Динамика поверхностных дислокационных ансамблей в кремнии при наличии механических и магнитных возмущений

© А.М. Орлов, А.А. Скворцов, А.А. Соловьев

Ульяновский государственный университет, 432970 Ульяновск, Россия

E-mail: amo@orlov.ulsu.su; scvor@sv.uven.ru

(Поступила в Редакцию 14 мая 2002 г. В окончательной редакции 15 августа 2002 г.)

Исследуется динамика поверхностных дислокационных ансамблей в кремнии при наличии механических и магнитных возмущений. Описание процесса движения дефектов произведено с рассмотрением трех видов барьеров, включающих магниточувствительные точечные дефекты и дислокации. В рамках представленного рассмотрения с учетом концепции спин-зависимых реакций между структурными дефектами предложена кинетическая модель наблюдаемых магнитостимулированных изменений подвижности, обусловленных образованием долгоживущих комплексов с участием парамагнитной примеси. Экспериментально показано, что предварительная обработка дислокационных кристаллов в течение $5-45\,$ min в магнитном поле ($B=1\,$ T) способствует двух- и трехкратному увеличению скорости движения дислокаций в n- и p-Si соответственно. Зафиксирована "магнитная память" дислокационного Si и рассмотрена кинетика ее ослабления в естественных условиях хранения образца после магнитной обработки. Согласование эксперимента с теорией позволило выявить основные количественные характеристики магнитостимулированного транспорта линейных дефектов: парциальные скорости перемещения дислокаций и динамику дислокационных сегментов на различных стопорах, включая времена ожидания.

Известно, что магнитное поле с индукцией $B\sim 1\,\mathrm{T}$ способно влиять на подвижность линейных дефектов в ионных кристаллах, металлах и полупроводниках [1–8]. Объясняя физику воздействия энергетически слабого магнитного поля на динамику дислокационной структуры, большинство исследователей склоняется к модели спин-зависимых реакций [1–12]. Суть этой модели сводится к магнитостимулированной эволюции электронных спинов примесных центров, снимающих спиновый запрет на определенные электронные переходы. Это не может не отразиться на поведении дефектной структуры, в частности на изменении скорости перемещения линейных дефектов как в поле внутренних напряжений кристалла, так и в поле внешних сил.

Несмотря на убедительность экспериментальной информации по этой тематике, многие вопросы магнитостимулированной динамики дислокаций остаются нерассмотренными. Так, практически не изучена подвижность дислокационных сегментов в элементарных полупроводниках при различных временах выдержки образцов в магнитном поле. Отсутствуют сведения о кинетических и полевых зависимостях дислокационных пробегов в элементарных полупроводниках, подвергнутых обработке магнитным полем. Практически нет информации по разграничению роли различных типов стопоров, взаимодействующих с движущейся дислокацией в легированном полупроводнике. Ограничены сведения и по кинетике пробега дислокаций в кристаллах с неоднородным пространственным распределением линейных дефектов. Анализу этих важнейших вопросов и посвящена настоящая работа.

Пусть движение дислокаций в поле внешних сил определяется тремя основными видами стопоров, связанных с собственным барьером кристаллической решетки

(подстрочный индекс i=1), магниточувствительными (i=2) точечными дефектами (основная легирующая примесь) и пересекающимися линейными дефектами, включая дислокации леса (i=3).

В поле упругих напряжений результирующая скорость перемещения дислокаций v, как и их механическая подвижность $\mu_m = v/F$, определяется вкладом каждого из рассматриваемых видов стопоров, согласуясь с очевидным уравнением

$$\mu_m = \frac{1}{F(\tau_1 C_1 + \tau_2 C_2 + \tau_3 C_3)},\tag{1}$$

где F — сила, действующая на дефект [N], C_i — концентрация стопоров, приходящихся на единицу длины пробега дислокаций $[m^{-1}]$, C=1/a, a — период рельефа Пайерлса [m], $\tau_i=\tau_0\exp(E_i/k_BT)$ — времена ожидания перед соответствующим типом стопоров [s], E_1 — барьер Пайерлса, $E_{2,3}$ — энергия закрепления на соответствующем типе стопоров [J], k_B — постоянная Больцмана [J/K], T — температура [K].

