании свойств канала. Далее предлагается алгоритм, дающий возможность оценивать производную dn_l/dx в центре канала и проверять реальность выполнения предельного требования (2). Если такое условие нарушается, канал теряет свойства, присущие образцам с хорошо выраженным КЭХ.

2. Рассмотрим 2*D*-диск Корбино с плоскими терминалами в квазиодномерном приближении, когда $(R_1 - R_2)/(R_1 + R_2) \ll 1$, где R_1, R_2 — внешний и внутренний радиусы диска Корбино. Кусочно-гладкое решение контактной задачи Дирихле для электропотенциала ведет в данном случае к следующей неоднородной части $\delta n(x)$ электронной плотности в 2*D*-области:

$$\delta n_0(x) = \frac{\kappa w W_{ab}}{\pi^2 e^2 (w^2 - x^2)}, \quad \int_{-w}^{+w} \frac{\delta_0 n(s)}{(s - x)} \, dx = 0,$$
$$-w \le x \le +w. \tag{4}$$

Здесь $2w = R_2 - R_1$ — ширина 2*D*-области между металлическими берегами, ось *OX* направлена в радиальном направлении, начало координат совпадает с серединой 2*D*-области, κ — диэлектрическая постоянная среды, W_{ab} — контактная энергия. В пределе $a_b^* \ll w$ приближение (4) хорошо "работает" вдали от точек $x = \pm w$; a_b^* — эффективный боровский радиус; интеграл в (4) понимается в смысле главного значения.

При включении магнитного поля, нормального плоскости 2*D*-системы, на профиле электронной плотности возникают точки с

$$w(x) = \pi l_H^2 (n_s + \delta n_0(x_l)) = l, \quad l = 1, 2, 3...$$
 (5)

Эти точки становятся центрами возникновения целочисленных (несжимаемых) полосок. Согласно [4], каждая из полосок может рассматриваться независимо, чем мы и воспользуемся далее.

Внутри данной *l*-й полоски уравнение равновесия для системы невзаимодействующих 2*D*-электронов выглядит следующим образом (одноэлектронное приближение принято и в [4,5]):

$$\mu(x) = e\varphi(x) + \xi \left(v_{\text{var}}(x), H \right) = \text{const},$$

$$\xi \left(v_{\text{var}}(x), H \right) = -T \ln S(v_{\text{var}}, H), \tag{6}$$

$$\nu_{\text{var}} = \nu(x)$$
или $\nu_*(x)$. (7)

$$2S(H, T, v) = \left(\frac{1}{v} - 1\right) + \left[\left(\frac{1}{v} - 1\right)^2 + 4\epsilon \left(\frac{2}{v} - 1\right)\right]^{1/2},$$

$$\epsilon = \exp(-\hbar\omega_c/I) \ll 1, \qquad (8)$$

$$\nu(x) = \pi l_H^2 n(x), \quad l_H^2 - c\hbar/eH, \quad \nu < 2,$$
 (9)

$$\nu_*(x) = \pi l_h^2 \left\{ n(x) - \frac{\langle \nu \rangle}{\hbar \omega_c} \, e \varphi''(x) \right\},\tag{10}$$

$$\kappa e \varphi'(x) = 2e \int_{-w}^{+w} \frac{\delta n(s)}{(s-x)} \, ds. \tag{11}$$

Здесь T — температура; интегральная связь (11) между электропотенциалом $\varphi(x)$ и электронной плотностью $\delta n(x)$ имеет место при отсутствии дополнительных экранов в окрестности диска. Два варианта $\nu(x)$ (7), (9), (10) в приведенных определениях отвечают разным приближениям в расчете $\mu(x)$: традиционному, когда неоднородность задачи определяется лишь формой ϵ_l (1), или самосогласованному — при учете влияния на $\nu(x)$ возмущений (1) и (1а). Функция $-T \ln S$ (8), (9) при $\nu \to 1$ ведет себя скач-кообразно

$$-T\ln S = \begin{cases} 0, & \nu \to 1-0, \\ \hbar \omega_c, & \nu \to 1+0 \end{cases}$$
(12)

с величиной скачка, не зависящей от температуры *T*, и переходной областью порядка *T*.

