16,13

Исследование пиролизата фталоцианина Fe методами мессбауэровской спектроскопии и просвечивающей электронной микроскопии

© В.С. Козлов¹, В.Г. Семенов^{1,2}, К.Г. Каратеева³, В.Ю. Байрамуков^{1,¶}

¹ Петербургский институт ядерной физики им. Б.П. Константинова Национального исследовательского центра "Курчатовский институт", Гатчина, Россия ² Санкт-Петербургский государственный университет, Институт химии, Петергоф, Россия ³ Национальный исследовательский центр "Курчатовский институт", Москва, Россия

[¶] E-mail: vbayramukov@gmail.com

(Поступила в Редакцию 1 ноября 2017 г. В окончательной редакции 21 ноября 2017 г.)

Методами мессбауэровской спектроскопии и просвечивающей электронной микроскопии проведено исследование пиролизата фталоцианина железа, определен фазовый состав и магнитное состояние продуктов пиролиза, представленных фазами α-Fe, γ-Fe, Fe₃C и магнетитом. Определены морфологические особенности углеродных и железосодержащих фаз, представленных металлическими частицами разнообразной формы и размеров, а также углеродными нанотрубками, углеродными полыми нанополиэдрами и неграфитизированным углеродом. Проведен сравнительный анализ морфологии и структуры пиролизатов фталоцианина железа и дифталоцианинов редкоземельных элементов.

Мессбауэровские исследования и просвечивающая электронная микроскопия выполнены с использованием оборудования Института химии СПбГУ и Ресурсного центра зондовой и электронной микроскопии "Нанозонд" Курчатовского комплекса НБИКС-технологий НИЦ КИ.

DOI: 10.21883/FTT.2018.05.45806.307

1. Введение

Изучение пиролизатов моно- и дифталоцианинов ряда переходных и редкоземельных элементов (РЗЭ) представляет значительный научный и практический интерес для получения новых наноструктурированных металлоуглеродных материалов, таких как углеродные нанотрубки (УНТ), нанокабели, наностержни [1,2], графитизированные капсулы, углеродные волокна и т.д. [3], а также для создания термически, химически и радиационностойких металлоуглеродных матриц для хранения радиоактивных отходов [4].

Однако к настоящему времени имеются противоречивые результаты по изучению экспериментальными методами продуктов пиролиза, полученных при различных физико-химических условиях.

Пиролизаты монофталоцианинов переходных элементов (в частности, Fe) особенно важны как специальные молекулярные прекурсоры для направленного синтеза новых эндометаллофуллеренов (ЭМФ), инкапсулирующих атомы 3*d*-элементов [5] и представляющих особый интерес из-за их магнитных свойств. Разработка эффективного способа получения ЭМФ Fe позволила бы существенно расширить круг наноматериалов для биомедицинских применений (контрастирующие агенты для MPT-диагностики, фототермическая терапия и т.д.).

Авторы работы [2] пиролизом монофталоцианинов Fe (FePc) и Co (CoPc) в температурном диапазоне от 600 до 1000°C получили УНТ различной морфологии и состава в виде металлических сердечников в углеродной оболочке длиной до 10 µm (нанокабели) или многостенных УНТ с карбидом Fe внутри. Их морфология зависела от состава прекурсоров (фталоцианинов металлов) и температурных условий пиролиза. Предварительное измельчение в шаровой мельнице влияло на температуру возгонки паров FePc, и в итоге — на диаметр УНТ [6]. Пиролиз FePc в присутствии тиола в атмосфере Ar/H₂ при 800 ~ 900°С приводил к образованию многостенных разветвленных нанотрубок благодаря находящимся внутри УНТ частицам Fe, служившим центрами нуклеации УНТ [7]. В работе [8] карбид железа, инкапсулированный в углеродную оболочку, синтезировали пиролизом FePc в потоке H₂ при 300-400°С. Полученные нанокапсулы имели структуру типа усов с размерами 500×100 nm, при толщине углеродной оболочки около ~ 2.7 nm. При повышении температуры пиролиза металлическое железо было основным инкапсулированным продуктом. Пиролиз металлорганического прекурсора при прокаливании в инертной атмосфере [9] или с использованием лазерного способа пиролиза [10,11] приводил к образованию "луковичных" ("ядро-оболочка") структур.