Действительно, в процессе перемещения дислокация последовательно встречает на своем пути различные типы стопоров, задерживаясь на них в течение характерных времен ожидания. В зависимости от числа встречаемых барьеров $n_i = xC_i$ участок протяженностью x преодолевается дислокацией за время

$$\tau = \sum_{i=3} \tau_i n_i = x \sum_{i=3} \tau_i C_i. \tag{2}$$

Тогда результирующая скорость перемещения дислокаций в поле упругих напряжений может быть представлена как

$$v = \frac{x}{\tau} = \frac{1}{\sum_{i=3} \tau_i C_i},\tag{3}$$

что и определяет (1). Из уравнения (3) видно, что результирующая скорость контролируется наибольшим значением $C_i \tau_i$ (или наименьшим значением v_i).

Проанализируем составляющие $C_i \tau_i$. Первый тип стопоров связан с собственным рельефом кристаллической решетки (рельеф Пайерлса), который контролирует транспорт дислокаций в бездефектном кристалле. Это позволяет представить первое слагаемое $C_1 \tau_1$ в виде постоянной, не зависящей ни от координат, ни от времени пробега дислокации. Следовательно, парциальная скорость ее перемещения

$$v_1 = \frac{1}{C_1 \tau_1} = \text{const} \tag{4}$$

также должна быть величиной постоянной.

Несколько сложнее обстоят дела со вторым (магниточувствительным) типом стопоров (C_2) , который связывается нами с бором или фосфором в Si. Любая из этих парамагнитных примесей $[1{-}3,10]$ перераспределяется между примесными центрами C_{2a} и C_{2b} с различной ориентацией электронных спинов и соответствующими временами ожидания τ_{2a} и τ_{2b} .

Следуя (1)-(4) и уравнению материального баланса

$$C_2 = C_{2a} + C_{2b}, (5)$$

легко показать, что в (1)

$$\tau_2 C_2 = \tau_{2a} C_{2a} + \tau_{2b} C_{2b} = C_2 \tau_{2b} - C_{2a} (\tau_{2b} - \tau_{2a}).$$
 (6)

Тогда связанная с магниточувствительными стопорами парциальная скорость перемещения дислокаций v_2 должна подчиняться закону

$$v_2 = \frac{1}{\tau_{2a}C_{2a} + \tau_{2b}C_{2b}}$$

ИЛИ

$$v_2 = \frac{1}{C_2 \tau_{2b} - C_{2a} (\tau_{2b} - \tau_{2a})}. \tag{7}$$

Однако составляющие C_2 в отличие от C_1 непостоянны во времени t, поскольку в магнитном поле происходит активное образование стопоров с меньшими временами ожидания, а после прекращения магнитного воздействия $(t>t_B)$ протекают релаксационные процессы, характеризующиеся возвратом магнитостимулированной подсистемы структурных дефектов в исходное невозмущенное состояние. Все это требует учета эволюционного изменения составляющих C_2 на различных этапах перераспределения стопоров.

Если релаксационные процессы после магнитной обработки, например, для C_2 протекают со скоростью

$$\frac{dC_{2a}}{dt} = -kC_{2a},\tag{8}$$

то концентрация стопоров, ускоряющих процесс перемещения дислокаций за счет меньших au_{2a} , должна

изменяться как

$$C_{2a} = C_{2a}^0 \exp(-kt^*),$$
 (9)

где k — константа скорости процесса восстановления электронной подсистемы $[\mathbf{s}^{-1}]$, $t^*=(t-t_B)$ — время релаксации магнитостимулированных изменений $[\mathbf{s}]$, C_{2a}^0 — начальное значение концентрации стопоров с соответствующей ориентацией электронных спинов.

соответствующей ориентацией электронных спинов. Стартовое значение C^0_{2a} определяется уровнем магнитного возмущения. Очевидно, при фиксируемом ${\bf B}$ скорость перераспределения магниточувствительных стопоров в пользу C_{2a} может быть представлена уравнением

$$\frac{dC_{2a}^0}{dt_B} = k_{2b}C_{2b}^0 - k_{2a}C_{2a}^0$$

или

$$\frac{dC_{2a}^0}{dt_R} = k_{2b} \left(C_2 - C_{2a}^0 \right) - k_{2a} C_{2a}^0, \tag{10}$$

где k_{2a} и k_{2b} — константы образования стопоров с различной ориентацией спинов.