Что касается варианта (8), (10), то здесь скачок со свойствами (12) проявляется в условиях

$$\nu_*(x) = 1 + \Delta(x), \tag{13}$$

$$\Delta(x) = \pi l_h^2 \left\{ \delta n(x) - \frac{\nu}{h\omega_c} e \varphi''(x) \right\} \ll 1.$$
 (14)

Самосогласованное определение $\mu(x)$ (6), (8), (10) уже фигурировало в работе [6] при обсуждении магнитоемкости 2*D*-образцов малых размеров. Отметим также, что условие $\Delta(x) = 0$ использовалось авторами [7] в качестве дополнительной (наряду с (11)) связи между холловским напряжением и локальной плотностью электронов по сечению целочисленного канала с транспортным током. При этом возникает замкнутая система уравнений относительно $\varphi(x)$ и $\delta n(x)$, однако из рассмотрения выпадает величина $\mu(x)$, что неверно. В частности, вместо правильной формы закона Ома

$$j_i = \sigma_{ik} \partial \mu / \partial x_k$$

в [7] используется его искусственная модификация (см. формулу (11) этой работы)

$$j_i = \sigma_{ik} \partial \varphi / \partial x_k$$

без каких-либо комментариев.

1.00

Возвращаясь к определениям (6), (8), (9), (11), отметим, что их можно свести в одно уравнение относительно $\delta n(x)$

$$\frac{2e^2}{\kappa} \int_{-w}^{+w} ds \, \frac{[\delta n(s) - \delta n_0(s)]}{(s-x)} = \frac{T}{S(v)} \frac{\partial S}{\partial v} \frac{dv}{dx}.$$
 (15)

При записи (15) использовано свойство кулоновского интеграла (4), равного нулю для распределения плотности $\delta n_0(x)$.

Эффективный приближенный способ решения уравнения (15) близок по своей сути к использованному в [4,5]. Прежде всего очевидно, что величина $\delta n(x)$ существенно возмущена лишь на интервале $\pm a$, расположенном симметрично относительно точки x_l канала, имеющего ширину $2a \ll 2w$. Следовательно, разность $\delta n(x) - \delta n_0(x)$ отлична от нуля именно на этом интервале, и пределы $\pm w$ могут быть заменены на $\pm a$, если $2a \ll 2w$. Кроме того, как и в [4], соседние каналы слабо взаимодействуют между собой. Далее полагается, что фактор заполнения в зоне канала близок к целочисленному. В этом случае сложная функция $S(\nu)$ (8) заменяется своей "целочисленной" асимптотикой и уравнение (15) принимает более простой вид

$$\frac{4e^{2}\epsilon^{1/2}}{\kappa T} \int_{-a}^{+a} ds \; \frac{[\delta n(s) - \delta n_{0}(s)]}{(s-x)} = -\frac{d\nu}{dx}.$$
 (15a)

Из (15а) нетрудно заключить, что производная dv(x)/dx экспоненциально мала в меру $\epsilon \to 0$.

Для количественной оценки $dn(x_l)/dx$ положим, как и в [4],

$$\delta n(x) - \delta n_0(x) \simeq (n'_l - n'_0) \delta x, \qquad (16)$$

где δx отсчитывается от центра данного канала. Возникающий при этом интеграл вычисляется, после чего уравнение (15a) в окрестности x_l сводится к определению n'_l :

$$n'_l = n'_0/(1+\gamma), \quad \gamma = \frac{\pi\kappa T l_H^2}{8ae^2\epsilon^{1/2}} \gg 1.$$
 (17)

Неравенство $\gamma \gg 1$, имеющее место в основном за счет малости параметра $\epsilon \to 0$, необходимо для реализации упрощений (15а), (16) и является гарантом малости n'_l , а значит, и качества канала.

Оценку ширины полоски 2a, входящей в формулу (16), также можно получить из анализа (15а). Переписывая это уравнение в виде

$$\frac{2\epsilon^{1/2}e}{T}\frac{d\varphi}{dx} = -\frac{d\nu}{dx} \tag{18}$$

и подставляя величину v'_l (17), находим

$$\frac{2\epsilon^{1/2}e}{T}\frac{d\varphi}{dx} = -\frac{d\nu_0/dx}{1+\gamma}.$$
(19)

Теперь осталось учесть, что, согласно (6), (12), разность электропотенциалов на берегах полоски равна $\hbar\omega_c$. Другими словами,

$$\frac{Td\nu_0/dx}{(1+\gamma)}a = \epsilon^{1/2}\hbar\omega_c.$$
 (19a)