Представленный обзор демонстрирует разнообразие инкапсулированных в углеродную оболочку железосодержащих структур, которые можно получить пиролизом таких прекурсоров, как металлофталоцианины (MePc), причем конечный тип структур существенно зависит от температурных условий, состава прекурсора и атмосферы проведения пиролиза. Перечисленные моменты предопределили направление данной работы.

Основной целью данной работы было исследование фазового состава, морфологии, магнитного состояния, размеров образующихся наночастиц в продуктах пиролиза FePc и сравнение результатов с раннее полученными данными по пиролизу дифталоцианинов РЗЭ. Для успешного выполнения поставленной цели мы выбрали следующие экспериментальные методы: мессбауэровская спектроскопия (МС), являющаяся в данном случае наиболее информативным методом определения фазового состава железосодержащих фаз, а также возможной локальной неоднородности в окружении атомов железа [12,13] и просвечивающая электронная микроскопия (ПЭМ), обеспечивающая визуализацию исследуемых образцов.

2. Экспериментальная часть

Пиролизат FePc получали нагреванием порошка фталоцианина железа при температуре 700–800°C в токе инертного газа и последующим отжигом при температуре ~ 1100°C в течение 1.5-2h [14]. Мессбауэровские спектры снимались на спектрометре электродинамического типа в режиме постоянного ускорения с источником ⁵⁷Co(Rh) при 300 К. Калибровка скоростей и химический сдвиг даны относительно общепринятого стандарта α -Fe. Мессбауэровские спектры обрабатывали в программе MOSSFIT в предположении лоренцевой формы линии.

Морфологию и структуру образцов изучали с помощью просвечивающего электронного микроскопа ТІТАN 80-300, снабженного энергодисперсионным рентгеновским спектрометром (ЭДРС), позволяющим определять химический состав с атомарным разрешением. Исследуемый образец смешивали со спиртом и подвергали воздействию ультразвука в течение 25 min, затем с помощью дозатора каплю суспензии наносили на углеродную сетку (Lacey Carbon), выполняющую роль подложки.

3. Результаты и обсуждение

В связи с обсуждаемыми ниже результатами следует сначала привести характерные данные по определению структурного и фазового состава железосодержащих нанокластеров с помощью MC на ядрах ⁵⁷Fe. Как известно, мессбауэровский спектр FePc (рис. 1, *a*) состоит из двух дублетов, отвечающих степени окисления Fe²⁺ и Fe³⁺ в β -полиморфе FePc [15].

Рис. 1. Мессбауэровские спектры: *а* — FePc; *b* — пиролизата FePc.

Пиролиз FePc при указанных выше условиях приводит к усложнению спектра (рис. 1, *b*), который состоит из одного синглета и четырех секстетов с параметрами, основным из которых для идентификации секстета с соответствующей Fe-содержащей фазой является величина сверхтонкого магнитного поля — H_{eff} . Согласно ранее опубликованным данным [16], пиролизат FePc состоит из нескольких железосодержащих фаз: α -Fe, γ -Fe, Fe₃C, а также двух фаз магнетита (Fe₂O₃), доля которого не превышает 9% (см. таблицу).

По-видимому, указанные железосодержащие фазы, как было показано выше, могут быть инкорпорированы в УНТ, а также формировать структуры типа "ядрооболочка", нанокабели, наностержни и другие виды нанообъектов. Использование ПЭМ позволило нам изучить морфологию, структуру и состав пиролизата FePc и сопоставить полученные данные с данными мессбауэровской спектроскопии.

ПЭМ-изображение пиролизата FePc в светлопольном режиме представлено на рис. 2. Отчетливо видны металлические частицы разнообразной формы и размеров (10–100 nm), находящиеся на поверхности углеродной матрицы.

