04

Характеристики Li⁺-ионной проводимости кристаллов Li₃ R_2 (PO₄)₃ (R = Fe, Sc) в суперионном состоянии

© Н.И. Сорокин

Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия E-mail: nsorokin1@yandex.ru

(Поступила в Редакцию 26 сентября 2017 г.)

Исследованы методом импедансной спектроскопии характеристики Li⁺-ионной проводимости σ_{dc} структурных γ -модификаций соединений Li₃ $R_2(PO_4)_3$ (R = Fe, Sc), находящихся в суперионном состоянии. Тип структурного каркаса $[R_2P_3O_{12}]_{\infty}^{3-}$ влияет на величину σ_{dc} и значения энтальпии активации σ_{dc} в этих соединениях. Энтальпия активации ионного переноса в γ -Li₃Sc₂(PO₄)₃ ($\Delta H_{\sigma} = 0.31 \pm 0.03 \text{ eV}$) меньше, чем в γ -Li₃Fe₂(PO₄)₃ ($\Delta H_{\sigma} = 0.36 \pm 0.03 \text{ eV}$). Величина проводимости γ -Li₃Fe₂(PO₄)₃ ($\sigma_{dc} = 0.02 \text{ S/cm}$ при 573 K) по сравнению с γ -Li₃Sc₂(PO₄)₃ больше в 2 раза. С понижением температуры происходит структурная трансформация Li₃ $R_2(PO_4)_3$ от суперионной γ -формы (пространственная группа Pcan) через промежуточную метастабильную β -форму (пространственная группа $P2_1/n$) в "диэлектрическую" α -форму (пространственная группа $P2_1/n$). При охлаждении при суперионном переходе T_{SIC} у обоих фосфатов σ_{dc} падает в ~ 10² раз. В Li₃Se₂(PO₄)₃ имеет место скачок σ_{dc} при $T_{SIC} = 540 \pm 25$ K. Обсуждаются возможные кристаллохимические причины различия величин σ_{dc} и ΔH_{σ} , термодинамики и кинетики суперионного перехода для Li₃ $R_2(PO_4)_3$.

DOI: 10.21883/FTT.2018.05.45783.278

1. Введение

Двойные фосфаты Li₃ $R_2(PO_4)_3$ ($R^{3+} = Fe^{3+}$ и Sc³⁺) являются суперионными проводниками [1,2], в которых высокая ионная проводимость обусловлена катионами Li⁺. Благодаря этому свойству, Li₃Fe₂(PO₄)₃ рассматривается [3,4] в качестве перспективного компонента катодного композиционного материала для полностью твердотельных литий-ионных батарей. Основу структурной архитектуры кристаллов Li₃R₂(PO₄)₃ составляет трехмерный "жесткий" каркас $[R_2P_3O_{12}]_{\infty}^{3-}$, в каналах которого располагаются подвижные катионы Li⁺. Кристаллическое состояние с высокой ионной проводимостью $(\sigma_{dc} = 5 \cdot 10^{-3} - 5 \cdot 10^{-2} \, \text{S/cm}$ при 600 K [5]) для этих соединений реализуется в ходе суперионного перехода, связанного с полиморфными фазовыми переходами, приводящими к структурной разупорядоченности литиевой подсистемы.

Температурные исследования атомного строения соединений Li₃ $R_2(PO_4)_3$ [2,6–12] свидетельствуют о существовании трех (α, β, γ) полиморфных модификаций (табл. 1). Структурные α - и γ -формы являются термодинамически устойчивыми, β -форма — метастабильная. Пространственная симметрия γ -формы относится к пространственной группе Pcan (в обозначениях Шенфлиса D_{2h}^5), α - и β -формы Li₃ $R_2(PO_4)_3$ имеют моноклинную пространственную группу $P2_1/n$ (C_{2h}^{14}). Все полиморфные формы Li₃ $R_2(PO_4)_3$ являются структурно близкими, а пространственная группа C_{2h}^{14} является подгруппой D_{2h}^5 . По данным работ [2,6,7,9,10], в моноклинных формах α - и β -Li₃ $R_2(PO_4)_3$ наблюдается полная упорядоченность в расположении катионов Li⁺, $\alpha - \beta$ -переход протекает с сохранением симметрии структуры и связан с изменением локального движения катионов Li⁺ при термоактивации. При $\beta - \gamma$ -переходе на фоне продолжающихся изменений в характере локального движения катионов Li⁺ происходит повышение симметрии структуры $Li_{3}R_{2}(PO_{4})_{3}$ от моноклинной к ромбической (пространственная группа Pcan) [8,10,11]. Ромбическая форма γ -Li₃ $R_2(PO_4)_3$ по сравнению с низкотемпературными моноклинными формами характеризуется небольшими подвижками атомов в каркасе $[R_2 P_3 O_{12}]_{\infty}^{3-}$ и сильным разупорядочением литиевой подрешетки. В результате катионы Li⁺ становятся подвижными, отвечая за появление быстрого ионного переноса в структурах этих двойных фосфатов.

