03

Ускорение потока и увеличение энтальпии в источнике ионизованного газа электрическим полем в режиме постоянного числа Маха

© А.Н. Кучеров

Центральный аэрогидродинамический институт им. проф. Н.Е. Жуковского, 140180 Жуковский, Московская обл., Россия e-mail: ank@aerocentr.msk.su, arkadi.kucherov@mail.ru

(Поступило в Редакцию 22 февраля 2017 г.)

В рамках задачи управления радиальным источником (вихреисточником) исследована возможность в режиме числа Маха, поддерживаемого постоянным с помощью энергоподвода и внешней силы (в данном случае, радиальным электрическим полем), перейти от одних характерных физических параметров (энтальпии торможения, температуры, давления, плотности и т.д.) к другим, заданным. Показаны изменения полной энтальпии при вариации энергетического и силового параметров подобия в случае задания силы на единицу массы и на единицу объема при равенстве конвекционного тока и тока проводимости, а также при преобладании тока проводимости над конвекционным, и наоборот. В пределе пренебрежимо малого конвекционного тока или тока проводимости показан переход к аналитическим решениям для случая чисто энергетического воздействия и чисто силового. Получены аналитические зависимости приращения скорости (кинетической энергии), температуры и полной энтальпии от интенсивности внешней силы и энергоподвода, от числа Маха и от протяженности зоны воздействия.

DOI: 10.21883/JTF.2018.05.45893.2214

Введение

В [1] предложена процедура перехода с помощью воздействия на источник энергоподводом и внешней силой к новым заданным физическим параметрам источника, в частности, к параметрам с увеличенным теплосодержанием или кинетической энергией, в общем случае с измененной полной энтальпией. В конкретных ситуациях (полный набор, перечисленный в [1], включает четыре ситуации) надо рассматривать отличительные особенности, возможные и трудно реализуемые с прикладной точки зрения варианты. Параллельно развивается общий анализ невозможных (недопустимых) и возможных (разрешенных) случаев реализации ускорения потока и увеличения полной энтальпии с точки зрения физических законов, в первую очередь законов сохранения массы, количества движения, энергии. В одномерных течениях типа источник, включая цилиндрический и сферический, важную роль играет явление запирания при достижении числом Маха значения единица.

В магнитной газодинамике наиболее часто при теоретическом анализе и в эксперименте цитируют работы [2,3], в которых выполнены первые оценки объемной электрической (электромагнитной) силы в широком диапазоне физических параметров для явлений, оказывающих ускоряющее или тормозящее действие на ионизованный газ или жидкость, на нагрев рабочего вещества. В вышеупомянутых и последующих обзорах и книгах [4–10] наряду с многомерными задачами рассматривались одномерные и квазиодномерные варианты, в которых параметры потока и воздействующего поля зависят от одной продольной по потоку переменной x (или r), хотя в целом задача может быть 2или 3-мерной. Существует направление одномерных и квазиодномерных магнитогидродинамических течений в каналах [3,6,7], имеющее не только теоретическое [5], но и прикладное значение [4]. Обзор экспериментальных работ по МГД-ускорителю содержится, например, в [8], расчетно-теоретических работ — в [9,10]. Рассматривалось преимущественно действие на поток магнитной силы, равной векторному произведению плотности тока **j** на индукцию магнитного поля **B**: **j** × **B** — где векторы **j** и **B** перпендикулярны друг к другу и к вектору скорости **u**.

В настоящей работе в рамках проблемы управления источником [1,11] (вихреисточником, стоком) исследуется воздействие на поток внешними источниками энергии и силы. Цель воздействия — увеличение на заданном участке потока ионизованного газа $[r_1, r_2]$ кинетической энергии (потенциально скорости) и полной энтальпии с последующим моделированием в лаборатории условий полета на больших высотах. Можно организовать разгон ионизованного газа электрическим полем, создав разность потенциала сетками (системой металлических сеток), хорошо пропускающими газ, на протяжении всего отрезка [r₁, r₂]. Газ протекает между двумя плоскими поверхностями, расположенными на расстоянии Δz , и ограничен двумя радиальными стенками с углом раствора $\Delta \varphi$. Предполагается малость поперечной силы по сравнению с радиальной, пренебрегаем индуцированным (вторичным, вычисляемым из уравнений Максвелла) магнитным полем В по сравнению с заданным электрическим полем Е. Действия (плотности) конвекционного тока $j_u = \rho_e u$, А/m², и (плотности) тока проводимости $j_E = \sigma E$, А/т преобладают над действием индуцированного магнитным полем (плотности) тока $j_B = \sigma uB$, где ρ_e — плотность электрических зарядов, С/m³, σ — удельная проводимость, S/m, *и* скорость ионизованного газа, m/s [5–7]. Искомые газодинамические и электродинамические величины зависят от одной радиальной координаты *r* в цилиндрической системе координат (*r*, φ , *z*).

1. Физико-математическая постановка задачи

Физические стационарные уравнения сохранения массы, импульса (количества движения), энергии и уравнение состояния имеют следующий вид в цилиндрических координатах в квазиодномерном приближении [5–7]:

$$r\rho u = \frac{m_0}{2\pi},\tag{1}$$

$$\rho u \frac{du}{dr} + \frac{dp}{dr} = \frac{\rho_e}{2\pi} E_r(r), \qquad (2)$$

$$\rho u \frac{dH}{dr} = \frac{\mathbf{j}\mathbf{E}}{2\pi} = \frac{j_r E_r(r)}{2\pi} = \frac{\sigma E_0^2 f^2(r)}{2\pi} + \frac{u(r)}{2\pi u_0}$$

$$\left(\rho_r u_0 E_0 f(r)\right)$$

$$\times \begin{cases} \rho_e u_0 E_0 f(r), \\ q_e u_0 E_0 \rho(r) f_Q(r), \end{cases}$$
(3)

$$p = \rho \, \frac{R}{\mu_m} \, T. \tag{4}$$

Здесь ρ — плотность газа, kg/m³; m_0 — расход газа, kg/s; p — давление, Pa/m²; ρ_e — плотность электрических зарядов; $E_r = E_0 f(r)$ — радиальная компонента напряженности электрического поля **E**, V/m, E_0 характерное значение напряженности электрического поля E_r , f(r) — безразмерная функция распределения; $j_r = \sigma E_r + \rho_e u = \sigma E_0 f(r) + \rho_e u(r)$ — радиальная компонента плотности тока **j** (ток проводимости плюс конвекционный ток), A/m²; $j_r = \sigma E_r + q_e \rho(r) u(r)$ — вариант с заданным распределением зарядов q_e на единицу массы, C/kg (в этом случае $E_r = E_0 f_Q(r)$ — ток и функция распределения поля другие); R — универсальная газовая постоянная, J/(K kmol), μ_m — молярная масса, kg/kmol; T — температура, K. Обезразмерим уравнения.

