12

Моделирование неоднородных электронных потоков в электронно-оптической системе гиротрона

© О.И. Лукша, П.А. Трофимов

Санкт-Петербургский политехнический университет Петра Великого, 195251 Санкт-Петербург, Россия e-mail: louksha@rphf.spbstu.ru

(Поступило в Редакцию 14 сентября 2017 г.)

Получены новые расчетные данные о влиянии эмиссионных неоднородностей на качество электронного пучка, формируемого в электронно-оптической системе гиротрона. В расчетах использовались распределения плотности тока эмиссии, измеренные для разных катодов в гиротроне СПбПУ. Показано удовлетворительное соответствие экспериментальных и расчетных данных по влиянию эмиссионных неоднородностей на скоростной разброс электронов. Продемонстрирована необходимость учета реального распределения плотности тока эмиссии по поверхности катода для определения основных параметров электронного потока — скоростного и энергетического разброса электронов, пространственной структуры пучка, коэффициента отражения электронов от магнитной пробки. Обсужден предельный уровень эмиссионных неоднородностей, допустимый для эффективной работы гиротронов.

DOI: 10.21883/JTF.2018.04.45733.2484

Введение

Сегодня гиротроны являются наиболее эффективными мощными генераторами когерентного излучения в миллиметровом и субмиллиметровом диапазонах длин волн. Они применяются для нагрева плазмы и управления током в установках управляемого термоядерного синтеза, при обработке материалов, в спектроскопии высокого разрешения и в других приложениях. Эффективность и предельные достижимые параметры гиротронов, как и других вакуумных СВЧ приборов, определяются качеством электронного пучка, поступающего в область его взаимодействия с высокочастотным полем. Применительно к гироприборам требуются винтовые электронные потоки (ВЭП), в которых сочетаются высокое значение осцилляторной энергии электронов с малым скоростным и энергетическим разбросом и поперечной структурой, обеспечивающей эффективное взаимодействие пучка с рабочей модой (например, [1,2]).

Важным фактором, влияющим на качество электронного пучка в гироприборах, является неоднородность термоэлектронной эмиссии с катода магнетронноинжекторной пушки (МИП), которая обычно используется в качестве источника электронов в таких приборах. Как правило, эти пушки работают в режиме температурного ограничения эмиссии. Поэтому неоднородности работы выхода и температуры приводят к неоднородному распределению плотности тока в поперечном сечении ВЭП. Это является причиной появления неоднородных полей, которые, в свою очередь, увеличивают скоростной разброс электронов, способствуют возбуждению паразитных колебаний пространственного заряда и появлению разброса электронов по энергии (например, [3–12]). Неоднородная структура пучка ответственна также за неоднородный нагрев коллектора и развитие паразитных

мод в резонаторе [13]. Особенностями термокатодов, применяемых в мощных гироприборах, является сложная форма и достаточно большая площадь эмитирующей поверхности, что обусловливает технологические трудности их изготовления. Кроме того, в процессе эксплуатации гиротрона возможно изменение эмиссионных характеристик катода, например, в результате ионной и электронной бомбардировок его поверхности [12].

Распространен метод оценки степени неоднородности термоэлектронной эмиссии, основанный на анализе переходного участка вольт-амперной характеристики (ВАХ) пушки между областями ограничения тока пространственным зарядом и температурного ограничения (например, [14]). Протяженность переходного участка ВАХ характеризует степень эмиссионной неоднородности, усредненную по всей поверхности катода. Простота и оперативность данного метода позволяют использовать его для контроля качества термокатода непосредственно в процессе эксплуатации лампы. В ряде лабораторий с помощью этого метода были проведены исследования катодов в различных устройствах гиротронного типа, что позволило получить данные о влиянии степени эмиссионной неоднородности катода на характеристики ВЭП и КПД гиротрона [3-6,10].