Исследования ионного транспорта в соединениях Li₃ $R_2(PO_4)_3$ выполнялись на керамических образцах [1,2,5,13–17] или монокристаллах небольших размеров [18,19]. Наблюдается большой разброс в экспериментальных данных, особенно в значениях энтальпии активации проводимости для суперионных γ -модификаций (ΔH_{σ}), в температурах суперионных γ -модификаций (ΔH_{σ}), в температурах суперионного (T_{SIC}) и полиморфных ($T_{\alpha-\beta}, T_{\beta-\gamma}$) переходов. Так, по данным работы [5], суперионный переход в Li₃Sc₂(PO₄)₃ связан с полиморфным $\beta-\gamma$ -переходом, по данным работы [20], он обусловлен $\alpha-\beta$ -переходом, и наряду с γ -формой суперионной является также β -модификация. В изоструктурных Li₃ R_2 (PO₄)₃ (на монокристаллах) обнаружена [19] сильно отличающаяся картина проявления суперионного

Модификация	<i>Т</i> ,К	Пространственная группа	a,Å	b, Å	<i>c</i> , Å	γ, deg	$V/Z, Å^3$	Лит. ссылка
α -Li ₃ Fe ₂ (PO ₄) ₃	293	$P2_{1}/n$	8.562 8.568	12.005 8.613	8.612 14.690	90.51 125.16	221.3 221.5	[6] [2]
β -Li ₃ Fe ₂ (PO ₄) ₃	513	$P2_{1}/n$	8.588	12.112	8.638	90.19	224.6	[7]
γ -Li ₃ Fe ₂ (PO ₄) ₃	573	Pcan	8.592	12.129	8.637		225.0	[8]
α -Li ₃ Sc ₂ (PO ₄) ₃	293	$P2_{1}/n$	8.853 8.848 8.8483	12.273 12.270 12.2737	8.802 8.801 8.7959	90.00 90.02 90.015	239.1	[9] [10] [12]
β -Li ₃ Sc ₂ (PO ₄) ₃	473	$P2_1/n$	8.858	12.327	8.816	90.00	240.7	[7]
γ -Li ₃ Sc ₂ (PO ₄) ₃	573	Pcan	8.828 8.829 8.8270	12.399 12.397 12.3998	8.823 8.821 8.8352		241.4	[11] [10] [12]

Таблица 1. Параметры элементарной ячейки (*a*, *b*, *c*, *γ*) и формульный объем (*V*/*Z*) в разных структурных формах Li₃*R*₂(PO₄)₃ (рентгенография [2,6-9,11] и нейтронография [10,12])

перехода. В Li₃Fe₂(PO₄)₃ переход в суперионное состояние сопровождается постепенным изменением σ_{dc} в широком интервале температур (480–590 K), а в Li₃Sc₂(PO₄)₃ — скачком σ_{dc} при 525 ± 5 K.

Целью работы является исследование процессов переноса электрического заряда в суперионном состоянии двойных фосфатов Li₃ R_2 (PO₄)₃ (R = Fe, Sc).

2. Эксперимент

Выбор технологической формы $Li_3R_2(PO_4)_3$. Исследования ионного переноса в кристаллических материалах, как правило, проводят на монокристаллических образцах или высокоплотных керамиках. В работе [21] были получены небольшие монокристаллы $Li_3Fe_2(PO_4)_3$ объемом $\sim 0.04\,cm^3$ методом растворрасплавной кристаллизации и более крупные монокристаллы $Li_3Sc_2(PO_4)_3$ объемом ~ $0.5\,cm^3$ методами Чохральского и Киропулоса из расплава. Однако проведению надежных температурных исследований электропроводности монокристаллов $Li_3R_2(PO_4)_3$ в суперионном состоянии препятствуют [22], во-первых, растрескивание монокристаллических образцов при полиморфных переходах из-за значительных изменений объема элементарной ячейки, и во-вторых, наличие в выращенных (as grown) монокристаллах бо́льших механических напряжений при снижении температуры от кристаллизационной до комнатной.

Для монокристаллов Li₃ R_2 (PO₄)₃, выращенных в различных ростовых условиях, наблюдались значительные расхождения в значениях температуры и теплоты полиморфных переходов [19]. В работе [23] сильный разброс величин теплофизических характеристик кристаллов Na₃Sc₂(PO₄)₃, близких по структуре к исследуемым Li₃ R_2 (PO₄)₃, связывают с их исходными термодинамически неравновесными "энергетическими" состояниями, которые зависят от выбранного метода получения и термических условий роста кристаллов. Это в полной мере относится и к двойным фосфатам $\text{Li}_3 R_2(\text{PO}_4)_3$.

В кристаллах, характеризующихся полиморфными переходами и полученными направленной кристаллизацией из расплава с естественным охлаждением, могут "закаливаться" различные неравновесные структурные состояния. В таких структурных состояниях образец представляет собой смесь кристаллических областей, находящихся в равновесных состояниях при разных температурах, частично сохранившихся из-за заторможенности фазовых превращений вследствие диффузионных затруднений.

Для изучения суперионного состояния соединений $Li_3R_2(PO_4)_3$ нами была выбрана керамическая форма, поскольку кристаллический порошок, синтезированный при длительных высокотемпературных (1200–1500 K) отжигах находится в равновесном структурном состоянии, а также благодаря улучшенным (по сравнению с монокристаллами) механофизическим свойствам керамики в температурных исследованиях.

Приготовление керамических образцов. Электрофизические исследования проводили на аттестованных (в структурном и термическом отношении) керамических образцах $Li_3R_2(PO_4)_3$ [5,21]. Соединения $Li_3R_2(PO_4)_3$ получены методом твердофазной реакции при 1200 К в течение 8–10 h в воздушной атмосфере в Институте кристаллографии РАН. Порошкограммы α - $Li_3R_2(PO_4)_3$ при комнатной температуре приведены в работе [21]. По данным дифференциально-термического анализа [21], при охлаждении в $Li_3Sc_2(PO_4)_3$ фиксируется один экзотермический эффект при 529 К, в $Li_3Fe_2(PO_4)_3$ — два экзотермических эффекта при 530 и 508 К.