Выберем в качестве характерных величин, как принято в задачах с источником, минимальный радиус r_0 (на котором число Маха M равно единице), параметры заторможенного газа — плотность ρ_0 , давление p_0 , температуру T_0 , энтальпию $h_0 = C_p T_0$, где C_p — теплоемкость при постоянном давлении, максимальную скорость $u_0 = \sqrt{(2h_0)}$ — скорость истечения в вакуум, а также характерную напряженность электрического поля E_0 , плотности тока проводимости $j_{0E} = \rho E_0$ (примем $\sigma = \text{const}$) и конвективного тока $j_{0u} = \rho_e u_0$. Получим систему уравнений (специальных обозначений для безразмерных величин не вводим):

$$r\rho u = m = \frac{m_0}{2\pi r_0 \rho_0 u_0},$$
 (5)

$$\rho u \frac{du}{dr} + \frac{\gamma - 1}{2\gamma} \frac{dp}{dr} = \frac{F(r)}{2}, \quad F(r) = \begin{cases} F_E f(r) \\ \rho(r) F_Q f_Q, \end{cases}$$
$$F_E = \frac{\rho_e E_0 r_0}{2\pi \rho_0 h_0}, \quad F_Q = \frac{q_e E_0 r_0}{2\pi h_0}, \tag{6}$$

$$ou \frac{dH}{dr} = g(r) + u(r)F(r), \quad g(r) = \begin{cases} Q_E f^2(r) \\ Q f_Q^2(r) \end{cases},$$

$$\sigma E_q^2 r_0$$

$$Q_E = Q = \frac{\sigma E_0 r_0}{2\pi\rho_0 u_0 h_0},\tag{7}$$

$$p = \rho T. \tag{8}$$

Здесь F_E , F_O — силовые параметры подобия в вариантах плотности заряда, заданной на единицу объема, ρ_e , и на единицу массы, q_e ; Q_E и Q — соответствующие энергетические параметры подобия. Последние одинаковы по структурной зависимости от физических величин, но будут различны, как и функции распределения f(r), $f_Q(r)$, ввиду различия силы F(r) в верхней и в нижней строках в (6), т.е. ввиду различия заданных плотностей заряда ρ_e и q_e . Параметры подобия: показатель адиабаты γ , безразмерный расход *m* (зависит только от γ), силовой параметр F_E (или F_Q), энергетический параметр Q_E (или Q), который описывает джоулево тепло, диссипативные потери энергии поля. Второе слагаемое в правой части уравнении сохранения энергии описывает работу внешней силы и может быть отрицательным. Решение в отсутствие энергоподвода и внешней силы при $F_{E} = F_{Q} = 0 = Q_{E} = Q$ имеет две ветви, сверхзвуковую и дозвуковую, в вакуум $(1 < M < \infty)$ или в затопленное пространство (0 < M < 1); еще две ветви получим при изменении направления течения из вакуума и из затопленного пространства до минимального радиуса, в котором M = 1. Внешнее воздействие ограничивает область существования решений как в сверхзвуковом, так и в дозвуковом вариантах; ограничения связаны с обращением числа Маха в единицу и запиранием потока. Потребуем сохранения значения числа Maxa

Потреоуем сохранения значения числа Маха $M^2 = 2[u(r)]^2/(\gamma - 1)T(r) = M_1^2 = \text{const}$, тем самым "отодвинем" критическое сечение с числом M = 1 и устраним возможность запирания стационарного течения. В настоящей работе остановимся прежде всего на режиме I (в вакуум), на вариантах воздействия, приводящего к увеличению скорости и температуры, в конечном итоге — полной энтальпии. Такой поток может быть использован при моделировании условий полета летательного аппарата в аэродинамической трубе.

Решение для источника без воздействия задает начальные условия при координате *r*₁:

$$r_{1} = \frac{m}{\left[(1 - T_{1})T_{1}^{\frac{2}{\gamma - 1}} \right]^{1/2}}, \quad T_{1} = \frac{1}{1 + \frac{(\gamma - 1)M_{1}^{2}}{2}},$$
$$\rho_{1} = T_{1}^{\frac{1}{\gamma - 1}}, \quad p_{1} = \rho_{1}T_{1}, \quad u_{1}^{2} = 1 - T_{1}.$$
(9)

Условие $M^2 = M_1^2 = \text{const}$ с учетом невозмущенного решения (9) в начальном сечении зоны воздействия дает связь искомых величин полной энтальпии H(r), температуры T(r), скорости u(r), давления p(r), плотности $\rho(r)$ в зоне:

$$M^{2}(r) = \frac{2u^{2}(r)}{(\gamma - 1)T(r)} = M_{1}^{2},$$
$$H(r) = \frac{T(r)}{T_{1}} = \frac{u^{2}(r)}{u_{1}^{2}} = \left(\frac{r_{1}\rho_{1}}{r\rho}\right)^{2} = \left(\frac{rp}{r_{1}p_{1}}\right)^{2}.$$
 (10)

Из (1)-(8) производную dM/dr запишем как функцию энергоподвода g(r) и внешней силы F(r) и приравняем нулю. Получим связь H c g(r) и F(r):

$$\frac{1 - M_1^2}{M_1} \frac{dM}{dr} = -\frac{1}{rT_1} + \frac{D_1g(r)}{\rho uT(r)} - \frac{F(r)}{s\rho T(r)} = 0,$$
$$H(r) = \frac{D_1rg(r)}{\rho u} - \frac{rF(r)}{s\rho}, \quad D_1 = \frac{\gamma M_1^2 + 1}{2},$$
$$s = 2\frac{\gamma - 1}{\gamma + 1}.$$
(11)

Замкнули систему уравнений, свели задачу к решению уравнения (3) или (7) для H(r). Функции распределения электрического поля f(r), $f_{O}(r)$ находим из (11) в процессе решения уравнения. Свободными параметрами (подобия) остаются силовой и энергетический F_E, Q_E или F_Q, Q. Напомним, что энергоподвод задан на единицу объема и в верхней, и в нижней строках уравнения (7), но сила в нижних строках уравнений (6) и (7) — на единицу массы. Отношение силовых параметров F_E, F_O к энергетическим Q_E , Q есть отношение конвекционного тока к току проводимости $F_E/Q_E = j_{0u}/j_{0E} = \rho_e u_0/\sigma E_0$, $F_Q/Q = j_{0u}/j_{0E} = \rho_0 q_e u_0/\sigma E_0$. Следовательно, силовой эффект преобладает над энергетическим при $F_E > Q_E$, $F_Q > Q$ $(j_{0u} > j_{0E})$, энергетический — при $F_E < Q_E$, $F_Q < Q \ (j_{0u} < j_{0E}).$