В пределе $\gamma \gg 1$ из (19а) имеем

$$a^2 \simeq \kappa \hbar \omega_c / 8e^2 n_0'(x_l). \tag{20}$$

Определение ширины 2a (20) отличается от аналогичного результата [4] лишь численным коэффициентом порядка единицы, что допустимо, поскольку в электростатике канала [4] используются дополнительные граничные условия, отсутствующие в решении на основе (6), (15) (равенство нулю электрических полей на берегах канала приходится использовать в связи с искусственным предположением (2), необходимым для получения замкнутой системы уравнений в электростатике [4,5]). Формула (17) дает удобный критерий "качества" полоски. Если

$$n_l' \ll n_0'$$
 T.e. $\gamma \gg 1$ (21)

(у из (17)), можно говорить о хорошо определенном целочисленном канале. В обратном случае

$$n_l' \le n_0' \tag{21a}$$

канал теряет свои специфические "целочисленные" свойства.

Из (17) следует, что качество полоски легко портится при увеличении температуры. Это обстоятельство отмечено и в численных расчетах [8]. Интересно также поведение $\gamma \propto a^{-1}$, свидетельствующее об улучшении качества канала при уменьшении его ширины. Такую зависимость можно объяснить следующим образом. Исходный профиль $\delta n_0(x)$ (4) электронной плотности не содержит температуры. Не зависящей от нее оказывается и ширина канала (20) (что весьма существенно для теории [4,5], поскольку в противном случае эта теория, не работающая в предельном случае T = 0, лишилась бы своей привлекательности). В то же время наклон n'_{l} (17) весьма чувствителен к температуре. При этом ясно, что с ростом ширины канала сохранение требования (21) $n'_l \ll n'_0$ затрудняется. Это обстоятельство и находит отражение в поведении $\gamma \propto a^{-1}$.

Однако подобная тенденция не может быть верной вплоть до $a \rightarrow 0$, так как в конечном итоге определение электрохимического потенциала (6) начинает "ощущать" разницу между величинами ν (9) и ν_* (10). Естественная модификация теории [4], включающая поправки неоднородного происхождения (10) в определении электрохимического потенциала, меняет картину поведения узких целочисленных полосок.

3. Модификацию теории [4] удобно начать с уравнения (18), которое с учетом (10) принимает вид

$$2\epsilon^{1/2}T^{-1}e\varphi' = -\nu' + \frac{\pi l_H^2 e}{h\omega_c}\varphi'''(x).$$
 (22)

Уже из этой записи следует, что при формировании канала конкурируют две группы параметров

$$\epsilon^{1/2}T^{-1} \quad \text{i} \quad \pi l_H^2/a^2 h \omega_c. \tag{22a}$$

Если первая комбинация велика по сравнению со второй, справедлива картина, изложенная выше. В обратном пределе, что весьма вероятно для малых значений *a*, параметры канала должны рассчитываться заново.

Формально в общем случае нужно решить сначала уравнение (22) относительно φ' с граничными условиями

$$\varphi'(\pm a) = 0 \tag{23}$$

(теперь эти условия можно обосновать). В результате

$$\lambda e \varphi' = -h\omega_c \left[\int_{-a}^{x} n'(s) \sinh \lambda(x-s) ds - \frac{\sinh \lambda(x+a)}{\sinh 2\lambda a} \int_{-a}^{+a} n'(s) \sinh \lambda(a-s) ds \right], \quad (24)$$

699

$$\lambda^2 a^2 = \frac{2a^2 \epsilon^{1/2} h \omega_c}{\pi l_H^2 T \nu_l}.$$
(25)

Параметр λa (25), составленный из компонент (22а), регулирует характер подстройки электронной плотности в целочисленном канале к скачкам термодинамической природы функции $S(H, T, v_{var})$ в окрестности особых точек x_l (2). Если $\lambda a \gg 1$, речь идет о поведении производной n'_l вида (9). В обратном предельном случае $\lambda a \ll 1$ находим сначала упрощенное выражение для $e\varphi'(0)$

$$e\varphi'(0) \simeq -h\omega_c n_l' a^2/2.$$
⁽²⁶⁾

Используя далее представление электропотенциала (11) в форме (15а) и учитывая рассуждения (16), предшествующие определению (17), получаем в данном случае

$$n'_l = n'_0(1+\delta), \quad \delta = a\kappa h\omega_c/(8e^2). \tag{27}$$

В отличие от параметра γ (17) величина δ (27) убывает при уменьшении ширины канала a, как и ожидалось в рамках теории с градиентами электропотенциала. В конечном итоге, рассуждая аналогично (21a), можно найти из (27) величину a_{\min}

$$a > a_{\min}, \quad a_{\min} = 8e^2/(\kappa h\omega_c) = \frac{8l_H^2}{2\pi a_h^*}.$$
 (28)

Это неравенство является заменой требования (3).