Его решение имеет вид

$$C_{2a}^{0} = \frac{k_{2b}}{k_{2a} + k_{2b}} C_{2}$$

$$- \left[\frac{k_{2b}}{k_{2a} + k_{2b}} C_{2} - C_{2a}^{00} \right] \exp\left(-(k_{2a} + k_{2b})t_{B}\right), \quad (11)$$

где C_{2a}^{00} — равновесное значение концентрации при $t_B=0$.

Таким образом, контролируемая магниточувствительными стопорами скорость перемещения дислокаций должна подчиняться уравнению (7), учитывающему (9) и (11):

$$v_{2} = \left[C_{2} \tau_{2b} - \left(\frac{k_{2b}}{k_{2a} + k_{2b}} C_{2} - \left(\frac{k_{2b}}{k_{2a} + k_{2b}} C_{2} - C_{2a}^{00} \right) \right] \times \exp\left(-(k_{2a} + k_{2b})t_{B} \right) (\tau_{2b} - \tau_{2a}) \exp\left(-k(t - t_{B}) \right) \right]^{-1}.$$
(12)

Что касается третьего типа стопоров, связываемого [13,14] с узлами пересечения линейных дефектов, то их влияние на v и μ_m реализуется через плотность дислокаций N_d [m $^{-2}$]. Концентрация этих стопоров может быть определена как

$$C_3 = \gamma \sqrt{N_d} \cos \alpha \cos \beta, \tag{13}$$

где γ — число плоскостей скольжения, α и β — углы между плоскостями скольжения и векторами Бюргерса взаимодействующих дислокаций соответственно.

Тогда парциальная скорость перемещения дислокаций в области значимых высоких N_d должна подчиняться закону

$$v_3 = \frac{1}{C_3 \tau_3} = \frac{1}{\tau_3 \gamma \sqrt{N_d} \cos \alpha \cos \beta}$$
 (14)

и при малых значениях $C_3\tau_3$ неограниченно возрастать, уступая контроль над транспортом другим стопорам.

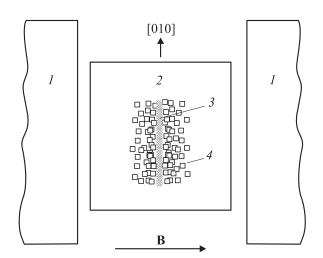

N ₂ π/π	Кристалло- графическая ориентация	Тип проводимости, примесь, удельное сопротивление	Размеры (mm) и направления скрайбирования	Плотность введенных дислокаций N_d , cm $^{-2}$	Деформация во- круг кристалло- графической оси	Механическое напряжение, МРа
1	[111]	n -тип, фосфор, $2\Omega\cdot\mathrm{cm}$	$30 \times 10 \times 0.4$ [110], [111]	$10^4 - 10^6$	[110]	30
2	[100]	p -тип, бор, $0.5~\Omega\cdot\mathrm{cm}$	$25 \times 10 \times 0.6$ [100], [010], [001]	$10^4 - 10^6$	[001]	50

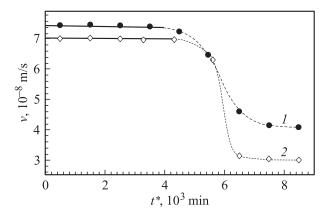
Таблица 1. Параметры исследуемых образцов Si

Таблица 2. Параметры магнитостимулированного транспорта дислокаций после 40-минутного изотермического отжига. $B=1\,\mathrm{T},$ $t^*=180\,\mathrm{s}$

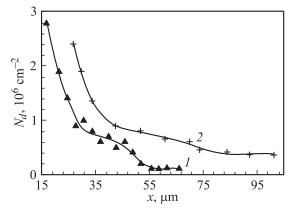
N _Ω π/π	Тип кристалла, удельное сопротивление	Концентрация примеси, m^{-3}	C_2 , m ⁻¹	$C_{2a}^{00}, \\ m^{-1}$	$ au_{2b},$ s	$ au_{2a},$ s	$k_{2b},$ s^{-1}	$k_{2a},$ s^{-1}	k, s ⁻¹
1 2	p -тип, $0.5\Omega\cdot\mathrm{cm}$ n -тип, $2\Omega\cdot\mathrm{cm}$	$4 \cdot 10^{22} \\ 5 \cdot 10^{21}$	$3.4 \cdot 10^{7}$ $1.8 \cdot 10^{7}$	$3.3 \cdot 10^7$ $1.4 \cdot 10^7$	0.64 1.17	0.02 0.06	$1.3 \cdot 10^{-2} \\ 3.4 \cdot 10^{-3}$	$2.0 \cdot 10^{-2} \\ 7.6 \cdot 10^{-3}$	$1 \cdot 10^{-6} \\ 5 \cdot 10^{-6}$