2. Результаты. Влияние энергетических и силовых параметров

2.1. Равные исходные ток проводимости и конвекционный ток, $F_E = Q_E$, *E*-вариант

На рис. 1, а построены распределения температуры T(r), скорости u(r), полной энтальпии H(r), давления p(r), плотности $\rho(r)$ для *E*-варианта (энергия и внешняя сила заданы на единицу объема) при равных значениях энергетического и силового параметров $Q_E = 0.5 = F_E$. Отметим монотонный рост температуры, скорости, полной энтальпии и давления (кривые 1-4) и убыль плотности (5). Функции распределения электрического поля f(r) (рис. 1, *b*, кривые 6), внешней силы F(r) (7) и энергоподвода g(r) (8), возрастают с ростом *r*. На рис. 1, *c* показаны приращения полной энтальпии ΔH , температуры ΔT и скорости Δu (кривые 9-11). Упомянутые величины растут с увеличением темпа роста.

Наложенное ограничение на процесс ускорения и нагрева — постоянное число Маха, $M = M_1 = 1.5$ — задает начальное сечение r_1 , величину $f_1 = f(r_1)$ и дальнейшее изменение распределения f(r) электрического поля. Умножив уравнение (7) на радиус r и проинтегрировав обе части уравнения по длине зоны воздействия, получим (для *E*- и *Q*-вариантов соответственно)

$$m(H_2 - H_1) = Q_E \int_{r_1}^{r_2} rf^2(r)dr + mF_E \int_{r_1}^{r_2} f(r)/\rho(r)dr$$

= $Q_E I_E + mF_E I_{FE} = Q_{E,new} + mF_{E,new},$

$$I_E = \int_{r_1}^{r_2} r f^2(r) dr, \quad I_{FE} = \int_{r_1}^{r_2} f(r) / \rho(r) dr, \quad (12)$$

$$m(H_{2} - H_{1}) = Q \int_{r_{1}}^{r_{2}} rf_{Q}^{2}(r)dr + mF_{Q} \int_{r_{1}}^{r_{2}} f_{Q}(r)dr$$

$$= QI_{Q} + mF_{Q}I_{FQ} = Q_{new} + mF_{Q,new},$$

$$I_{Q} = \int_{r_{2}}^{r_{2}} rf_{Q}^{2}(r)dr, \quad I_{FQ} = \int_{r_{2}}^{r_{2}} f_{Q}(r)dr \qquad (13)$$

 r_1

для E- и Q-вариантов (задана ρ_e или q_e соответственно). Новые параметры подобия энергоподвода $Q_{E,new}$, Q_{new}, полученные как произведения исходных параметров Q_E , Q на соответствующие интегралы I_E , I_O , есть приращения полного потока энтальпии $m\Delta H$ за счет энергоподвода g(r). Аналогично новые параметры подобия внешней силы F_{E,new}, F_{Q,new}, равные произведению исходных параметров F_E, F_Q на соответствующие интегралы I_{FE}, I_{FO}, являются приращениями полной энтальпии ΔH за счет работы внешней силы F(r). Для случая, приведенного на рис. 1, a, b, c, значения параметров $Q_{E,new}$ и $F_{E,new}$ составили 0.379 и 0.863, т.е. энергетический параметр почти на четверть меньше, а силовой — на 27% больше исходных $Q_E = 0.5 = F_E$. На рис. 1, b приведена "нормированная" (поделенная на интеграл по зоне воздействия I_{FE}) функция распределения электрического поля f(r), кривая 6. Уточненные силовой и энергетический параметры $F_{E,new}$ и $Q_{E,new}$ (или $F_{O,new}, Q_{new}$) дают количественное описание вклада внешней силы и энергии в изменение полной энтальпии и потока полной энтальпии. В рассмотренных примерах получили преобладание силового воздействия над энергетическим при равных исходных значениях силового F_E и энергетического Q_E параметров подобия. Таким образом, перенормировка функции поля с обращением в единицу соответствующих интегралов дает уточненную

Puc. 1. *E*-вариант. Распределения безразмерных: a — температуры T (кривая I), скорости u (2), полной энтальпии H (3), давления p (4), плотности ρ (5) при ускорении и нагреве потока электрическим полем $\mathbf{E}(r)$ в интервале $[r_1 = 1.176, r_2 = 1.5]$ при постоянном $M_1 = 1.5$; b — функция распределения поля f(r) (6), нормированная $f_{new} = f(r)/I_{FE}$ (6'), функции внешней силы $F(r) = F_E f(r)$ (7) и энергоподвода $g(r) = Q_E [f(r)]^2$ (8); c — приращение полной энтальпии ΔH (9), температуры ΔT (10), квадрата скорости Δu^2 (11); энергетический параметр $Q_E = 0.5$ ($Q_{E,new} = 0.379$), силовой параметр $F_E = 0.5$ ($F_{E,new} = 0.863$); d - H(r) при вариации $Q_E = F_E = 0.1$ (1), 0.3 (2), 0.5 (3), 0.7 (4); e — зависимость параметров энергоподвода $Q_{E,new}$ (1) и внешней силы $F_{E,new}$ (2) от исходных Q_E , F_E соответственно.

количественную оценку силового и энергетического воздействия на поток, на изменение полной энтальпии и ее потока.

Рис. 1, *d* показывает изменения полной энтальпии H(r) при равных исходных значениях силового и энергетического параметров $Q_E = F_E = 0.1$ (кривая 1), 0.3 (2), 0.5 (3), 0.7 (4). Кривые 1 и 2 на рис. 1, *e* описывают изменения вычисленных количественных параметров подобия $Q_{E,new}$ и $F_{E,new}$ с ростом исходных Q_E , F_E . Если поделить $Q_{E,new}$ на расход m = 0.2588, находим, на первый взгляд, что приращение полной энтальпии ΔH за счет теплоподвода больше работы внешней силы (кривая 1 выше кривой 2). Но, растянув ось Q_E в 1/m раз, возвращаемся к ситуации — кривая 1 идет ниже кривой 2, следовательно, работа внешней силы преобладает.