Изображение в темнопольном режиме (рис. 3) позволяет однозначно проявлять металлические частицы в виде ярких пятен на темном фоне углеродной матрицы. В спектрах ЭДРС пиролизата FePc в точках I и 2 (рис. 4, a, b) доминируют рентгеновские линии Fe при практическом отсутствии линий углерода и кислорода, что свидетельствует о металлической фазе железа, которая, по данным мессбауэровской спектроскопии (см. таблицу), является фазой α -Fe. В точках 3 и 4 (рис. 4, c, d) наблюдается иной спектр рентгеновских линий, характерный для чисто углеродной фазы матрицы

Образец	Субспектр	W ^a , mm/s	<i>IS^a</i> , mm/s	QS^a , mm/s	$H_{\rm eff}^b,{ m T}$	S^c , %	Фаза
FePc	Дублет-1 Дублет-2	0.29 0.75	0.38 0.29	2.61 0.78	_	88 12	Fe ²⁺ Fe ³⁺
Пиролизат FePc	Синглет-1	0.30	-0.10	_	_	4	γ-Fe
	Секстет-1	0.30	0	_	33.0	60	α-Fe
	Секстет-2	0.37	0.18	-0.01	21.0	27	Fe ₃ C
	Секстет-3 Секстет-4	0.36 1.4	0.27 0.51	0.04 0.04	48.6 45.2	3 6	Fe ₃ O ₄

Сверхтонкие параметры мессбауэровских спектров FePc и пиролизата FePc при 300 K

— 100 nm

Рис. 2. ПЭМ-изображение пиролизата FePc (светлопольный режим).

Рис. 3. ПЭМ-изображение пиролизата FePc (точки *1*-4) (темнопольный режим).

и фазы металлического железа, находящегося в объеме углеродной матрицы, соответственно.

Для уточнения фазового состава пиролизата методом Лауэ была получена картина электроннодифракционного рассеяния на образце (рис. 5, *a*). Моделирование (рис. 5, *b*), путем сравнения дифракционных картин от разных фаз, позволило идентифицировать в пиролизате преобладающие фазы графита, карбида железа и α -Fe при незначительном проявлении фазы γ -Fe и отсутствии фазы магнетита в пределах экспериментальной точности.

Анализируя ПЭМ-изображения пиролизата FePc, удалось идентифицировать металлические наностержни (рис. 6), углеродные пустотелые нанополиэдры, углеродные нанотрубки, а также углеродную матрицу, которая, по данным авторов [17], представляет собой структуру неграфитизированного углерода на основе фуллереноподобных (сажевых) элементов (рис. 7). Не были обнаружены структуры типа ядро-оболочка или заполненные металлом УНТ.

Следует отметить, что несколько иные результаты были получены в работе [2]. Пиролиз FePc, проведенный при 800°C в вакуумированной ампуле со скоростью нагревания 20°C/min, приводил к образованию металлических частиц микронного размера и формированию УНТ, заполненных карбидом железа.

Таким образом, выбор условий пиролиза (температуры, скорости нагрева, времени выдержки при данной температуре, вакуумирования или тока инертного газа и т.д.) позволяет получать контролируемым способом наноструктуры различной морфологии и состава.

Результаты проведенного нами пиролиза FePc сравнивались с данными для пиролизатов дифталоцианинов P3Э (MePc₂). Пиролиз MePc₂ при $T = 800-900^{\circ}$ C вызывал деструкцию дифталоцианина с выделением газообразных продуктов, и, как предполагалось, в молекулах лиганды соединялись крайними атомами углерода через освободившиеся связи в замкнутую углеродную ячейку с атомом металла внутри [4,18,19]. В результате образуется пористая углеродная структура [20], строение которой на масштабах $10-10^2$ nm характеризуется двумя уровнями — малыми порами с характерными радиусами 3-7 nm, формирующими агрегаты размера-

Рис. 4. (a, b, c, d) ЭДРС-спектры точек (1-4) на рис. 3 соответственно.