Однако наряду с величиной интегрального коэффициента эмиссионной неоднородности несомненный интерес представляет и информация о пространственном распределении эмиссионного тока по поверхности катода. Такая информация может быть использована для определения причин неоднородности эмиссии с катода, а также для уточнения влияния этой неоднородности на параметры ВЭП и на процессы взаимодействия пучка с электромагнитным полем в резонаторе. Программа по изучению "катодной проблемы" в гиротронах, основанная на прямых измерениях распределений эмиссионного тока по поверхности катодов, была реализована в СПбПУ [12,15-21]. В нескольких приборах гиротронного типа, включая экспериментальный гиротрон СПбПУ с рабочей частотой 74.2 GHz и выходной мощностью 100 kW, были исследованы более 20 термокатодов, изготовленных по различным технологиям. В экспериментах определялись азимутальные распределения плотности тока эмиссии путем измерения тока, прошедшего через малое отверстие в аноде в отсутствии магнитного поля в зависимости от азимутального положения катодного блока прибора. Для исследования гиротронных катодов и регулирования их эмиссионных характеристик была также использована специальная вакуумная установка [22,23], в которой был отработан метод повышения эмиссионной однородности катодов, основанный на обработке участков с аномальной эмиссией с помощью ионной бомбардировки. Отметим, что подобная установка для диагностики гиротронных катодов была позже создана в фирме Calabazas Creek Research, Inc [11].

В экспериментах, проведенных в СПбПУ, была определена связь эмиссионной неоднородности катода с характеристиками паразитных низкочастотных колебаний (НЧК), обусловленными отражением части ВЭП от магнитной пробки и накоплением пространственного заряда в ловушке между катодом и резонатором гиротрона. Отметим, что в электронно-оптической системе (ЭОС) гиротрона транспортировка ВЭП между пушкой и резонатором осуществляется в нарастающем магнитном поле, где происходит накачка поперечной энергии электронов. В присутствии скоростного разброса электронов неизбежно отражение части ВЭП от магнитной пробки, что может сопровождаться возбуждением указанных выше паразитных колебаний и в целом негативно сказываться на качестве формируемого пучка. Полученные в СПбПУ экспериментальные данные позволили оценить величину скоростного разброса электронов в ВЭП, формируемых катодами с разной эмиссионной неоднородностью [18,20]. На основании этих данных был сделан вывод, что при коэффициенте неоднородности эмиссии δj_e^{-1} , превышающем 20–25%, возрастание этих неоднородностей приводит к увеличению скоростного разброса электронов и снижению порога возбуждения низкочастотных колебаний пространственного заряда, а в присутствии этих колебаний — к увеличению их амплитуды и разброса электронов по энергии.

Новые сведения о закономерностях влияния эмиссионных неоднородностей катода на качество ВЭП в гиротроне могут быть получены в результате трехмерного траекторного анализа с использованием реальных распределений плотности эмиссии по поверхности катода, полученных в эксперименте. В настоящей работе подобный анализ был выполнен с использованием программного пакета 3D-моделирования CST **Таблица 1.** Основные параметры гиротрона и характеристики его рабочего режима

Ускоряющее напряжение Ток пучка $U_0 = 30 \mathrm{kV}$ $I_b = 10 \mathrm{A}$ $\tau = 30-60 \mu \mathrm{s}$ $B_0 = 2.75 \mathrm{T}$ Индукция магнитного поля в области резонатора $B_c = 0.152 \mathrm{T}$ $E_{12,3}$ $f_0 = 74.2 \mathrm{GHz}$ $R_0 = 14.45 \mathrm{mm}$ Рабочая частота Средний радиус эмитирующего подска катода $B_c = 35 \mathrm{mm}$	Параметр	Значение
	Ускоряющее напряжение Ток пучка Длительность импульса Индукция магнитного поля в области резонатора Индукция магнитного поля у катода Рабочая мода Рабочая частота Радиус резонатора Средний радиус эмитирующего пояска катола	$U_{0} = 30 \text{ kV}$ $I_{b} = 10 \text{ A}$ $\tau = 30-60 \mu \text{s}$ $B_{0} = 2.75 \text{ T}$ $B_{c} = 0.152 \text{ T}$ $\text{TE}_{12,3}$ $f_{0} = 74.2 \text{ GHz}$ $R_{0} = 14.45 \text{ mm}$ $R_{c} = 35 \text{ mm}$

Studio Suite [24]. Были рассчитаны параметры ВЭП, поступающего в резонатор гиротрона СПбПУ, для трех катодов с различными распределениями $j_e(\theta)$, которые ранее были использованы в экспериментах. Траекторный анализ был выполнен для двух типов магнетронно-инжекторных пушек — со стандартной геометрией и со специальным управляющим электродом [25].