2.2. Равные исходные ток проводимости и конвекционный ток, $Q = F_Q$, Q-вариант

Рассмотрим вариант с внешней силой, заданной на единицу массы, Q-вариант. Работа внешней силы F(r), обусловленной конвекционным током $j = \rho_e u(r)$, может быть отрицательной, как отметили выше, а функция g(r), описывающая джоулево тепло, — только положительной. Рассмотрим положительную F(r); предельный переход $F(r) \rightarrow 0$ описывается в следующем разделе.

На рис. 2, *a*, *b*, *c* представлены распределения температуры T(r), скорости u(r), полной энтальпии H(r), давления p(r), плотности $\rho(r)$ при $Q = 1 = F_Q$ (рис. 2, *a*), а также функция распределения электрического поля $f_Q(r)$ (кривая 6, "нормированная" — 6'), функции внешней силы F(r) (7) и энергоподвода g(r) (8) (рис. 2, *b*); приращения полной энтальпии ΔH (9), температуры ΔT (10), квадрата скорости Δu^2 (11) (рис. 2, *c*). В противоположность *E*-варианту функции поля $f_Q(r)$, внешней силы F(r) и энергоподвода g(r) не возрастающие, а убывающие. Темп роста значений газодинамических величин полной энтальпии H(r), температуры T(r), скорости u(r) и приращений ΔH , температуры ΔT , скорости Δu^2 слабо снижается (рис. 2, *a*, *c*), а не растет, как на рис. 1, *a*, *c*.

На рис. 2, *d* показаны изменения полной энтальпии при вариации параметров энергоподвода и внешней силы $Q = F_Q = 0.1$ (1), 0.5 (2), 1 (3), 1.5 (4), 2 (5). Зависимости близки к линейным, но темп роста слабо убывает с увеличением координаты *r*. На рис. 2, *e* построены зависимости пересчитанных количественных параметров Q_{new} и $F_{Q,new}$ от исходных параметров Q, F_Q . Пересчет нормирует интегралы от функций распределения $f_Q(r), [f_Q(r)]^2$ (и интегралы от функций распределения $f(r), [f(r)]^2$) к единице и придает количественную трактовку новым силовым и энергетическим параметрам подобия $F_{Q,new}, Q_{new}$ как приращения энтальпии ΔH и полного потока энтальпии $m\Delta H$ в зоне воздействия.

2.3. Уменьшение силового параметра F_Q , F при постоянном энергетическом Q, Q_E ; пределы F_Q , $F \rightarrow 0$

На рис. 3 для Q и E-вариантов (рис. 3, a, b и c, d соответственно) приводятся полные энтальпии H(r) (рис. 3, a, c) и функции энергоподвода g(r) (рис. 3, b, d) при постоянных значениях энергетических параметров и приближающихся к нулевому значению силовых параметров подобия: F_Q , $F_E \rightarrow 0$.

В *Q*-варианте величина энергетического параметра *Q* равна 1, силовой параметр изменяется от $F_Q = 1.5$ до 0.1 (кривые 1-4). Соответствующие зависимости H(r), g(r) приближаются к предельным при $F_Q = 0$, кривые 5 на рис. 3, *a*, *b* (соответствующий предел см. в [11], рис. 1, *a*, кривая 1, H(r), рис. 1, *b*, кривая 4, g(r)).

Нормировка функции распределения $f_Q(r)$ дала новые значения энергетического и силового параметров $Q_{new} = 0.845, 0.510, 0.283, 0.168, 0.1475, F_{Q,new} = 1.323, 0.686, 0.256, 0.0396, 0 при F_Q = 1.5, 1.0, 0.5, 0.1 и 0.$

В E-варианте величина энергетического параметра Q_E выбрана равной 0.5, силовой параметр убывает от $F_E = 0.7$ до 0.1 (кривые 1-4). Координата замыкающего сечения $r_2 = 1.5$. Зависимости H(r), g(r) приближаются к предельным при $F_E = 0$, кривая 5 на рис. 3, с, d (соответствующий случай см. в [11], рис. 1, a, кривая 1, рис. 1, b, кривая 4, рис. 5, e, кривая 1). В пределе $F_Q = 0 = F_E$ решения для *E*- и *Q*-вариантов совпадают. Совпадают также решения при одинаковых начальных координатах зоны r_1 и различных длинах зоны r_2 на совпадающих участках, например при $r_2 = 3$ и 5 (см. [11], рис. 5, e). Пересчитанные параметры подобия составили $Q_{E,new} = 1.133$, 0.379, 0.138, 0.052 и 0.0323, $F_{E,new} = 2.77$, 0.863, 0.262, 0.048, 0 при $F_E = 0.7, 0.5, 0.3, 0.1, 0$. Напомним решение H(r) в пределе F_Q , $F_E \rightarrow 0$, совпадающее для *E*- и *Q*-вариантов $(T, u, p, \rho \text{ определяются из } (10)):$

$$H = \left(\frac{r}{r_1}\right)^{\frac{1}{D_1}},$$

$$Q_{E,new} = Q_{new} = m\left[\left(\frac{r_2}{r_1}\right)^{1/D_1} - 1\right] = m[H_2 - H_1].$$
(14)

3. Переход к новым физическим параметрам источника

В [1] на примере предельного случая $F_Q = 0 = F_E$ с заданным теплоподводом g(r) описано, как можно перейти к новому источнику с характерными физическими параметрами минимальным радиусом r_{01} , давлением p_{01} , температурой T_{01} , энтальпией h_{01} , плотностью ρ_{01} , скоростью u_{01} . Предварительным подогревом g(r) в отсутствие внешней силы можно изменить (увеличить или уменьшить) число Маха до заданного значения M_1 ,

Рис. 2. *Q*-вариант. Распределения безразмерных: a — температуры T (кривая 1), скорости u (2), полной энтальпии H (3), давления p (4), плотности ρ (5) при ускорении и нагреве электрическим полем $\mathbf{E}(r)$ на отрезке $[r_1 = 1.176, r_2 = 3]$ при постоянном числе Маха $M_1 = 1.5$; b — функция распределения поля $f_Q(r)$ (6), функция $f_{Q,new}(r) = f_Q(r)/I_{FQ}$ (6'), внешней силы $F(r) = \rho(r)F_Qf_Q(r)$ (7) и энергоподвода $g(r) = Q[f_Q(r)]^2$ (8); c — приращение полной энтальпии ΔH (9), температуры ΔT (10), квадрата скорости Δu^2 (11); энергетический параметр Q = 1, силовой параметр $F_Q = 1$; d - H(r) при вариации $Q = F_Q = 0.1$ (1), 0.5 (2), 1 (3), 1.5 (4), 2 (5); e — зависимость параметров энергоподвода Q_{new} (1) и внешней силы $F_{Q,new}$ (2) от исходных Q, F_Q соответственно.