Образцы для электрофизических измерений приготавливали по традиционной керамической технологии (давление прессования 5 · 10⁸ Pa). Толщина образцов h = 1-2 mm. Относительная плотность керамических образцов превышала 90% от рентгенографической плотности ρ_X . Рассчитанные из структурных данных [6,9] значения $\rho_X = 3.12$ и 2.76 g/cm³ для Li₃Fe₂(PO₄)₃ и Li₃Sc₂(PO₄)₃ соответственно, средний размер зерна в керамике ~ 3 μ m [21].

Измерения электропроводности. Статическую электропроводность σ_{dc} керамик $\text{Li}_3 R_2(\text{PO}_4)_3$ определяли методом импедансной спектроскопии в диапазонах частот 5–5 · 10⁵ Hz и сопротивлений 1–10⁷ Ω (прибор Tesla BM-507) в вакууме (~ 10⁻¹ Pa). Вкладом электронной проводимости в электропроводность кристаллов $\text{Li}_3 R_2(\text{PO}_4)_3$ можно пренебречь [5,22].

Керамические образцы $Li_3R_2(PO_4)_3$ предварительно отжигали при 750–780 К в течение 1–2 h (перевод фосфатов в суперионное состояние), затем проводили измерения импеданса в режиме охлаждения по фиксированным температурным точкам, время стабилизации температурной точки 0.5 h. В качестве электродов использовали серебряную пасту. Площадь контактных поверхностей $S = 33-36 \text{ mm}^2$. Описание экспериментальной установки приведено в работе [24].

Объемное сопротивление R_b керамических образцов определяли экстраполяцией годографа импеданса на ось активных сопротивлений. Электропроводность рассчитывали по формуле $\sigma_{dc} = h/(R_bS)$. Энтальпию активации ионной проводимости ΔH_{σ} находили из уравнения Аррениуса—Френкеля:

$$\sigma_{dc}T = \sigma_0 \cdot \exp(-\Delta H_\sigma/kT),$$

где σ_0 — предэкспоненциальный множитель электропроводности. По данным работы [25], влиянием межкристаллитных границ на проводимость керамических образцов при $T > T_{SIC}$ можно пренебречь, поэтому кондуктометрические данные характеризуют внутрикристаллитную проводимость керамик γ -Li₃ R_2 (PO₄)₃.

3. Результаты

5*

Li₃Fe₂(PO₄)₃. Температурная зависимость ионной проводимости $\sigma_{dc}(T)$ для керамики Li₃Fe₂(PO₄)₃ показана на рис. 1, на котором для сравнения также приведены σ_{dc} , полученные разными исследователями на керамических образцах [1,15,16]. Кондуктометрические данные для γ -Li₃Fe₂(PO₄)₃ в суперионном состоянии (при 542–748 K) соответствуют уравнению Френкеля– Аррениуса:

$$\sigma_{dc}T = 1.8 \cdot 10^4 \exp(-0.36/kT),$$

где численные значения множителя σ_0 и энтальпии ΔH_{σ} представлены в размерности SK/cm и eV соответственно. При 573 K (300°C) для керамического образца Li₃Fe₂(PO₄)₃ $\sigma_{dc} = 2.1 \cdot 10^{-2}$ S/cm, что находится в хорошем согласии с литературными данными (табл. 2). Ионная проводимость γ -Li₃Fe₂(PO₄)₃ достигает максимального значения $\sigma_{dc} = 8.4 \cdot 10^{-2}$ S/cm при 748 K.

Кристалл	$\sigma_{dc},$ S/cm	$\Delta H_{\sigma}, \mathrm{eV}$	Лит. ссылака	
Li ₃ Fe ₂ (PO ₄) ₃	$\begin{array}{c} 2.1 \cdot 10^{-2} (573 \text{ K}) \\ 2.8 \cdot 10^{-2} (573 \text{ K}) \\ 1.9 \cdot 10^{-2} (573 \text{ K}) \\ 2.5 \cdot 10^{-2} (600 \text{ K}) \\ 1.6 \cdot 10^{-2} (573 \text{ K}) \\ 1.8 \cdot 10^{-2a} (600 \text{ K}) \end{array}$	$\begin{array}{c} 0.36 \\ 0.28 \\ 0.67 \\ 0.48 \\ 0.42 \\ 0.59^{a)} \end{array}$	наши данные [1,5] [2] [16] [15] [19]	
$Li_3Sc_2(PO_4)_3$	$\begin{array}{c} 1.1 \cdot 10^{-2} \ (573 \ \mathrm{K}) \\ 1.2 \cdot 10^{-2} \ (573 \ \mathrm{K}) \\ 8 \cdot 10^{-3} \ (573 \ \mathrm{K}) \\ 7 \cdot 10^{-3} \ (573 \ \mathrm{K}) \\ 7 \cdot 10^{-3 \ \mathrm{B}} \ (573 \ \mathrm{K}) \\ 1.7 \cdot 10^{-2} \ (573 \ \mathrm{K}) \\ 3 \cdot 10^{-2 \mathrm{a}} \ (600 \ \mathrm{K}) \end{array}$	$\begin{array}{c} 0.31\\ 0.47^{6)}\\ 0.37\\ 0.37\\ 0.69^{\text{B})}\\ 0.41\\ 0.38^{\text{a})} \end{array}$	[13] [5] [14] [14] [17] [19]	

Примечание. ^{а)} Монокристалл, измерения $\sigma_{dc} \parallel c.$ ⁶⁾ Расчет из графика. ^{в)} ⁶Li-изотоп.