Экспериментальная проверка приведенных здесь базовых уравнений проводилась на легированных бором или фосфором пластинках монокристаллического кремния, параметры которых сведены в табл. 1. Ввод дислокаций в бездислокационный Si осуществлялся по технологии [15–17]. Для этого на каждый образец (рис. 1) в определенном кристаллографическом направлении наносилось не более двух параллельных царапин, расстояние между которыми значительно превышало максимальный пробег дислокационных полупетель. Затем образцы подвергались обработке магнитным полем ($B \leq 1\,\mathrm{T}$), вектор магнитной индукции которого был всегда перпендикулярен нанесенным царапинам. Время обработки t_B в магнитном поле варьировалось в диапазоне $30-2800\,\mathrm{s}$ при фиксированном временном интервале $t^*=180\,\mathrm{s}$ между

Рис. 1. Схема расположения пластины кремния между полюсами магнита. I — полюса электромагнита, 2 — пластина кремния, 3 — концентратор напряжений (царапина), 4 — ямки травления поверхностных дислокаций (дислокационных сегментов).


окончанием магнитной обработки и началом высокотемпературной пластической деформации. Фиксация t^* продиктована скоростью релаксационных процессов в магниточувствительных стопорах после магнитной обработки кремниевых образцов.

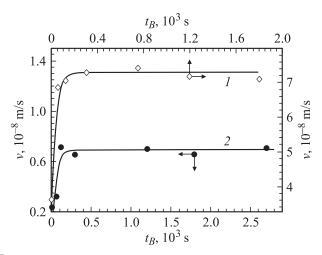
Движение поверхностных дислокационных петель осуществлялось 40-минутными растягивающими напряжениями до 50 MPa с помощью изгиба пластин по четырехточечной схеме. Максимальный пробег индивидуальных дислокаций регистрировался после избирательного травления в стандартном растворе СР-4 с одновременным снятием "концентрационного профиля" дислокационного ансамбля с пятнадцати различных участков каждой царапины. Основные экспериментальные результаты представлены на рис. 2–6.


Предварительная обработка образцов в магнитном поле активизирует дислокации, способствуя более быстрому их перемещению в кристалле. Эффективность этого воздействия, идентифицируемая нами как "магнитная память", 1 сохраняется не менее трех суток, по истечении которых подвижность дислокаций (а следовательно, и их скорость) резко замедляется, стремясь к значениям, характерным для исходных образцов, еще не подвергшихся магнитной обработке (рис. 2). Наблюдаемые изменения $v = f(t^*)$ в пределах ~ 73 -часового монотонного ослабления "магнитной памяти" хорошо согласуются с (12) при фиксированных t_B . Найденные из этого согласования константы k скоростей процесса восстановления электронной подсистемы приведены в табл. 2.

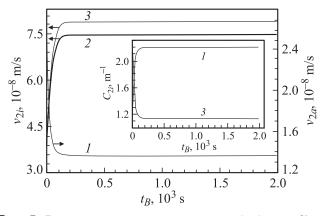
Видно (рис. 3), что движение линейных дефектов в поле упругих напряжений сильно зависит от плотности дислокаций, увеличиваясь, например для n-Si в 3 раза при снижении N_d с $3 \cdot 10^6$ до $0.3 \cdot 10^6$ ст $^{-2}$. При этом

 $^{^1}$ Впервые эффект "магнитной памяти" в магнетонеупорядоченных кристаллах был обнаружен Головиным с сотрудниками в 1993 г. [18].

Рис. 2. Эволюция скорости перемещения дислокаций в процессе хранения образцов в естественных условиях после 20-минутной обработки в магнитном поле при $B=1\,\mathrm{T}$. Точки — эксперимент, выделенные фрагменты кривых — результат расчета по уравнению (12) ($v=3.7\,$ и 2.4 m/s при $t_B=0$ для p- и n-Si соответственно). I-p-Si, 2-n-Si.