Рис. 3. a - Q-вариант, полная энтальпия H(r): 1 -силовой параметр $F_Q = 1.5, 2 - 1, 3 - 0.5, 4 - 0.1, 5 - 0$; энергетический параметр Q = 1, число Маха $M_1 = 1.5, r_1 = 1.176, r_2 = 3$; b -интенсивность энергоподвода g(r); c - E-вариант, H(r): 1 -силовой параметр $F_E = 0.7, 2 - 0.5, 3 - 0.3, 4 - 0.1, 5 - 0$; энергетический параметр $Q_E = 0.5$, число $M_1 = 1.5, r_1 = 1.176, r_2 = 1.5; d -$ энергоподвод g(r).

например лазерным излучением, используя хорошо поглощающий газ на выбранной длине волны. Полагаем, что заданное число Маха M_1 установлено для потока до сечения, в котором организуем энерго-силовое воздействие. Число Маха близко к единице $M_1 \approx 1$, меньше или больше единицы, так что ниже по течению реализуется одна из ветвей, дозвуковая 0 < M < 1 либо сверхзвуковая $1 < M < \infty$.

Предположим, при безразмерной координате L $(L = L_{phys}/r_0, где r_0$ есть старое минимальное сечение) энерго-силовым воздействием в режиме постоянного числа Маха получили новые параметры источника — давление p_{01} , температуру T_{01} , энтальпию h_{01} , плотность ρ_{01} , скорость u_{01} , и далее намерены решать новые задачи, используя поле течения источника с минимальным радиусом $r_{01} = r_0 L$.

Для каждой физической величины A в сечении r = Lприравняем ее значение A_{phys} (r = L) произведению $A_{phys}(r = L) = A_{01}A_m$ характерной величины A_{01} на значение безразмерной величины A_m при новом минимальном радиусе $r_{01} = r_0L$ (безразмерном $r_m = r_{phys}/r_{01} = 1$). Используя полученные решения T(r), H(r), U(r), P(r), R(r) в виде формул, либо массивов данных или таблиц, найдем новые характерные величины источника:

$$T_{01} = T_0 \frac{T(L)}{T_m}, \quad h_{01} = h_0 \frac{T(L)}{T_m}, \quad u_{01} = u_0 \frac{U(L)}{u_m},$$
$$\rho_{01} = \rho_0 \frac{R(L)}{\rho_m}, \quad p_{01} = p_0 \frac{P(L)}{p_m}, \quad (14)$$

где $T_m = 2/(\gamma + 1), u_m = \sqrt{[(\gamma - 1)/(\gamma + 1)]}, \rho_m =$ = $T_m^{1/(\gamma - 1)}, p_m = T_m^{\gamma/(\gamma - 1)}$ — безразмерные значения на минимальном радиусе для температуры, скорости, плотности и давления. Сохраняется число Маха $M = M_1$ и массовый расход $m_{01} = m_0$ (либо используется и эта возможность — изменять расход $m_0 \rightarrow m_{01} \neq m_0$). Энергетические параметры можно записать, например, для энерго-силового воздействия, заменяя характерные величины на новые:

$$F_E = \frac{\rho_e E_0 r_{01}}{2\pi\rho_{01}h_{01}}, \quad F_Q = \frac{q_e E_0 r_{01}}{2\pi h_{01}},$$
$$Q_E = Q = \frac{\sigma E_0^2 r_{01}}{2\pi\rho_{01}u_{01}h_{01}}.$$
(15)

Например, при увеличении минимального радиуса в два раза (L = 2, $r_{01} = 2r_0$) температура T_{01} превысила T_0 в $T_{01}/T_0 = T(L=2)/T_m$ раз; энтальпия h_{01} превысила величину h_0 также в $h_{01}/h_0 = T(L=2)/T_m$ раз. Давление p_{01} превысило прежнее p_0 в $P(L=2)/p_m$ раз. Процедуру можно разбить на несколько этапов.

4. Влияние числа Маха *M*₁ на приращение энтальпии и других величин

Выполним исследования влияния числа Маха M₁ в начальном сечении r₁ зоны энерго-силового воздействия на нагрев и ускорение газа. На рис. 4, а для Q-варианта представлены температура T₂, скорость u₂, полная энтальпия H_2 , давление p_2 в замыкающем сечении $r_2 = 3$, а также скорректированные параметры, энергетический Q_{new} и силовой $F_{Q,new}$, как функции M_1 , кривые 1, 2, 3, 4, 5, 6 соответственно. Исходные энергетический Q и силовой F_Q параметры равны $Q = 0.1 = F_Q$. Нормировка функции распределения электрического поля $f_Q(r)$, приводящая интегралы I_Q , I_{FQ} , входящие в уравнения сохранения энергии (13), к единице, изменяет значения энергетического Q и силового FQ параметров при различных М1. Следовательно, различные доли потока полной энтальпии $m\Delta H_Q = Q_{new}$ и различные доли работы внешней силы $\Delta HF_Q = F_{Q,new}$ входят в изменение полной энтальпии $\Delta H = H_2 - H_1$ и в изменение ее потока $m\Delta H$. Величины T_2 , H_2 , p_2 , Q_{new} (кривые 1, 3, 4, 5) имеют ярко выраженные максимумы при $M_{1,\max} \approx 0.55$, 0.55, 0.3, 0.55. Величины и2 и F_{Q,new} имеют максимумы приблизительно при 1.01 и 0.55 соответственно. Согласно представленным зависимостям, наиболее благоприятные условия для увеличения как локальных значений температуры Т2 и полной энтальпии Н2 в конце зоны, так и в интеграле приращения потока полной энтальпии $m\Delta H = Q_{new} + mF_{O,new}$ расположены в дозвуковом диапазоне чисел Маха при M_1 , приблизительно равном 0.55.

На рис. 4, *b* показаны скорректированные энергетические Q_{new} (кривые 1, 3) и силовые $F_{Q,new}$ (2, 4) параметры в зависимости от исходных Q и F_Q соответственно. Кривые 1, 2 получены при $M_1 = 1.5$, кривые 3, 4 при $M_1 = 0.5$. Предполагается ситуация, при которой характерный конвекционный ток равен характерному току проводимости, параметры $Q = F_Q = 0.1-2$. Такой же быстрый рост параметров Q_{new} и $F_{Q,new}$, как и с ростом параметров Q и F_Q , происходит с ростом параметра подобия — протяженности области воздействия $\Delta r = r_2 - r_1$ или, что эквивалентно, с ростом координаты r_2 (рис. 1, *a*, 2, *a*).