Описание расчетной модели

Основные параметры гиротрона СПбПУ приведены в табл. 1. Для формирования электронного пучка в этом приборе использовалась трехэлектродная МИП (рис. 1). При этом большинство экспериментов, а также описанные ниже расчеты были выполнены для "двухэлектродного" режима работы пушки с заземленным анодом. В стандартной конфигурации пушки (рис. 1, *a*) угол наклона образующей конусной части катода к оси был одинаковым вдоль этой образующей и составлял 35° . В модифицированной версии пушки (рис. 1, b) был установлен управляющий электрод с углом наклона конусной части, равным 50°, и изолированный от других элементов катодного блока. Как показали эксперименты и 2D-моделирование [25], регулированием потенциала управляющего электрода можно добиться оптимизации распределения электрического поля в прикатодной области МИП и, как следствие, снижения скоростного разброса в пучке, повышения рабочего питч-фактора² и увеличения КПД гиротрона.

В настоящей работе расчеты были выполнены для азимутальных распределений плотности тока эмиссии $j_e(\theta)$ (рис. 2), которые ранее были получены в экспериментах

¹ Коэффициент δj_e определялся по измеренной зависимости плотности тока эмиссии от азимутальной координаты $j_e(\theta)$ как относительное среднеквадратичное отклонение величины j_e от среднего значения (например, [18]).

² Величиной питч-фактора $\alpha = \nu_{\perp}/\nu_{\parallel} (\nu_{\perp} u \nu_{\parallel} -$ поперечная и продольная компоненты скорости электрона) принято характеризовать долю сосредоточенной в поперечном движении электронов энергии, из которой "черпается" энергия выходного СВЧ излучения в гирорезонансных приборах. Как правило, значения среднего по ансамблю электронов питч-фактора в рабочих режимах мощных гиротронов не превышают 1.2–1.4 (например, [1]).

Рис. 1. Модель МИП гиротрона для стандартной геометрии катода (*a*) и для катода с управляющим электродом (*b*). *1* — катод, 2 — эмитирующий поясок, *3* — анод, *4* — канал дрейфа пучка, *5* — управляющий электрод. Показаны эквипотенциальные линии в области между катодом и анодом и траектории электронов *6*, рассчитанные для рабочего режима гиротрона (для схемы с управляющим электродом (*b*) напряжение *U*_{cont} = -9 kV).

с LaB₆-катодами C1, C2 и металлопористым W-Baкатодом СЗ (см., например, [18]). Высокотемпературные LaB₆-катоды демонстрировали относительную устойчивость при работе в гиротроне. Для них было обнаружено, что в течение нескольких недель эксплуатации, когда лампа не подвергается развакуумированию и отсутствует заметное повышение давления вследствие пробоев, крупномасштабные особенности распределений $j_e(\theta)$, а также коэффициент эмиссионной неоднородности δi_e изменяются незначительно. W-Ва-катоды были более чувствительны к воздействию вредных факторов. Из-за неоднородности нагрева термопояска, а также вследствие неоднородностей потоков нейтральных и заряженных частиц, попадающих на его поверхность, начальные неоднородности плотности тока эмиссии нарастали с течением времени [12]. Распределение $j_e(\theta)$ для W-Вакатода СЗ, полученное на этапе его эксплуатации в гиротроне, показано на рис. 2, с. На этом рисунке приведено также более плавное моделирующее распределение $j_e(\theta) \propto \sin(\theta) + 0.3 \sin(3\theta)$ с аналогичным коэффициентом эмиссионной неоднородности $\delta j_e = 74\%$ (катод Mod).

Самосогласованные электронные траектории в ЭОС гиротрона рассчитывались с помощью вычислителя Tracking Solver, входящего в программный модуль CST Particle Studio (CST PS). Параметры ВЭП (среднее значение питч-фактора, разброс скоростей электронов и др.), обсуждаемые ниже, регистрировались с помощью специального монитора, установленного на расстоянии z = 260.5 mm от центра эмитирующего пояска катода в области максимума распределения B(z), где располагается резонатор гиротрона. Для моделирования неоднородностей эмиссии эмитирующий поясок катода разбивался на 72 сектора, смещенных друг относительно

друга в азимутальном направлении. Ток с каждого из секторов в модели с фиксированной эмиссией задавался в соответствии с экспериментальной зависимостью $j_e(\theta)$, измеренной с шагом $\Delta \theta = 5^{\circ}$ (рис. 2). Каждый из секторов был источником 50 крупных частиц с примерно одинаковым током, что в сумме давало 3600 электронных траекторий.