Энтальпия активации проводимости в γ -Li₃Fe₂(PO₄)₃ ($\Delta H_{\sigma} = 0.36 \text{ eV}$) близка к нижней границе интервала приводимых в литературе значений ΔH_{σ} для керамических и монокристаллических образцов этого соединения (табл. 2).

В режиме охлаждения непосредственно перед суперионным переходом проводимость γ -Li₃Fe₂(PO₄)₃ при 542 К $\sigma_{dc} = 1.5 \cdot 10^{-2}$ S/cm. В дальнейшем она непрерывно уменьшается в интервале температур от 540 до 430 К, общее снижение σ_{dc} составляет ~ 10² раз. Ионная

Рис. 1. Температурная зависимость ионной проводимости $\sigma_{dc}(T)$ кристаллов Li₃Fe₂(PO₄)₃: *1* — настоящая работа, 2 — [1], 3 — [15] и 4 — [16].

проводимость α -Li₃Fe₂(PO₄)₃ с уменьшением температуры продолжает падать, достигая $\sigma_{dc} = 4 \cdot 10^{-7}$ S/cm при 295 K.

Таким образом, в Li₃Fe₂(PO₄)₃ суперионный переход, характеризующий при охлаждении упорядочение Li подрешетки, происходит непрерывно в интервале температур $T_{\rm SIC} = 430 - 540 \, {\rm K}$ (протяженность перехода 110 К). Полученный нами интервал температур суперионного перехода хорошо согласуется с приведенным в работах [1,5,16] для керамических образцов интервалом $T_{\rm SIC} = 420-555$ К. Температурный интервал $T_{\text{SIC}} = 430-540 \text{ K}$ включает тер-мические эффекты $T_{\gamma-\beta}^{DTA} = 530 \text{ K}$ [5], 538 K [2,16] и $T_{\gamma-\beta}^{DTA} = 500 \text{ K}$ [5], 538 K [2,16] и $T_{\beta-\alpha}^{DTA} = 508 \,\mathrm{K}$ [5], 512 K [16], 514 K [2], обнаруженные методом дифференциально-термического анализа. Кондуктометрическое поведение кристаллов Li₃Fe₂(PO₄)₃ при суперионном переходе подтверждается результатами мессбауэровской спектроскопии (температурной зависимостью квадрупольного расщепления, относительно α -Fe) [15,26]. По данным работ [15,26], при охлаждении упорядочение катионов лития в структуре $Li_3Fe_2(PO_4)_3$ начинается при $\gamma - \beta$ -переходе (520 K) и протекает непрерывно до $\beta - \alpha$ -перехода (430 K), постепенная перестройка кристаллической структуры происходит в интервале температур 430-520 К.

Li₃Sc₂(PO₄)₃. Температурная зависимость ионной проводимости $\sigma_{dc}(T)$ Li₃Sc₂(PO₄)₃, а также σ_{dc} , полученные на керамических образцах в исследованиях [5,13,14,17], показаны на рис. 2. Кондуктометрические данные для γ -Li₃Sc₂(PO₄)₃ в суперионном состоянии (при 567–780 K) соответствуют уравнению:

$$\sigma_{dc}T = 3.4 \cdot 10^3 \exp(-0.31/kT).$$

Проводимость при 573 К в керамическом образце Li₃Sc₂(PO₄)₃ составляет $1.1 \cdot 10^{-2}$ S/cm [в ~ 2 раза меньше σ_{dc} у Li₃Fe₂(PO₄)₃], что находится в хорошем согласии с литературными данными (табл. 2). Ионная проводимость достигает максимального значения $\sigma_{dc} = 4.0 \cdot 10^{-2}$ S/cm при 780 К. Энтальпия активации проводимости γ -Li₃Sc₂(PO₄)₃ $\Delta H_{\sigma} = 0.31$ eV близка к нижней границе интервала приводимых в табл. 2 значений ΔH_{σ} для керамических и монокристаллических образцов этого соединения (табл. 2).

Проводимость γ -Li₃Sc₂(PO₄)₃ $\sigma_{dc} = 9.7 \cdot 10^{-3}$ S/cm при 567 K, непосредственно перед суперионным переходом. Зависимость $\sigma_{dc}(T)$ для Li₃Sc₂(PO₄)₃ испытывает скачок σ_{dc} в 10² раз при $T_{SIC} = 540 \pm 25$ K (в этом интервале температур не удалось получить стабилизированные значения σ_{dc} в рамках использованной методики измерений). В α -Li₃Sc₂(PO₄)₃ ионная проводимость достигает $\sigma_{dc} = 3 \cdot 10^{-7}$ S/cm при 398 K, что на ~ 100 K раньше, чем в α -Li₃Fe₂(PO₄)₃. Полученное значение $T_{SIC} = 540 \pm 25$ K согласуется с кондуктометрическими данными ($T_{SIC} = 520 \pm 5$ K) для керамических образцов [13] и монокристаллов [19], термическим эффектом $T_{p-\beta}^{DTA} = 533 \pm 8$ K [25] и полиморфным переходом

Рис. 2. Температурная зависимость ионной проводимости $\sigma_{dc}(T)$ кристаллов Li₃Sc₂(PO₄)₃: *1* — настоящая работа, 2 — [5], 3 — [14], 4 — [17] и 5 — [13].