Приведем также определение ширины канала в окрестности, близкой к минимальной,

$$-a^{3}n_{0}^{\prime}/(1+\delta) = 1/(2\pi), \qquad (29)$$

где δ дается (27).

4. Рассмотрим возможные экспериментальные следствия утверждения (28). В равновесных условиях, для которых эта формула имеет смысл, можно ожидать, что область 2D-системы, занятая системой несжимаемых полос (речь идет о многоканальном варианте их возникновения), отделена от краев 2D-системы "нормальными" прослойками, внутри которых существование полос невозможно. Такая картина действительно имеет место в экспериментах [9] по изучению линейного электрооптического эффекта в диске Корбино (см. рис. 2 из [9]; его электронная версия любезно предоставлена автору W. Dietsche). Эти данные собраны на рис. 1. Светлые кружки отвечают поведению электропотенциала в нормальном состоянии, когда 2D-система обладает хорошей проводимостью. Темные кружки дают представление о поведении 2D-системы в аномальном состоянии при возникновении в центральной части диска Корбино системы целочисленных полосок (вопрос о числе каналов для измерений [9] специально обсуждался в [10]). В данном случае наиболее интересно поведение электропотенциала вблизи краев диска Корбино, где очевидно перекрытие нормальных и аномальных данных на конечном интервале значений координаты х. Этот интервал приблизительно показан стрелками; он может

Рис. 1. Гауссово изображение $\phi(x)$ электропотенциала $\varphi(x)$ для диска Корбино с центром 2*D*-области в точке $x_0 = 390 \,\mu$ m. Сплошные линии для нормального и аномального состояний построены с помощью формул (30)–(32). Светлые (нормальное состояние) и темные (аномальное состояние) кружки данные [9]. Указаны магнитные поля, отвечающие обсуждаемым состояниям. Круг в левой части рисунка дает представление о реальных размерах лазерного пучка. Интервал между стрелками в правом нижнем углу отвечает области перекрытия нормального и аномального состояний в поведении $\phi(x)$. Его конечность указывает на существование краевых нормальных колец, обрамляющих аномальную область в центре диска.

существовать лишь при наличии механизма, мешающего возникновению узких целочисленных каналов в областях с большими значениями градиента электронной плотности.

Для количественных заключений о поведении $\varphi(x)$ использованы следующие его характеристики. Для нормального состояния

$$p(x) = \begin{cases} \varphi_0, & -w \le x \le +w, \\ 0, & |x| \ge w. \end{cases}$$
(30)

Величина φ_0 , номинальная ширина 2w и радиус R находятся из подгонки (30), (32) к данным [9].

G

q

Аномальный потенциал на основе (4) в многоканальном приближении [10] имеет вид

$$p(x) = \begin{cases} c_1/(w^2 - x^2), & -x_c \le x \le x_c, \\ \varphi_0, & +x_c \le x \le +w, \\ \varphi_0, & -w \le x \le -x_c. \end{cases}$$
(31)

Нормировка φ_0 единообразна для (30) и (31). Константы c_1 , x_c максимально приближают распределение $\varphi(x)$ (30), (31) при заданных φ_0 , w и R к данным [9] в режиме КЭХ.

Реально нужно еще учитывать конечность лазерного пучка, сканирующего 2*D*-образцы в измерениях [9]. С этой целью вводится "изображение" $\phi(x)$ с подгоноч-

Рис. 2. *а* — нормированное изображение нормального поведения $\phi(x)/\phi_c$ (30), (33) вблизи одного из краев диска Корбино. Переменная *x* нормирована на радиус лазерного пучка, начало координат совпадает с геометрическим краем 2*D*-системы. Эксперимент [9] представлен выборочно светлыми квадратами. *b* — то же изображение (33) для $\phi(x)/\phi_c$ (31) в аномальном состоянии, темные квадраты — данные [9].

