Metal-semiconductor nanoheterostructures with an AlGaN quantum well and in-situ formed surface Al nanoislands

© E.A. Evropeytsev, A.N. Semenov, D.V. Nechaev, V.N. Jmerik, V.Kh. Kaibyshev, S.I. Troshkov, P.N. Brunkov, A.A. Usikova, S.V. Ivanov, A.A. Toropov

loffe Institute, 194021 St. Petersburg, Russia E-mail: evropeitsev@beam.ioffe.ru

We report on fabrication and studies of composite heterostuctures consisting of an Al_{0.55}Ga_{0.45}N/Al_{0.8}Ga_{0.2}N quantum well and surface Al nanoislands, grown by plasma-assisted molecular-beam epitaxy on *c*-sapphire substrates. The influence of a substrate temperature varied between 320 and 700°C on the size and density of the deposited Al nanoislands is evaluated. The effect of Al nanoislands on decay kinetics of the quantum well middle-ultraviolet photoluminescence has been investigated by time resolved photoluminescence. The samples with the maximum density of Al nanoislands of 10⁸ cm⁻² and lateral dimensions in the range of 100–500 nm demonstrated shortening of the photoluminescence lifetime, induced by interaction of the emitting quantum well and the plasmonic metal particles.

Acknowledgements

This work has been supported in part by RFBR#15-02-05206. The development of the MBE technology and samples growth was supported by the Russian Science Foundation (project#14-22-00107).

2* 515