 $T_{\gamma-\beta}^{XRD} = 520 \,\mathrm{K}$ (на монокристалле), обнаруженным при температурном рентгеноструктурном анализе [9]. Наблюдаемый скачок σ_{dc} также согласуется с данными ⁷Li ЯМР [27], согласно которым при охлаждении в Li₃Sc₂(PO₄)₃ практически полное упорядочение катионов лития происходит при $T_{\gamma-\beta} \approx 530 \,\mathrm{K}$.

4. Обсуждение результатов

Механизм суперионной проводимости γ -Li₃ $R_2(PO_4)_3$. Как уже упоминалось, в основе атомного строения γ -модификаций Li₃ $R_2(PO_4)_3$, обладающих высокой Li⁺-ионной проводимостью, лежит смешанный кристаллический каркас $[R_2P_3O_{12}]_{\infty}^{3-}$. Каркас образуют соединенные по кислородным вершинам фосфор-кислородные тетраэдры [РО₄] и железо(скандий)-кислородные октаэдры [RO₆]. Тетраэдры [PO₄] чередуются с октаэдрами [RO₆], напрямую не соединяясь друг с другом. Ионы Li+, компенсирующие отрицательный заряд каркаса, расположены в кристаллографических позициях во внутренних пустотах каркаса. "Каркасные" катионы R^{3+} обеспечивают стабильность структуры кристаллов при разупорядочении катионов Li⁺.

Методом прецизионной высокотемпературной нейтронографии [10] в ромбической γ -фазе Li₃Sc₂(PO₄)₃ зафиксированы три набора литиевых 8-кратных позиций Li1, Li2 и Li3 с заселенностью 70, 50 и 30% соответственно. Заселенности позиций лития, уточненные по данным рассеяния нейтронов, позволяют точнее (по сравнению с рентгеновскими данными [8,11]) локализовать легкие атомы Li на фоне тяжелых атомов Fe, Sc, P, O благодаря близким для этих атомов значениям амплитуд когерентного рассеяния. В результате в элементарной ячейке 12 ионов Li⁺ распределены по 24 не полностью заселенным позициям, что дает возможность катионам Li⁺ быстро передвигаться внутри кристаллического каркаса по вакансионному механизму, обеспечивая суперионную проводимость соединений Li₃ R_2 (PO₄)₃.

Полученные результаты свидетельствуют о том, что в суперионном состоянии γ -Li₃ $R_2(PO_4)_3$ тип катиона R^{3+} в кристаллическом каркасе $[R_2P_3O_{12}]_{\infty}^{3-}$ (R = Fe, Sc) влияет на величины энтальпии активации Li⁺-ионного транспорта и σ_{dc} . Поскольку "каркасные" катионы Fe³⁺ и Sc³⁺ различаются существенно по величине ионного радиуса (0.55 и 0.74 Å в системе "эффективных" радиусов [28]), то наблюдается сильное различие объемов образующихся изоструктурных фаз. Больший объем элементарной ячейки γ -Li₃Sc₂(PO₄)₃ ($V = 965.75 \text{ Å}^3$ при 573 К) по сравнению с γ -Li₃Fe₂(PO₄)₃ (V = 900.08 Å³) приводит к меньшим стерическим затруднениям при перемещениях ионов Li⁺ в кристаллической решетке и соответственно к меньшему значению ΔH_{σ} (понижаются потенциальные барьеры для ионного переноca). Присутствие высокополяризуемых катионов Fe³⁺ (электронная поляризуемость $\alpha_e = 2.2\,{
m \AA}^3$ [29]) по сравнению с катионами Sc³⁺ ($\alpha_e = 1.1 \,\text{\AA}^3$ [29]) в жестком каркасе $[R_2P_3O_{12}]_{\infty}^{3-}$ способствует увеличению σ_{dc} γ -Li₃Fe₂(PO₄)₃.

В работах [30,31] предложена модель суперионной проводимости в γ -Li₃ $R_2(PO_4)_3$, в основе которой лежит коррелированное прыжковое движение пар Li⁺-Li⁺. Согласно этой модели, характеристическое время "оседлой" жизни иона Li⁺ в кристаллографических позициях много больше времени прыжка между позициями. Наименьшее внутрипарное расстояние Li⁺-Li⁺ равно приблизительно сумме радиусов двух ионов Li⁺ и составляет 2 Å [32]. Прыжковые частоты v_h ионов Li⁺ в γ -фазах Li₃ $R_2(PO_4)_3$ измерены в работах [17,18]. Оказалось, что частота перескоков $v_h = 1.5 \cdot 10^9$ Hz при 573 К [17] для γ -Li₃Sc₂(PO₄)₃ на \sim 2 порядка превышает $\nu_h = 5.4 \cdot 10^7$ Hz для γ -Li₃Fe₂(PO₄)₃ [18]. Подвижность носителей заряда в литиевой подрешетке γ -фазы Li₃Sc₂(PO₄)₃ значительно выше, чем в γ -фазе $Li_3Fe_2(PO_4)_3$.