ным параметром *R*, имеющим смысл радиуса лазерного пучка

$$\phi(x) = \int_{-\infty}^{+\infty} \varphi(s) f(x-s) ds,$$

$$f(x) = \exp(-x^2/R^2) / (R\sqrt{\pi}).$$
(32)

Изображения (32), (30) и (32), (31) (сплошные линии) сравниваются на рис. 1 с данными [9] для нормального (светлые кружки) и аномального (темные кружки) состояний. Из этой подгонки получаем $R \simeq 60\,\mu$ m, $x_0 = 390\,\mu$ m, $w = 240\,\mu$ m, $x_c \simeq 180\,\mu$ m. Здесь x_0 — положение центра распределения $\phi(x)$ на рисунке.

Для полноты картины приведем обработку тех же данных в предположении о прямоугольной форме сканирующего лазерного пучка (рис. 2)

$$\phi(x) = \frac{1}{2R} \int_{x-R}^{x+R} \varphi(s) \, ds, \qquad (33)$$

где $\varphi(x)$ есть локальное значение электропотенциала из (30) либо (31). Очевидно, вариант с резким профилем лазерного пучка менее пригоден для описания деталей $\varphi(x)$ вблизи границы диска.

Таким образом, гауссовы изображения (30)–(32) достаточно хорошо согласуются с данными [9], что позволяет говорить о "полосатой" структуре диска Корбино в режиме КЭХ. Центральная область занята системой несжимаемых полосок, внутреннее строение которых не удается разрешить в связи с конечностью радиуса *R*. Что

касается периферии 2D-системы, то здесь обнаруживаются нормально проводящие кольца шириной Δ

$$\Delta = w - x_c \simeq 60\,\mu m. \tag{34}$$

К сожалению, авторы [9] не приводят данных измерений в промежутке между полями 8.5 и 7.9 Т, что позволило бы проследить за влиянием магнитного поля на положение и структуру целочисленных полосок. Отсутствуют и абсолютные значения наблюдаемых электрических полей. Тем не менее в (33) содержатся некие косвенные сведения о масштабах контактной энергии W.

Требование (28) вместе с (4) ведет к определению критического интервала $2x_c$ для диска Корбино, в пределах которого можно считать полоски несжимаемыми и применять их усредненное описание,

$$x_c = \xi_c w, \ \xi_c \simeq 1 - \sqrt{\eta}, \ \eta_0 \ll \eta \ll 1,$$
$$\eta = \frac{a_{\min}^2}{w^2} \frac{W}{\hbar\omega_c}, \quad \eta_0 = a_b^*/w.$$
(35)

Для согласования экспериментальных и расчетных значений x_c с учетом (28), (35) необходима энергия $W \simeq 1 \text{ eV}.$

Таким образом, в настоящей работе показано, что ширина 2a несжимаемых полосок в регулярно неоднородных 2D-электронных системах не может быть произвольно малой. В качестве индикатора качества полоски использовано отношение градиента электронной плотности $dn(x_l)/dx$ в ее центре к невозмущенному значению dn_0/dx . С уменьшением размера 2a это отношение трансформируется от экспоненциально малого до почти единичного. Характерное переходное значение $2a_{\min}$ (28) в таком переходе названо критическим. На примере диска Корбино обсуждаются возможные экспериментальные следствия существования a_{\min} .

Автор благодарен W. Dietsche за полезные дискуссии и предоставление электронной версии данных, опубликованных в [9] и представленных выше на рис. 1.

Список литературы

- [1] C.W.J. Beenakker. Phys. Rev. Lett. 64, 216 (1990).
- [2] A. Cheng. Solid. State Commun. 74, 871 (1990).
- [3] A. Efros. Phys. Rev. B 45, 11 354 (1992).
- [4] D. Chklovskii, B. Shklovskii, L. Glazman. Phys. Rev. B 46, 4026 (1992).
- [5] D.B. Chklovskii, K.F. Matveev, B.I. Shklovskii. Phys. Rev. B 47, 12605 (1993).
- [6] В. Шикин, Ю. Шикина. ФТТ **39**, 742 (1997).
- [7] A.H. MacDonald, T.M. Rice, W.F. Brinkman. Phys. Rev. B 28, 3648 (1983).
- [8] K. Lier, R. Gerhardts. Phys. Rev. B 50, 7757 (1994).
- [9] W. Dietsche, K. von Klitzing, K. Ploog. Surf. Sci. 361, 289 (1996).
- [10] В. Шикин. Письма в ЖЭТФ 71, 95 (2000).