Для верификации расчетных данных было произведено сравнение результатов траекторного анализа, полученных с помощью двух кодов CST PS и EGUN [26] для одной и той же модели при одинаковых размерах ячеек сетки l = 0.4 mm. В результате 2D-моделирования с помощью программы EGUN в гиротроне со стандартной МИП были получены следующие значения основных параметров ВЭП: средний питч-фактор $\bar{\alpha} = 1.289$, разброс поперечной скорости $\delta \nu_{\perp} = 6.50\%$. Отметим, что величины скоростного и энергетического разбросов в рамках данного исследования определялись как среднеквадратичные отклонения от их средних значений. Те же параметры, полученные в результате моделирования в CST PS для катода с однородным распределением эмиссии (одинаковый ток со всех секторов), равнялись соответственно 1.277 и 6.93%. Данные, полученные с помощью двух указанных программ при одинаковом сеточном разбиении, удовлетворительно согласуются друг с другом. Отметим, что при выбранном размере ячеек сетки $l = 0.4 \, \text{mm}$ область моделирования в программе CST PS разбивалась примерно на 80 млн. ячеек.

Результаты моделирования

Данные о параметрах ВЭП, рассчитанных для катодов C1, C2, C3, а также для катодов Uniform с однородной эмиссией и Mod с моделирующим распределением $j_e(\theta)$,

МИП со стандартной геометрией						
Катод	$\delta j_e, \%$	ā	$\delta u_{\perp}, \%$	δε, %	$K_{\rm ref}$, %	
Uniform	0	1.277	6.93	0.26	-	
C1	23	1.279	7.04	0.50	-	
C2	50	1.283	7.52	1.33	_	
C3	74	1.288	8.07	2.10	0.26	
Mod	74	1.283	8.09	2.63	0.1	
МИП с управляющим электродом ($U_{\text{cont}} = -9 \text{kV}$)						
Катод	$\delta j_e, \%$	ā	$\delta u_{\perp}, \%$	δε, %	$K_{\rm ref}$, %	
Uniform	0	1.288	3.05	0.28	_	
C1	23	1.288	3.29	0.50	_	
C2	50	1.290	4.26	1.34	_	
C3	74	1.294	5.35	2.10	—	

Таблица 2. Параметры ВЭП для катодов с разной эмиссионной неоднородностью

сведены в табл. 2. Здесь приведены значения коэффициента эмиссионной неоднородности δj_e , среднего питчфактора $\bar{\alpha}$, скоростного δv_{\perp} и энергетического $\delta \varepsilon$ разбросов, а также коэффициента K_{ref} , определяющего долю электронного заряда, отраженного от магнитной пробки. Моделирование ЭОС гиротрона с МИП стандартной геометрии было выполнено для рабочего режима, параметры которого указаны в табл. 1. Соответствующие траектории электронов, эмитированных одним из катодных секторов (катод Uniform), приведены на рис. 1, а. Из данных табл. 2 (верхняя часть) видно, что с ростом эмиссионных неоднородностей происходит увеличение скоростного и энергетического разбросов электронов в ВЭП. Очевидно, что в реальных условиях значения величин δv_{\perp} и $\delta \varepsilon$ зависят от относительного вклада различных факторов разброса скоростей и энергий электронов. В рамках проведенного моделирования учитывались лишь факторы, связанные с действием статических полей, включая собственное поле пространственного заряда. Однако к дополнительному скоростному разбросу может также приводить шероховатость эмитирующей поверхности катода, неидеальности изготовления и юстировки элементов лампы и др. (см., например, [2]). Высокочастотные поля, связанные с развитием различных неустойчивостей в ВЭП, кроме повышения разброса скоростей, могут также вызывать заметный рост энергетического разброса электронов [12].

Представляет интерес сравнить рассчитанные значения скоростного разброса с аналогичными значениями, определенными для разных катодов экспериментально в гиротроне СПбПУ. В эксперименте переход, например, от катода С1 к катоду С3 сопровождался снижением порогового питч-фактора, при котором возбуждались паразитные колебания, с 1.31 до 1.11, что позволило оценить значения разброса поперечных скоростей δv_{\perp} для этих катодов в отсутствии низкочастотных колебаний (НЧК) — 8.8% для С1 и 11.8% для С3 [18]. Отметим, что эта оценка была выполнена в предположении моноэнергетичности пучка и гауссовой функции распределения электронов по скоростям. В расчетах значения δv_{\perp} составляли 7.04% и 8.07% для катодов C1 и СЗ соответственно. При этом следует учесть, что переход к более неоднородному катоду сопровождается увеличением энергетического разброса электронов и ухудшением пространственной структуры пучка (см. ниже), что может влиять на характеристики НЧК, в частности уменьшать пороговый питч-фактор их возникновения. Тогда можно предположить, что приведенные выше оценки разброса поперечных скоростей электронов, полученные на основании экспериментальных данных о пороге возникновения НЧК, несколько завышены по сравнению с реальными значениями этого разброса в ВЭП гиротрона.