Аналогичные экстремальные результаты локального роста температуры, скорости, полной энтальпии, а также скорректированных значений энергетического и силового параметров получены для *E*-варианта (плотность заряда задана на единицу объема). По отношению к *Q*-варианту максимумы величин T_2 , u_2 , H_2 , p_2 и $Q_{E,new}$, $F_{E,new}$ сдвинуты в сторону сверхзвуковых значений M_1 , которые равны приблизительно $M_{1,max} \approx 0.75$, 1.01, 0.8, 0.5 и 0.75, 0.90 (рис. 4, *c*).

Если зависимости Q_{new} , $F_{Q,new}$ от исходных Q, F_Q близки к линейным (в Q-варианте), то соответствующий рост параметров $Q_{E,new}$, $F_{E,new}$ с ростом исходных значений Q_E , F_E энергетического и силового параметров происходит с нарастанием темпа роста (рис. 4, d), причем как при различных числах Маха M_1 , так и при различных протяженностях зоны (при различных координатах r_2), сравните кривые 1, 2 ($r_2 = 1.5$), кривые 3, 4 ($r_2 = 2$) все при $M_1 = 1.5$ с кривыми 5, 6 ($r_2 = 2, M_1 = 0.75$).

5. Стремление к нулю энергетического параметра $Q, Q_E \rightarrow 0$ при постоянном отрицательном силовом параметре $F_Q, F_E < 0$

Постоянными будем поддерживать также другие параметры подобия: число Маха $M_1 = 1.5$ (равносильно задавать r₁ или T₁, и т.д., см. (9)), замыкающую координату $r_2 = 3$ (равносильно задавать протяженность зоны воздействия $r_2 - r_1$), показатель адиабаты $\gamma = 1.4$ (один и тот же сорт газа, воздух), электромагнитную схему (структуру) источников энергии и внешней силы. Последняя (схема) определяет, из каких слагаемых $(Q_{new}, Q_{E,new}, F_{Q,new}, F_{E,new})$ состоят суммарные изменения полной энтальпии ΔH и потока полной энтальпии *т* ΔH в зоне воздействия, в какой степени в интегралы входят функции распределения поля f(r), $f_O(r)$, какие параметры включают эти функции (см. Приложение 1). Отрицательную силу в эксперименте получим, изменив полярность сеток — электродов. При вычислении решения уравнения сохранения энергии (7) с учетом связи (11) функций распределения внешней силы $F_1(r) = F(r)/\rho(r)$, F(r) с полной энтальпией H(r)необходимо брать нижнюю ветвь со знаком минус перед радикалом (см. Приложение 1).

На рис. 5, *а* показаны распределения полной энтальпии H(r) для *Q*-варианта при исходном силовом параметре $F_Q = -1$ постоянном и уменьшающемся энергетическом параметре Q = 1 (кривая *1*), 0.5 (2), 0.1 (3),

Puc. 4. a - Q-вариант, температура (в конце зоны $r_2 = 3$) T_2 (кривая I), скорость u_2 (2), полная энтальпия H_2 (3), давление p_2 (4), скорректированные энергетический Q_{new} (5) и силовой $F_{Q,new}$ (6) параметры в зависимости от числа M_1 ; исходные $Q = 0.1 = F_Q$, $\gamma = 1.4$, m = 0.2588; b параметры Q_{new} (кривые I, 3) и $F_{Q,new}$ (2, 4) в зависимости от числа M_1 ; исходные $Q = 0.1 = F_Q$, $\gamma = 1.4$, m = 0.2588; b параметры Q_{new} (кривые I, 3) и $F_{Q,new}$ (2, 4) в зависимости от числа M_1 ; исходные $Q = 0.1 = F_Q$, $p_2 = 1.4$, m = 0.2588; b параметры Q_{new} (кривые I, 3) и $F_{Q,new}$ (2, 4) в зависимости от исходных Q и F_Q , соответственно при $M_1 = 1.5$ (I, 2) и 0.5 (3, 4); c - E-вариант, величины T_2 (кривая I), u_2 (2), H_2 (3), p_2 (4) (при $r_2 = 2$), энергетический $Q_{E,new}$ (5) и силовой $F_{E,new}$ (6) параметры в зависимости от M_1 ; исходные значения $Q_E = 0.1 = F_E$; d — параметры $Q_{E,new}$ (I, 3, 5) и $F_{E,new}$ (2, 4, 6) в зависимости от исходных Q_E и F_E при $M_1 = 1.5$ (кривые $I, 2, r_2 = 1.5$), ($3, 4, r_2 = 2$) и $M_1 = 0.75$ (5, 6).

0.05 (4), 0 (5). Пересчитанные значения энергетического параметра Q_{new} (для нормированной функции распределения поля $f_Q(r)$) составили $Q_{new} = 0.04117$, 0.02647, 0.00705, 0.00369, 0.0 и силового параметра — $F_{Q,new} = -0.1963$, -0.2225, -0.2562, -0.2619, 0.2681 соответственно. Последнее (при Q = 0) значение равно [1,11] $F_{Q,new} = F_{E,new} = H_2 - H_1 = (r_2/r_1)^{-s} - 1 = -0.2681$, где показатель степени $s = 2(\gamma - 1)//(\gamma + 1)$. В пределе Q, $Q_E \to 0$, так же как и при F_Q , $F_E \to 0$, решения для Q- и E-вариантов совпадают.

На рис. 5, *b* представлены распределения полной функции объемной силы $F(r) = F_1(r)\rho(r)$ (функция $F_1(r)$ — сила на единицу массы) для рассмотренного на рис. 5, *a*

примера. Видим сгущение линий решения по мере приближения к пределу $Q \to 0$.

На рис. 5, с приведены зависимости H(r) и F(r) для *E*-варианта при исходном силовом параметре $F_E = -0.5$ и вариации энергетического параметра $Q_E = 1$ (кривая *I*), 0.5 (2), 0.1 (3), 0.05 (4) и 0.0 (5). После нормировки функции распределения поля f(r)значения энергетического параметр $Q_{E,new}$ составили $Q_{E,new} = 0.018002$, 0.010536, 0.002499, 0.001282, 0 и значения силового параметра $F_{E,new} = -0.2403$, -0.2522, -0.2644, -0.2662, -0.2681 соответственно. Отметим, что уменьшение полной энтальпии ΔH составляет от -0.1708 до -0.2613 при значении силового

Рис. 5. a - Q-вариант, энтальпия H(r): I — энергетический параметр Q = 1, 2 - 0.5, 3 - 0.1, 4 - 0.05, 5 - 0; силовой — $F_Q = -1.0$, число $M_1 = 1.5, r_1 = 1.176, r_2 = 3$; b — внешняя сила F(r); c — E-вариант, H(r): I — энергетический параметр $Q_E = 1, 2 - 0.5, 3 - 0.1, 4 - 0.05, 5 - 0$; силовой параметр $F_E = -0.5$, число $M_1 = 1.5, r_1 = 1.176, r_2 = 3$; d — интенсивность внешней силы F(r).