Суперионный переход в кристаллах Li₃R₂(PO₄)₃. Тип каркаса $[R_2P_3O_{12}]_{\infty}^{3-}$ определяет разную термодинамику и кинетику процессов разупорядочения (при нагревании) или упорядочения (при охлаждении) литиевой подрешетки соединений Li₃R₂(PO₄)₃ при суперионном переходе. Суперионные переходы в Li₃R₂(PO₄)₃ связаны с протекающими в них полиморфными превращениями и определяются скоростями этих превращений. Согласно термодинамическим данным [19], теплота суперионного перехода $\Delta H_{\gamma-\beta}^{DSC} = 3-4.5$ kJ/mol в Li₂Sc₃(PO₄)₃ больше в ~ 4 раза, чем в Li₃Fe₂(PO₄)₃ ($\Delta H_{\gamma-\beta}^{DSC} = 0.7-1.3$ kJ/mol). Тогда рассчитанное изменение энтропии $\Delta S_{\gamma-\beta} =$ $= \Delta H_{\gamma-\beta}/T_{\gamma-\beta}$ при полиморфном $\gamma-\beta$ -переходе

Физика твердого тела, 2018, том 60, вып. 5

составляет $\Delta S_{\gamma-\beta} = 5.5 - 8.3 \text{ J/(mol} \cdot \text{K})$ в Li₂Sc₃(PO₄)₃ и $\Delta S_{\gamma-\beta} = 1.3 - 2.4 \text{ J/(mol} \cdot \text{K})$ в Li₃Fe₂(PO₄)₃. Полученный результат указывает на то, что после $\gamma-\beta$ -перехода степень упорядочения литиевой подрешетки в β -Li₃Sc₂(PO₄)₃ значительно выше, чем в β -Li₃Fe₂(PO₄)₃.

Кинетика суперионного перехода типа "порядок-беспорядок" в $Li_3R_2(PO_4)_3$ определяется, главным образом, диффузионными процессами разупорядочения литиевой подрешетки. При охлаждении скорость процесса упорядочения в Li⁺-подрешетке Li₃ R_2 (PO₄)₃, контролируемая диффузией катионов Li⁺ (для завершения полного упорядочения Li⁺ требуется определенное время), определяет кинетику суперионного перехода и термических эффектов. Как было показано выше, подвижность лития в γ -фазе Li₃Sc₂(PO₄)₃ значительно больше, чем в γ -фазе Li₃Fe₂(PO₄)₃. Из-за быстрой диффузии ионов Li⁺ в исследуемом образце $Li_3Sc_2(PO_4)_3$ β -фаза не проявляется на зависимости $\sigma_{dc}(T)$ вследствие наложения $\beta - \alpha$ -перехода на переход $\gamma - \beta$. По этой причине переход $\beta - \alpha$ не проявляется также и на термических кривых. Однако существование разных полимофных модификаций в образцах Li₃R₂(PO₄)₃ в значительной степени определяется условиями их синтеза, термообработки и предыстории. Так, например, для некоторых монокристаллов Li₃Fe₂(PO₄)₃ β -фаза была обнаружена [7] даже при 600 К в области существования у-фазы (при $T > T_{\beta - \gamma} = 530 - 540 \,\mathrm{K}$).

Кристаллы Li₃R₂(PO₄)₃, термодинамически устойчивые в суперионном состоянии (у-фаза) и диэлектрическом состоянии (α-фаза), имеют разную склонность к сохранению в метастабильном состоянии (*β*-фаза) при охлаждении. При охлаждении скорость суперионного перехода в двойных фосфатах $Li_3R_2(PO_4)_3$ (R = Sc, Fe) зависит от скорости процесса упорядочения катионов Li⁺ в β -фазе. Это обуславливает разную кинетику суперионного перехода в соединениях Li₃Fe₂(PO₄)₃ и Li₃Sc₂(PO₄)₃. Полученные нами результаты, а также данные работ [19-22] свидетельствуют, что суперионный переход и термические эффекты в Li₃Fe₂(PO₄)₃ значительно более медленные и сильно "размыты" по температуре по сравнению с аналогичными эффектами в Li₃Sc₂(PO₄)₃. В Li₃Sc₂(PO₄)₃ при охлаждении процесс упорядочения Li подрешетки происходит в области *γ*-β-перехода (на монокристаллах обнаружены скачки проводимости [5,19]), а в Li₃Fe₂(PO₄)₃ — в широком интервале температур (100–150 К), захватывающем области $\gamma - \beta$ - и $\beta - \alpha$ -переходов (на монокристаллах не обнаружены скачки проводимости [19]).

Что препятствует процессу упорядочения в литиевой подрешетке β -Li₃Fe₂(PO₄)₃ при охлаждении? На скорость процесса упорядочения в Li-подрешетке Li₃R₂(PO₄)₃ (R = Fe, Sc) могут оказывать влияние энергетический, геометрический (размерный) и поляризационный факторы. Энергетический фактор, по-видимому, не сильно влияет, поскольку тепловая энергия катионов Li⁺ в β -Li₃R₂(PO₄)₃ практически одинакова (все фазовые переходы происходят при примерно одинаковых температурах). Напротив, геометрический (параметры решетки, объем элементарной ячейки, приходящийся на один ион Li⁺, размеры окна проводимости канала) и поляризационный (в первую очередь каркасных катионов) факторы кристаллической решетки Li₃ $R_2(PO_4)_3$ сильно различаются. Геометрические размеры каркаса задаются величиной ионного радиуса "каркасного" катиона R^{3+} . Для "больших" и низкополяризуемых катионов Sc³⁺ наблюдается скачок σ_{dc} при суперионном переходе, в то время как для "маленьких" и высокополяризуемых катионов Fe³⁺ суперионный переход носит размытый характер. Температурная граница полного Li-упорядочения в Li₃Sc₂(PO₄)₃ определяется $\beta-\alpha$ -переходом.