Для моделирования МИП с управляющим электродом (рис. 1, *b*) был выбран режим, при котором достигаются минимальные значения скоростного разброса для однородного эмиттера. Для снижения δv_{\perp} необходимо подать

Рис. 2. Азимутальные распределения плотности тока эмиссии $j_e(\theta)$ и соответствующие коэффициенты эмиссионной неоднородности δj_e для катодов С1 (*a*), С2 (*b*) и С3 (*c*). Штриховой линией показано моделирующее распределение $j_e(\theta) \propto \sin(\theta) + 0.3 \sin(3\theta)$.

отрицательное напряжение на управляющий электрод с тем, чтобы уменьшить позиционный разброс, проявляющийся в различии величин статических полей на траекториях электронов, вылетевших с разных точек эмиттера [25]. Однако подача отрицательного напряжения U_{cont} приводит также к снижению среднего питчфактора электронов по сравнению со случаем $U_{\text{cont}} = 0$. Для компенсации этого снижения был увеличен коэффициент магнитной компрессии за счет снижения магнитного поля на катоде. Описанные ниже результаты были получены при $U_{\rm cont} = -9 \, {\rm kV}$ и $B_c = 0.146 \, {\rm T}$ (коэффициент перемагничивания $B_0/B_c = 18.78$). Остальные параметры (U_0, I_b, B_0) , задающие режим работы гиротрона, не изменялись. Рассчитанные значения параметров ВЭП приведены в нижней части табл. 2, а электронные траектории — на рис. 1, *b*.

Видно, что в МИП с управляющим электродом уменьшено значение начального позиционного разброса (катод Uniform) по сравнению со стандартной МИП. Как следствие, относительное влияние фактора скоростного разброса, связанного с эмиссионными неоднородностями, проявляется для этой пушки в большей степени (ср. верхнюю и нижнюю части табл. 2). Переход к МИП с управляющим электродом сопровождается также снижением порогового уровня эмиссионных неоднородностей, при котором они заметно влияют на суммарное значение разброса. Например, для стандартной МИП значение δv_{\perp} для катода С1 ($\delta j_e = 23\%$) лишь на 1.5% больше по сравнению с однородным катодом, что подтверждает оценки порогового коэффициента эмиссионной неоднородности для этой пушки, полученные на основании экспериментальных результатов [18,20]. Для МИП с управляющим электродом изменение величины δv_{\perp} при переходе от однородного катода к катоду C1 более заметно и составляет $\sim 8\%$.

Кроме увеличения разброса скоростей электронов, повышение эмиссионных неоднородностей приводит к изменению и других параметров ВЭП, определяющих его качество. В частности, увеличивается разброс электронов по энергиям δε (табл. 2). Для каждого из катодов значения бє примерно одинаковы для пушек с разной геометрией и определяются "провисанием" потенциала ВЭП в области резонатора. Важно отметить, что даже небольшой разброс по энергии в несколько процентов приводит к заметному снижению КПД гиротрона (например, [27,28]). Следовательно, большой энергетический разброс может являться одной из основных причин пониженной эффективности работы гиротронов с сильно неоднородными катодами. Другая причина связана с появлением электронов, отраженных от магнитной пробки в области компрессии ВЭП. Отраженные частицы с суммарным зарядом, составляющим 0.26% от заряда всего пучка, были зарегистрированы при моделировании стандартной МИП с катодом СЗ (табл. 2). При такой доле отраженных частиц накопление пространственного заряда в области между катодом и резонатором может

приводить к развитию указанных выше паразитных НЧК, дополнительно снижающих качество ВЭП [12,18,20].

Важным представляется исследованное влияние эмиссионной неоднородности на пространственную структуру ВЭП. Особенности азимутального распределения плотности электронного тока $j_b(\theta)$, обусловленные неоднородностью эмиссии, сохранялись в пучке при его транспортировке от катода до резонатора. Из-за азимутального дрейфа электронов в скрещенных радиальном электрическом и продольном магнитном полях происходило смещение этих особенностей по азимуту по мере увеличения продольной координаты *z*. В плоскости наблюдения (z = 260.5 mm) распределение $j_b(\theta)$ было сдвинуто примерно на 25° в сторону меньших значений азимутального угла θ по отношению к распределению $j_e(\theta)$ для исследованного рабочего режима гиротрона.