параметра $F_E = -0.5$, т.е. больше по модулю, чем в *Q*-варианте ($\Delta H = -0.0372 - 0.2476$), хотя параметр внешней силы F_Q по модулю больше в 2 раза, $F_Q = -1$, при прочих равных параметрах ($r_1 = 1.176$, $r_2 = 3$, $\gamma = 1.4$; *Q*, Q_E меняются от 1 до 0). Однако в *E*-варианте после перенормировки энергетический параметр в два с лишним раза меньше, а силовой $F_{E,new}$ превосходит по модулю соответствующий $F_{Q,new}$. При торможении часть отрицательной работы внешней силы идет на уменьшение скорости (кинетической энергии) и часть на уменьшение энтальпии (температуры).

Уравнения (7), (11), кроме численного решения, допускают аналитические решения (см. Приложения 1–3), явные H(r) в *E*-варианте и обратные r(H) в *Q*-варианте. Несмотря на громоздкие выражения и преимущество численного алгоритма в общем случае других зависимостей функций распределения f(r), $f_Q(r)$, например, от газодинамических величин u(r), T(r), ..., аналитические решения полезны для контроля алгоритмов, для исследования асимптотических ситуаций, существенного преобладания того или иного физического фактора внешней силы, энергоподвода; для исследования режима источника (стока), влияния числа Маха, условий на большом удалении, сорта газа.

Выводы

1. В *Е*-варианте (задана плотность зарядов ρ_e , C/m³) температура, скорость, полная энтальпия газа при воздействии электрическим полем увеличиваются с возрастающим темпом на свою величину на участке протяженностью меньше минимального радиуса. 2. В *Q*-варианте (плотность зарядов *q_e*, C/kg) температура, скорость, полная энтальпия газа возрастают медленнее и с убывающим темпом роста.

3. При воздействии электрическим полем с ускорением и нагревом источника, истекающего в вакуум, возможно в режиме постоянного числа Маха на свою величину изменять характерные физические параметры источника: минимальный радиус и параметры заторможенного газа — энтальпию, температуру, давление, плотность.

4. В режиме постоянного числа Маха в рассматриваемой электрической версии воздействия на источник увеличение температуры преобладает над увеличением скорости в диапазоне дозвуковых чисел Маха M_1 с экстремальным (максимальным) увеличением полной энтальпии.

5. На последующем участке источника (без воздействия) можно реализовать полный набор чисел Маха M от 1 до ∞ (в режиме I истечения в вакуум) или от 0 до 1 (в режиме II в затопленное пространство); при больших конечных M возможна реализация желаемого диапазона плотности или температуры газа, давления или энтальпии, скорости газа.

Приложение 1. Соотношение (11) для *E*- и *Q*-вариантов (задана ρ_e , C/m³, либо q_e , C/kg соответственно), переходя к функциям внешней силы $F(r) = F_E f(r)$, $F_1(r) = F_O f_O(r)$, запишем, с учетом (10):

$$H(r) = \frac{D_1 r^2}{m} \times \begin{cases} \frac{Q_E F^2(r)}{F_E^2} & -\frac{r}{s} \times \begin{cases} \frac{rF(r)\sqrt{H(r)}}{r_1\rho_1} \\ \frac{QF_1^2(r)}{F_Q^2} \end{cases} & . \end{cases}$$
(II1.1)

Представим (П1.1) в виде уравнений

$$F^{2}(r) + bF(r) + c = 0, \quad b = -\frac{u_{1}\sqrt{H(r)}F_{E}^{2}}{sD_{1}Q_{E}},$$

$$c = -\frac{H(r)mF_{E}^{2}}{r^{2}D_{1}Q_{E}}, \quad (\Pi 1.2)$$

$$F_{1}^{2}(r) + \beta F_{1}(r) + \delta = 0, \quad \beta = -\frac{mF_{Q}^{2}}{rsD_{1}Q},$$

$$\delta = -\frac{H(r)mF_{Q}^{2}}{r^{2}D_{1}}.$$
 (II1.3)

Решения

$$F(r) = -\frac{b}{2} \left[1 \pm \sqrt{1 - \frac{4c}{b^2}} \right] = \sqrt{H}B_1 \left[1 \pm \sqrt{1 + \frac{B_0}{r^2}} \right],$$
(II1.4)
$$F_1(r) = -\frac{\beta}{2} \left[1 \pm \sqrt{1 - \frac{4\delta}{\beta^2}} \right] = \frac{A_1}{r} \left[1 \pm \sqrt{1 + \alpha_0 H} \right],$$
(II1.5)
$$B_1 = \frac{mF_E^2}{2sr_1\rho_1 D_1 Q_E}, \quad B_0 = \frac{2sr_1\rho_1}{B_1};$$

$$\alpha_0 = \frac{4s^2 D_1 Q}{mF_Q^2}, \quad A_1 = \frac{2s}{\alpha_0}.$$

3 Журнал технической физики, 2018, том 88, вып. 5

Верхние ветви решений описывают положительную ускоряющую газ силу, нижние ветви — отрицательную тормозящую газ силу. Структура (П1.4), (П1.5) подсказывает путь построения аналитического решения — разделение переменных r и H.