В идеальном случае полиморфные переходы при постоянном давлении должны протекать при постоянной температуре, как это наблюдается в случае суперионного перехода в Li₃Sc₂(PO₄)₃. Суперионный переход в Li₃Fe₂(PO₄)₃ не является полиморфным в чистом виде, и его можно характеризовать как "размытый" фазовый переход. Суперионные переходы могут "размываться" по температуре из-за динамической неоднородности системы проводящих ионов Li⁺ (распределение ионов Li⁺ по энергиям), различия в заселенностях структурных положений ионов Li⁺ в суперионной фазе. Можно предположить, что в Li₃Fe₂(PO₄)₃ имеется более широкое [по сравнению с $Li_3Sc_2(PO_4)_3$] распределение частот прыжков ионов Li⁺ в суперионной фазе, что проявляется в кинетике суперионного перехода. Быстрая кинетика суперионного перехода в Li₃Sc₂(PO₄)₃ и, напротив, его медленная кинетика в Li₃Fe₂(PO₄)₃ требуют дополнительного изучения временных зависимостей проводимости.

5. Заключение

Главной причиной противоречивых данных по температурам полиморфных переходов (термический анализ) и температуре суперионного перехода (кондуктометрия) в соединениях $Li_3R_2(PO_4)_3$ является кристаллохимическая и "энергетическая близость" их полимофных (α, β, γ) форм. Такое состояние структуры называют "кристаллохимически нестабильным" [33]. К невоспроизводимости значений температур полиморфных переходов и суперионного перехода в фосфатах $Li_3R_2(PO_4)_3$ может привести сосуществование нескольких структурных модификаций в некотором интервале температур в области полиморфных превращений (многофазных состояний) у образцов с разной термической предысторией. О неравновесном сосуществовании нескольких структурных форм в одном образце Na₃Sc₂(PO₄)₃ свидетельствуют эксперименты по рентгеновской дифрактометрии от его различных участков [23]. Поэтому даже небольшие изменения в параметрах состояния могут повлечь за собой полиморфные превращения "кристаллохимически нестабильных" $Li_3R_2(PO_4)_3$. Из этих параметров для них детально изучена только температура. Неустойчивость структуры требует контроля за чистотой реактивов, термическими условиями получения, разной формой объектов исследования (монокристаллы, порошки) и другими факторами.

Принципиальным является вопрос об устойчивости кристаллической структуры фосфатов γ -Li₃ R_2 (PO₄)₃ (в первую очередь, она определяется стабильностью жесткого каркаса $[R_2P_3O_{12}]_{\infty}^{3-}$), в которых ионы Li⁺ находятся в разупорядоченном состоянии. Определяющую роль в стабильности каркаса $[R_2P_3O_{12}]_{\infty}^{3-}$ играют, по-видимому, "каркасные" катионы R^{3+} ($R^{3+} = Fe^{3+}$, Sc³⁺).

Процессы структурного разупорядочения в подрешетке катионов Li⁺ являются причиной появления у соединений Li₃ $R_2(PO_4)_3$ (R = Fe, Sc) полиморфных модификаций с суперионной проводимостью. Суперионная проводимость ($\sigma_{dc} = 0.01 - 0.02$ S/cm при 573 K) ромбических модификаций γ -Li₃ $R_2(PO4)_3$ (R = Fe, Sc) обусловлена их общей структурной особенностью — статистическим заполнением катионами Li⁺ кристаллографических позиций в 3*D*-сетке из пересекающихся каналов в каркасе [$R_2P_3O_{12}]_{\infty}^{3-}$. Структурные фазовые переходы в двойных фосфатах Li₃ $R_2(PO_4)_3$, затрагивающие Li⁺ подрешетку, являются низкоэнергетичными (1–5 kJ/mol), характеризуются небольшими смещениями атомов в кристаллическом каркасе, но при этом сопровождаются бо́льшим изменением (на 2 порядка) Li⁺-ионной проводимости.

В суперионном состоянии γ -Li₃ $R_2(PO_4)_3$ тип катионов R^{3+} (R = Fe, Sc) в стабилизирующем кристаллическом каркасе $[R_2P_3O_{12}]_{\infty}^{3-}$ влияет на величину энтальпии активации Li⁺-ионного транспорта (на потенциальные барьеры для прыжков носителей заряда) и на величину Li⁺-ионной проводимости. К меньшей энтальпии активации Li⁺-ионного транспорта в γ -Li₃Sc₂(PO₄)₃ приводит больший объем элементарной ячейки в γ -Li₃Sc₂(PO₄)₃ по сравнению с γ -Li₃Fe₂(PO₄)₃. К большей Li⁺-ионной проводимости γ -Li₃Fe₂(PO₄)₃ приводит более высокая поляризующая способность катионов Fe³⁺ по сравнению с катионами Sc³⁺.

В Li₃Sc₂(PO₄)₃ при понижении температуры происходит скачок $\sigma_{dc}(T)$, связанный с процессом упорядочения катионов Li⁺ по литиевым позициям и потерей ими подвижности. Высокая степень упорядочения катионов в литиевой подрешетке достигается в точке полиморфного $\gamma - \beta$ -перехода (быстрая кинетика суперионного перехода).

Напротив, в Li₃Fe₂(PO₄)₃ при понижении температуры происходит постепенное уменьшение $\sigma_{dc}(T)$. Упорядочение катионов в литиевой подрешетке начинается при $\gamma - \beta$ -, а заканчивается при $\beta - \alpha$ -переходе (медленная кинетика суперионного перехода). В исследуемых образцах Li₃Fe₂(PO₄)₃ остаточная довольно высокая подвижность ионов Li⁺ после $\gamma - \beta$ -перехода препятствует их упорядочению и растягивает суперионный переход от $\gamma - \beta$ - до $\beta - \alpha$ -полиморфного превращения.

В Li₃Fe₂(PO₄)₃ β -фаза сохраняется в широком температурном интервале (110 K).