ми 40-100 nm и выше. Результаты измерений атомносиловой микроскопии [21] подтвердили гипотезу об образовании в процессе пиролиза MePc₂ разветвленной сети нанокластеров с размерами 5–150 nm. Образование при пиролизе MePc₂ замкнутых структур, кроме научного, имеет практическое значение для создания более эффективного (по сравнению с пиролизатом MePc) прекурсора в целях направленного и производительного синтеза ЭМФ РЗЭ.

Моно- и дикомплексы MePc и MePc₂ обладают разной структурой, поэтому их пиролизаты также будут иметь различные свойства, что подтверждается данными работы [22]. Температурная стабильность на примере EuPc и EuPc₂ изучена методом термогравиметрического анализа в диапазоне температур до 1000°C в атмосфере

Физика твердого тела, 2018, том 60, вып. 5

аргона [23]. Установлено, что потери массы для $EuPc_2$ к $851^{\circ}C$ достигают 93%, а для $EuPc_2$ к $1000^{\circ}C$ составляют лишь 67%, что свидетельствует о большей термостойкости последнего. Кроме того, показана высокая термическая устойчивость комплексов лантаноидов по сравнению с фталоцианинами переходных элементов.

Структура аморфной фазы пиролизатов дифталоцианина лантана, по данным рассеяния рентгеновских лучей, представлена в работе [24]. Показано, что при температуре отжига до 1000°С происходит интенсивная интеграция углерода в глобулы размером $\sim 1 \text{ nm}$ с числом атомов $m \geq 100$, стабильные по размерам и массе в диапазоне 1000–1600°С и приближающиеся по плотности к графиту. Установлено, что в аморфной фазе пиролизатов, полученных в широком диапазоне температур (800–1800°С), не выявлена сегрегация лантана, т. е. он заключен в аморфную углеродную матрицу наноглобулярной морфологии преимущественно в атомарном виде. Аналогичные результаты были получены в работе [25]. Авторам удалось идентифицировать фазу кристаллизованных нитридов и карбидов РЗЭ, величина кристаллитов которых растет с температурой и временем отжига от единиц нанометров до сотни.

Сопоставляя наши экспериментальные данные по пиролизатам FePc с приведенными выше данными по пиролизатам MePc₂, можно обнаружить некоторое сходство и различие в морфологии углеродных нанокластеров, структуре и фазовом составе продуктов пиролиза.

Пиролиз FePc и MePc₂ в близких физико-химических условиях приводит к образованию фазы аморфного углерода, карбидов железа или РЗЭ и фазы графита, кристалличность которой возрастает с ростом температуры и времени отжига. Важным отличием являет-

Рис. 5. *а* — лауэграмма пиролизата FePc; *b* — наложение фаз графита и карбида Fe.

Рис. 6. ПЭМ-изображение металлического наностержня (светлопольный режим).

Рис. 7. ПЭМ-изображение пиролизата FePc (светлопольный режим). *1* — углеродные пустотелые нанополиздры, *2* — углеродные нанотрубки, *3* — неграфитизированный углерод.

ся равномерное распределение металла в пиролизате MePc₂ [25], тогда как в пиролизате FePc образуются отдельные кластеры α -Fe, металлические наностержни и фаза магнетита. Углеродная компонента представлена как кристаллическим, так и неграфитизированным сажевым углеродом, полыми нанополиэдрами и нанотрубками. Эти различия становятся более понятными с учетом следующих факторов.

Атомная доля лантана в пиролизате MePc₂ составляет $\sim 3\%$ [24] против 10% в пиролизате FePc [5]. Известно, что 3*d*-металлы являются эффективными катализаторами образования УНТ, а молекула FePc при пиролизе как раз и является источником углерода и катализатора (Fe), необходимого для роста УНТ. Избыток железа может образовывать металлические частицы размерами до 100 nm (см. рис. 2, 3) с учетом склонности атомов 3*d*-металлов взаимодействовать друг с другом с формированием депозита из металлических нанокластеров [26,27]. Аналогичное образование металлических частиц наблюдали при электродуговом сжигании композитных электродов, содержащих пиролизат FePc [28].