Приложение 2. Аналитическое решение в *E*-варианте В уравнении энергии (7) выразим тепловой источник $g(r)/\rho u(r)$ через силовую функцию F(r), см. (П1.4), а плотность $\rho(r)$ — через полную энтальпию H(r), формула (10). Получим

$$\frac{1}{H}\frac{dH}{dr} = \frac{r}{D_1B_0} \left(1 \pm Z(r)\right) \left[1 + 2sD_1 \pm Z(r)\right], \quad (\Pi 2.1)$$
$$Z(r) = \sqrt{1 + B_0/r^2}, \quad B_0 = \frac{4(sr_1\rho_1)^2 D_1 Q_E}{mF_E^2},$$
$$r^2 = \frac{B_0}{Z^2 - 1}, \quad \frac{d(r^2)}{dZ} = \frac{-2B_0Z}{(Z^2 - 1)^2}.$$

Сделали замену независимой переменной r на Z, нижний знак "—" соответствует отрицательной силе F(r), вызывающей торможение газа. Окончательное уравнение в переменных Z и H(Z(r)) имеет вид

$$\frac{1}{H}\frac{dH}{dZ} = -2s\frac{Z(1\pm Z)\left[1+\frac{1}{2sD_1}\left(1\pm Z\right)\right]}{(z-1)^2(Z+1)^2}$$
$$= \mp 2s\left\{\frac{A_{\pm}}{Z\pm 1} + \frac{B_{\pm}}{Z\pm 1} + \frac{A_{\pm}}{(Z\pm 1)^2}\right\},$$
$$A_{\pm} = \mp \frac{1}{4}, \quad B_{\pm} = \pm \left(\frac{1}{2sD_1} + \frac{1}{4}\right), \quad C_{\pm} = \frac{1}{2sD_1} + \frac{1}{2}.$$
(II2.2)

Решение с учетом начального условия $H(r_1) = H(Z_1 = Z(r_1)) = 1$ следующее:

$$H(r) = \frac{\left[|Z \pm 1|^{\mp 2sA_{\pm}} |Z \mp 1|^{\mp 2sB_{\pm}} \exp\left(\pm \frac{2sC_{\pm}}{Z \mp 1}\right) \right]}{[\dots Z_1 = Z(r_1) \dots]}.$$
(II2.3)

Знаменатель в правой части отличается от числителя заменой Z на Z_1 .

Приложение 3. Аналитическое решение в *Q*-варианте Исключим в правой части уравнения (7) тепловой источник g(r) (выраженный через квадрат внешней силы $F_1^2(r)$), используя уравнение (11):

$$\frac{dH}{H + \alpha_1 \left[1 \pm \sqrt{1 + \alpha_0 H(r)} \right]} = \frac{dr}{rD_1},$$
$$\alpha_0 = \frac{4s^2 D_1 Q}{mF_0^2}, \quad \alpha_1 = 2(1 + sD_1)/\alpha_0. \tag{II3.1}$$

Получили уравнение с разделяющимися переменными. Знак " \pm " учитывает убывание полной энтальпии при торможении газа, сила $F_1(r)$ отрицательная. Выполним замену

$$Y = \sqrt{1 + \alpha_0 H(r)}, \quad H = (Y^2 - 1)/\alpha_0, \quad \frac{dH}{dY} = \frac{2Y}{\alpha_0},$$

преобразуем уравнение к виду

$$\frac{2YdY}{Y^2 - 1 + \alpha_2(1 \pm Y)} = \frac{dr}{rD_1}, \quad \alpha_2 = \alpha_0 \alpha_1 = 2(1 + sD_1). \tag{II3.2}$$

Приведем знаменатель в левой части к виду, удобному для интегрирования,

$$\frac{2YdY}{Y^2 \pm (\alpha_3 + 1)Y + \alpha_3} = \frac{dr}{rD_1},$$

$$\alpha_3 = -1 + \alpha_2 = 1 + 2sD_1.$$
 (II3.3)

Решение с учетом начального условия $Y_1 = Y(H_1 = 1) = \pm \sqrt{(1 + \alpha_0)}$ есть

$$\frac{r}{r_1} = \left\{ \frac{|Y \pm 1| |Y \pm \alpha_3| \left| \frac{Y \pm 1}{Y \pm \alpha_3} \right|^{\alpha_4}}{|Y_1 \pm 1| |Y_1 \pm \alpha_3| \left| \frac{Y_1 \pm 1}{Y_1 \pm \alpha_3} \right|^{\alpha_4}} \right\}^{D_1},$$

$$\alpha_4 = \frac{1 + \alpha_3}{1 - \alpha_3} = -1 - \frac{1}{sD_1}.$$
 (II3.4)

Решение включает две ветви, с положительной ускоряющей силой $F_1(r)$ и с отрицательной, тормозящей поток газа, соответственно верхний и нижний знаки " \pm ".

Список литературы

- [1] Кучеров А.Н. // ИФЖ. 2017. Т. 90. № 6. С. 1525–1536.
- [2] Реслер Э., Сирс У. Перспективы магнитной аэродинамики // В сб. перев. "Механика". М.: ИЛ, 1958. № 6 (52).
 С. 3–22. (Resler E.L., jr., Sears W.R. The Prospects for Magneto-Aerodynamics // J. Aeronautical Sciences. 1958.
 Vol. 25. N 4. P. 235–245, 258); Реслер Э., Сирс У. Перспективы магнитной аэродинамики. Исправление и добавление // В сб. перев. "Механика". М.: ИЛ, 1959.
 № 6. С. 47–48. (Resler E.L., Sears W.R. The prospects for Magneto-Aerodynamics. J. Aero/Space Sciences. 1959.
 Vol. 26. N 5. P. 318).
- [3] Реслер Э., Сирс У. Магнитогазодинамическое течение в канале // В сб. перев. "Механика". М.: ИЛ, 1959. № 6. С. 39–46. (Resler E.L., Sears W.R. // Magneto-Gasdynamic Channel Flow. Zeitschrift für Angewandte Mathematik und Physik. 1958. Vol. 9b. N 5/6. 509–518).
- [4] Кирко И.М. // Электричество. 1959. № 4. С. 9-16.
- [5] Куликовский А.Г., Любимов Г.А. Магнитная гидродинамика. М.: Физматгиз, 1962. 246 с.
- [6] Шерклиф Дж. Курс магнитной гидродинамики. М.: Мир. 1967. 320 с. (J.A. Shercliff. A Textbook of Magnetohydrodynamics. Oxford, London, Edinburgh, N.Y., Paris, Frankfurt; Pergamon Press: 1965).
- [7] Ватажин А.Б., Любимов Г.А., Регирер С.А. Магнитогидродинамические течения в каналах. М.: Наука, 1970. 672 с.
- [8] Алферов В.И. // ТВТ. 2000. Т. 38. № 2. С. 321-334.
- [9] Битюрин В.А., Бочаров А.Н. // Известия РАН. МЖГ. 2006.
 № 5. С. 188-207.
- [10] Битюрин В.А., Бочаров А.Н. Обзор моделей гиперзвуковых МГД-течений // 3-я школа-семинар по магнитоплазменной аэродинамике. 8–10 апреля. 2008 (доклады). М. 2008. С. 216–255.
- [11] Кучеров А.Н. // ЖТФ. 2017. Т. 87. Вып. 2. С. 182-191.