Наличие полиморфных переходов мешает практическому применению кристаллов $Li_3R_2(PO_4)_3$, поскольку они сопровождаются резким изменением объема, вследствие чего происходит разрушение кристалла.

Соединения $Li_3R_2(PO_4)_3$ для исследования предоставлены Олегом Константиновичем Мельниковым (Институт кристаллографии РАН), памяти которого посвящается эта работа.

Список литературы

- Е.А. Генкина, Л.Н. Демьянец, А.К. Иванов-Шиц, Б.А. Максимов, О.К. Мельников, В.И. Симонов. Письма в ЖЭТФ 38, 257 (1983).
- [2] F. D'Yvoire, M. Pintard-Screpel, E. Bretey, M. de la Rochere. Solid State Ionics 9–10, 851 (1983).
- [3] A.K. Padhi, K.S. Nanjundaswamy, C. Masduelier, S. Okada, J.B. Goodenough. J. Electrochem. Soc. 144, 1609 (1997).
- [4] J. Cabana, J. Shirakawa, M. Nakayama, M. Wakihara, C.P. Grey. J. Mater. Chem. 21, 10012 (2001).
- [5] A.B. Bykov, A.P. Chirkin, L.N. Demyanets, S.N. Doronin, E.A. Genkina, A.K. Ivanov-Shits, I.P. Kondratyuk, B.A. Maksimov, O.K. Melnikov, L.N. Muradyan, V.I. Simonov, V.A. Timofeeva. Solid State Ionics 38, 31 (1990).
- [6] Б.А. Максимов, Л.А. Мурадян, Е.А. Генкина, В.И. Симонов. Докл. АН СССР 288, 634 (1986).
- [7] И.П. Кондратюк, Б.А. Максимов, Л.А. Мурадян. Докл. АН СССР 292, 1376 (1987).
- [8] И.А. Верин, Л.А. Генкина, Б.А. Максимов, Л.А. Мурадян, М.И. Сирота. Кристаллография 30, 677 (1985).
- [9] Е.А. Генкина, Л.А. Мурадян, Б.А. Максимов. Кристаллография 31, 595 (1986).
- [10] Б.А. Максимов, Л.А. Мурадян, Н.Н. Быданов, В.А. Сарин, А.Б. Быков, В.А. Тимофеева, В.И. Симонов. Кристаллография 36, 1431 (1991).
- [11] Б.А. Максимов, Л.А. Мурадян, Е.А. Генкина, И.А. Верин. Кристаллография **31**, 592 (1986).
- [12] T. Suzuki, K. Yoshida, K. Uematsu, T. Kodama, K. Toda, Z.G. Ye, M. Ohashi. Solid State Ionics **113–115**, 89 (1998).
- [13] J.M. Winand, J. Depireux. Europhys. Lett. 8, 447 (1989).
- [14] S.E. Sigaryov. Solid State Commun. 75, 1005 (1990).
- [15] S.E. Sigaryov, V.G. Terziev. Phys. Rev. B 48, 16252 (1993).
- [16] A.K. Ivanov-Schitz, A.V. Nistuk, N.G. Chaban. Solid State Ionics 139, 153 (2001).
- [17] A.F. Orliukas, T. Salkus, A. Kezionis, A. Dindune, Z. Kanepe, J. Ronis, O. Bohnke, V. Venckute, M. Lelis. Ferroelectrics 418, 34 (2011).
- [18] A. Orliukas, R. Vaitkus, A. Kezionis, S. Aukselis. Solid State Ionics 40–41, 158 (1990).
- [19] А.К. Иванов-Шиц. ФТТ 39, 83 (1997).
- [20] С.Е. Сигарев. Кристаллография 37, 1055 (1992).
- [21] А.Б. Быков, Л.Н. Демьянец, С.Н. Доронин, А.К. Иванов-Шиц, О.К. Мельников, В.А. Тимофеева, Б.К. Севастьянов, А.П. Чиркин. Кристаллография 32, 1515 (1987).
- [22] А.К. Иванов-Шиц, И.В. Мурин. Ионика твердого тела. Изд-во СПбУ, СПб. (2000). 616 с.
- [23] И.Г. Гусаковская, С.И. Пирумова. Ж. неорг. хим. 39, 1281 (1994).

- [24] А.К. Иванов-Шиц, Н.И. Сорокин, П.П. Федоров, Б.П. Соболев. ФТТ 25, 1748 (1983).
- [25] А.К. Иванов-Шиц. В сб.: Электродика твердотельных систем / Под ред. М.В. Перфильева. Изд-во УрО АН СССР. Свердловск (1991). С. 70.
- [26] I.S. Lyubutin, O.K. Melnikov, S.E. Sigaryov, V.G. Terziev. Solid State Ionics 31, 197 (1988).
- [27] A.A. Vashman, I.S. Pronin, S.E. Sigaryev. Solid State Ionics 58, 201 (1992).
- [28] R.D. Shannon. Acta Cryst. A 32, 751 (1976).
- [29] C.K. Jorgensen. Top. Curr. Chem. 56, 1 (1975).
- [30] S.E. Sigaryov. Mater. Sci. Eng. B 13, 113 (1992).
- [31] S.E. Sigaryov. Mater. Sci. Eng. B 13, 121 (1992).
- [32] S.E. Sigaryov, E.A. Genkina, B.A. Maximov. Solid State Ionics 37, 261 (1990).
- [33] Г.А. Бандуркин, Б.Ф. Джуринский, И.В. Тананаев. Особенности кристаллохимии редкоземельных соединений. Наука, М. (1984). 230 с.