4. Заключение

Методом МС изучены пиролизаты FePc, определен фазовый состав и магнитное состояние продуктов пиролиза, представленных железосодержащими фазами α -Fe, γ -Fe, Fe₃C и Fe₂O₃.

Использование ПЭМ позволило выявить особенности морфологии, определить состав и структуру углеродных и железосодержащих фаз, обнаружить металлические частицы α -Fe, разнообразной формы и размеров, а также наностержни.

Методом электронной дифракции идентифицированы фазы карбида железа и γ -Fe. Показано, что углеродные структуры представлены углеродными нанотрубками, нанополиэдрами и матрицей из неграфитизированного рентгеноаморфного сажевого углерода.

Проведен сравнительный анализ морфологии и структурных особенностей пиролизатов фталоцианина железа и дифталоцианина РЗЭ. Определены сходства и различия в морфологии и составе полученных фаз.

Впервые показано, что пиролиз фталоцианинов железа ведет к образованию металлических нанокластеров размером до 100 nm в виде включений в углеродной матрице. Это является радикальным отличием от результатов пиролиза дифталоцианина, когда наблюдается равномерное распределение РЗЭ в матрице из углеродных глобул, инкапсулирующих атомы этих элементов.

Таким образом, строение исходной металлорганической молекулы предопределяет природу структурных превращений при пиролизе в зависимости от того, связан ли атом металла с одним лигандом, либо заключен между лигандами, образуя с ними координационные связи.

Авторы признательны В.Т. Лебедеву за полезные рекомендации и поддержку.

Список литературы

- [1] L. Zhi, U. Kolb, K. Mullen. New carbon mater. **21**, *2*, 109 (2006).
- [2] L. Zhi, T. Gorelik, R. Friedlein, J. Wu, U. Kolb, W.R. Salaneck, K. Müllen. Small 1, 8-9, 798 (2005).
- [3] A.S. Manukyan, A.A. Mirzakhanyan, G.R. Badalyan, G.H. Shirinyan, A.G. Fedorenko, N.V. Lianguzov, Yu.I. Yuzyuk, L.A. Bugaev, E.G. Sharoyan. J. Nanopart. Res 14, 982 (2012).
- [4] В.И. Тихонов, В.К. Капустин, В.Т. Лебедев, А.Е. Совестнов, В.Ю. Байрамуков, К.Я. Мишин. Радиохимия 58, 5, 469 (2016).
- [5] В.П. Седов, А.А. Сжогина, В.Т. Лебедев. Новые эндометаллофуллерены, инкапсулирующие атомы железа. Препринт 2963 НИЦ КИ ПИЯФ (2014). 12 с.
- [6] A.S. Milev, N. Tran, G.S. Kamali Kannangara, M.A. Wilson, I. Avramov. J. Phys. Chem. C 112, 5339 (2008).
- [7] Q. Wei, Y. Liu, L. Zhang, S. Huang. Nano-Micro Lett. 5, 2, 124 (2013)
- [8] N.S. Kopelev, V. Chechersky, A. Nath, Zh.L. Wang, E. Kuzmann, B. Zhang, G.H. Via. Chem. Mater. 7, 1419 (1996).
- Физика твердого тела, 2018, том 60, вып. 5