Рис. 3. Пространственное распределение плотности дислокаций от трещины в процессе пластической деформации кремния в течение 40 min при 675°C. 1-n-тип, 2-p-тип. $t_B=0$.

наибольшие изменения величины υ происходят в пространственных областях с большими значениями N_d , в то время как скорости перемещения "быстрых" дислокаций в окрестности малых N_d практически постоянны либо претерпевают несущественные изменения. Причем глубина проникновения индивидуальных дислокаций в интервале исследуемых температур линейно зависит от длительности изотермического отжига кристалла (0.5-16 h). Все это указывает на доминирующую роль "дислокационных" стопоров C_3 лишь в прилегающих к царапинам дефектных областях, где их влияние на результирующую скорость v проявляется особенно отчетливо. Это позволяет исключить для наиболее удаленных дислокаций влияние рассматриваемого типа стопоров и отслеживать только воздействие фактора магнитного возмущения.


На рис. 4 представлены зависимости максимальной скорости движения дислокаций в *n*- и *p*-Si от времени обработки исследуемых образцов в магнитном

поле $(B=1\,\mathrm{T})$. Несмотря на количественные различия, просматривается отчетливая тенденция увеличения скорости, а следовательно, и концентрации магниточувствительных стопоров C_{2a} с продолжительностью обработки пластин в магнитном поле. Это указывает на определяющую роль C_2 и ее составляющих в транспорте дислокационных сегментов в области малых N_d .

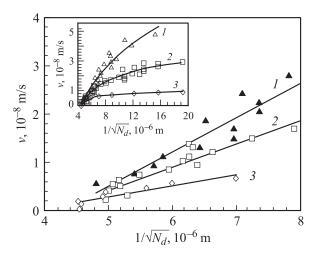

Хорошее согласование экспериментальных результатов с уравнением (12) позволило провести численную оценку основных параметров дислокационного транспорта (табл. 2) при фиксированном времени релаксации t^* . Так, кривые на рис. 5 характеризуют перераспределение стопоров C_{2i} и парциальных скоростей перемещения дислокаций $v_{2i}=1/C_{2i}\tau_{2i}$ с различными временами ожидания после контролируемых этапов магнитной обработки. Обращают на себя внимание и большие времена ожидания дислокаций на магниточувствительных стопорах (табл. 2), которые в $\sim 10^{10}$ раз превышают характерные времена спиновой конверсии

Рис. 4. Зависимость максимальной скорости движения дислокаций в кремнии от времени обработки образца в магнитном поле при B=1. Точки — эксперимент, кривые — результат расчета по уравнению (12). I-p-Si, 2-n-Si.

Рис. 5. Влияние длительности магнитной обработки n-Si на концентрационное перераспределение магниточувствительных стопоров и парциальных скоростей перемещения дислокаций. $1-C_{2a},\,v_{2a};\,2$ — результирующая $v;\,3-C_{2b},\,v_{2b}.$

Рис. 6. Зависимость скорости движения дислокаций в пространственных зонах, контролируемых C_3 (сплошные линии), от величины $1/\sqrt{N_d}$, определяющей расстояние между дислокациями. T, °C: I — 630, 2 — 600, 3 — 550. На вставке представлена полная зависимость $v(N_d)$.

 $(10^{-11}-10^{-10}\,\mathrm{s}\ [1,2,10])$. Следовательно, замедленный отклик скорости v_2 на магнитное возмущение (рис. 4) связан не столько с динамикой спинов, сколько с замедленными процессами образования комплексов на базе примесных центров с различно ориентированными спинами

$$C_{2a} \xrightarrow{k_{2a}} C_{2a}^{+} + \xi_{2a},$$
 $C_{2b} \xrightarrow{k_{2b}} C_{2b}^{-} + \xi_{2b}.$ (15)

Здесь индексы "+" и "–" определяют конфигурацию электронных спинов примесных центров; ξ_{2i} — структурные составляющие комплексов C_{2i} .

Полученная выше количественная информация относится лишь к изолированным дислокациям, достаточно удаленным от дефектных областей кристалла. Между тем участки Si с большими значениями N_d , т.е. с доминирующим влиянием "дислокационных" стопоров C_3 , также несут в себе важную информацию, извлечение которой может базироваться на согласовании экспериментальных (рис. 6) и аналитических (14) значений v_3 .