- [9] B. An, K. Cheng, C. Wang, Y. Wang, W. Lin. ACS Catal. 6, 6, 3610 (2016).
- [10] J. Sourice, A. Quinsac, Y. Leconte, O. Sublemontier, W. Porcher, C. Haon, A. Bordes, E. De Vito, A. Boulineau, S.J. Si Larbi, N. Herlin-Boime, C. Reynaud. Abstract LiBD-7 2015 — Electrode materials. Arcachon, France (June 21–26, 2015).
- [11] C. Fleaca, F. Dumitrache, E. Dutu, C. Luculescu, A. Niculescu, A. Ilie, E. Vasile. U.P.B. Sci. Bull. B 78, 2, 1454 (2016).
- [12] С.И. Бондаревский, В.В. Еремин, В.В. Панчук, В.Г. Семенов, М.Г. Осмоловский. ФТТ 58, 2, 77 (2016).
- [13] А.С. Камзин, К.Е. Ranjith, P. Ranjith, P. Ramadevi, C. Selvakumar. ФТТ **59**, *9*, 1816 (2017).
- [14] В.А. Шилин, С.Г. Колесник, Н.А. Куликова, В.В. Кукоренко, В.П. Седов, А.А. Сжогина, С.В. Фомин, Ю.Е. Логинов, А.А. Афанасьев. Разработка технологии производительного получения водорастворимых эндоэдральных металлофуллеренов. Ч. 2. Сообщение 2972. НИЦ КИ ПИЯФ (2015). 21 с.
- [15] E. Kuzmann, Z. Homonnay, A. Vertes, S. Li, H. Ying, Y. Wei, A. Nath, X. Chen, J. Li. J. Solid State Chem. **170**, 118 (2003).
- [16] В.С. Козлов, В.Г. Семенов, В.В. Панчук. Электродуговой синтез Fe-углеродных нанокластеров. Ч. 1. Сообщение 2988. ПИЯФ НИЦ КИ (2016). 21 с.
- [17] Peter J.F. Harris. J. Mater. Sci. 48, 565 (2013).
- [18] V.I. Tikhonov, P.N. Moskalev, V.K. Kapustin. Proc. 11th Int. Conf. Environmental Remediation and Radioactive Waste Management ICEM-2007. Belgium. Report N 7084 (2008).
- [19] В.И. Тихонов, В.К. Капустин, П.Н. Москалев. Пат. № 2343575 (РФ). Способ фиксации долгоживущих радионуклидов для хранения и трансмутации. ПИЯФ. 19.02.07.
- [20] В.М. Лебедев, В.Т. Лебедев, Д.Н. Орлова, В.И. Тихонов. Поверхность. Рентген., синхротр. и нейтрон. исслед. 5, 5 (2014).
- [21] V.Yu. Bairamukov, D.V. Lebedev, V.I. Tikhonov. Proc. Int. multidisciplinary microscopy congress. Antalya, Turkey. (October 10–13, 2013). Ser. Springer Proceedings in Physics (2014). Vol. 154. P. 189–195.
- [22] А.В. Зиминов, С.М. Рампі, Т.А. Юрре. Тезисы Всероссийской научно-практической конференции студентов и аспирантов "Химия и химическая технология в XXI веке" (14– 15 мая 2007 г.), изд-во Томского политехнического ун-та, Томск (2007). 373 с.
- [23] А.В. Зиминов, С.М. Рамш, И.Г. Спиридонов, Т.А. Юрре, Т.Г. Бутхузи, А.М. Туриев. Вестн. Санкт-Петербургского ун-та 4, 4, 95 (2009).
- [24] В.Т. Лебедев, А.Е. Совестнов, В.И. Тихонов, Ю.П. Черненков. Поверхность. Рентген., синхротр. и нейтрон. исслед. *1*, 25 (2017).
- [25] А.Е. Совестнов, В.К. Капустин, В.И. Тихонов, Э.В. Фомин, Ю.П. Черненков. ФТТ 56, 8, 1621 (2014).
- [26] В.В. Ивановская, А.Л. Ивановский. Успехи химии 80, 8, 761 (2011).
- [27] Y. Zhang, Franklin, W. Nathan, R.J. Chen, H. Dai. Chem. Phys. Lett. 331, 1, 35 (2000).
- [28] В.С. Козлов, О.А. Балабас, Е.В. Убыйвовк. Электродуговой синтез Fe-углеродных нанокластеров. Ч. 2. Сообщение 2997. ПИЯФ НИЦ КИ (2016). 19 с.