Действительно, скорость движения дислокаций в пространственных зонах, контролируемых рассматриваемым видом стопоров (рис. 6), хорошо согласуется с (14) при всех исследуемых температурных режимах. Это позволяет определить как среднее время закрепления дислокаций на соответствующих стопорах ($\tau_3 = 50\,\mathrm{s}$), так и величину энергетического барьера ($E = 0.9\,\mathrm{eV}$) при их преодолении. Характерно, что активационные барьеры открепления дислокаций от магниточувствительных стопоров, определенные нами по данным для изолированных дислокаций, соответствуют 2.1 eV. Эти значения согласуются с известными литературными данными [13,14].

В заключение отметим, что детально нерассматриваемый первый тип стопоров не связан с основными

примесными центрами и в количественном отношении существенно уступает им. Доминирующее влияние этих стопоров проявляется лишь в высокочистых образцах кремния, скорость перемещения дислокаций в которых в 10-150 раз выше [13], чем в исследуемых нами образцах.

Таким образом, в настоящей работе проанализирован механизм движения дислокаций с участием трех типов стопоров. Установлено, что предварительная обработка кремниевых пластин в слабом магнитном поле в 2—3 раза увеличивает скорость перемещения дислокационных сегментов. Обнаружена зависимость максимального пробега дислокаций от времени экспозиции образцов в магнитном поле. Описана кинетика магнитостимулированных изменений в рамках модели спин-зависимых реакций структурных дефектов. Определены количественные характеристики транспорта дислокаций при возмущающем действии магнитного поля. Оценены энергетические параметры процесса открепления линейных дефектов от "дислокационных" и магниточувствительных стопоров.

Список литературы

- [1] В.И. Альшиц, Е.В. Даринская, Т.М. Перекалина. ФТТ **29**, 2, 467 (1987).
- [2] Ю.И. Головин, Р.Б. Моргунов, С.Е. Жуликов. ФТТ 39, 3, 495 (1997).
- [3] В.И. Альшиц, Е.В. Даринская, О.Л. Казакова. ЖЭТФ 111, 2, 615 (1997).
- [4] О.И. Дацко, В.И. Алексеенко. ФТТ 39, 7, 1234 (1997).
- [5] Ю.С. Боярская, Д.З. Грабко, М.И. Мединская, К.А. Палистрант. ФТП **31**, *2*, 179 (1997).
- [6] В.А. Макара, Л.П. Стебленко, Н.Я. Горидько. ФТТ 43, 3, 462 (2001).
- [7] Е.В. Даринская, Е.А. Петржик, С.В. Ерофеева, В.П. Кисель. Письма в ЖЭТФ 70, 4, 298 (1999).
- [8] В.И. Альшиц, Е.В. Даринская, Е.А. Петржик. ФТТ 34, 1, 155 (1992).
- [9] М.И. Молоцкий. ФТТ 33, 10, 3112 (1991).
- [10] В.И. Альшиц, Е.В. Даринская, Е.А. Петржик. ФТТ 33, 10, 3001 (1991).
- [11] А.Л. Бучаченко, Р.З. Сагдеев, Е.М. Салихов. Магнитные и спиновые эффекты в химических реакциях. Наука, Новосибирск (1978). 324 с.
- [12] M.I. Molotskii, R.E. Kris, V. Fleurov. Phys. Rev. B 51, 18, 12 531 (1995).
- [13] Т. Судзуки, Х. Есинага, С. Такеути. Динамика дислокаций и пластичность. Мир, М. (1989). 296 с.
- [14] Н.Н. Новиков. Структура и структурно-чувствительные свойства реальных кристаллов. Вища шк., Киев (1983). 264 с.
- [15] И.В. Островский, Л.П. Стебленко, А.Б. Надточий. ФТТ 42, 3, 478 (2000).
- [16] А.А. Скворцов, А.М. Орлов, В.А. Фролов, Л.И. Гончар, О.В. Литвиненко. ФТТ 42, 10, 1814 (2000).
- [17] А.А. Скворцов, А.М. Орлов, Л.И. Гончар. ЖЭТФ **120**, I(7), 134 (2001).
- [18] Ю.И. Головин, Р.Б. Моргунов. Письма в ЖЭТФ **58**, *3*, 189 (1993).