Положения центров ларморовских орбит частиц, прошедших в область резонатора, в плоскости поперечного сечения ВЭП показаны на рис. 3. Для каждого из приведенных распределений указано значение толщины стенки пучка ΔR_g , как разницы между максимальным и минимальным значениями радиальных координат центров электронных орбит. Видно, что увеличение эмиссионной неоднородности сопровождается возрастанием величины ΔR_g . При этом наблюдается смещение траекторий частиц как в сторону меньших, так и в сторону больших радиусов по отношению к исходным траекториям, рассчитанным для однородного катода. Из сравнения распределений, приведенных на рис. 2 и 3, можно сделать вывод, что радиальное смещение максимально в том диапазоне азимутальных координат θ , в котором зависимость $j_e(\theta)$ имеет наибольший градиент. При таком сравнении следует учесть сдвиг ВЭП по азимуту на $\sim 25^{\circ}$ при движении электронов от катода до резонатора. Наиболее отчетливо радиальное смещение электронов проявляется для катода СЗ. Минимум распределения $R_g(\theta)$ для этого катода наблюдается при $\theta \approx 35$, а максимум — при $\theta \approx 65$ (рис. 3, d). При этом области с наибольшим градиентом $j_e(\theta)$ находятся с обеих сторон узкого участка аномально высокой эмиссии вблизи $\theta \approx 75$ (рис. 2, *c*). Причина уширения пучка связана с действием азимутального электрического поля, существующего в неоднородном ВЭП, которое в сочетании с продольным магнитным полем приводит к дрейфу электронов по радиусу. Амплитуда этого поля определяется градиентом зависимости $j_e(\theta)$ в выбранной области. Поэтому распределение электронов в плоскости поперечного ВЭП будет определяться не только перепадом плотности тока эмиссии с разных участков катода, но и пространственным масштабом неоднородностей эмиссии. Важно также отметить, что на пространственную структура полого ВЭП при неоднородной эмиссии с катода может дополнительно влиять развитие диокотронной неустойчивости, частным случаем которой является пространственная (статическая) диокотронная неустойчивость с частотой возмущений, равной нулю [29,30].

Рис. 3. Значения радиальных координат R_g ведущих центров электронных траекторий в зависимости от азимута θ и значения толщины стенки ВЭП ΔR_g для катодов Uniform (*a*), C1 (*b*), C2 (*c*), C3 (*d*), Mod (*e*).

Результаты моделирования позволяют сделать вывод, что параметры ВЭП при неоднородной эмиссии с катода зависят от вида распределения $j_e(\theta)$. Для подтверждения этого вывода сравним данные для катодов СЗ и Mod с одинаковым коэффициентом эмиссионной неоднородности $\delta j_e = 74\%$, полученные для стандартной геометрии МИП. Разброс скоростей электронов для этих катодов примерно одинаков (табл. 2). Он в основном определяется коэффициентом δj_e и является следствием неоднородной экранировки пространственным зарядом внешнего электрического поля в области МИП [12]. При этом для обоих катодов имеется малое количество частиц (три для C3 и две для Mod), которые испускаются с участков катода с аномально высокой эмиссией, приобретают в области МИП большую поперечную скорость и впоследствии отражаются от магнитной пробки.

Разброс энергий электронов бє больше для катода Mod по сравнению с C3. Величина $\delta \varepsilon$ с учетом вклада всех частиц определяется "провисанием" потенциала пучка, который зависит от плотности тока нелинейно. Поэтому увеличение энергетического разброса электронов при переходе к более неоднородному катоду происходит не пропорционально возрастанию интегрального коэффициента эмиссионной неоднородности, как видно из табл. 2. Близкое к пропорциональному увеличение $\delta \varepsilon$ было отмечено только в случае, когда возрастала амплитуда неоднородностей и соответственно коэффициент δj_e , а вид зависимости $j_e(\theta)$ при этом сохранялся. Например, для распределения $j_e(\theta) \propto \sin(\theta) + 0.3 \sin(3\theta)$ величина δε равнялась 2.63% при коэффициенте неоднородности $\delta j_e = 74\%$, 1.82% при $\delta j_e = 50\%$ и 0.87% при $\delta j_e = 23\%$.

Толщина стенки пучка ΔR_g максимальна для катода C3, что обусловлено наличием у него локальной области аномально высокой эмиссионной активности (рис. 2, *c*). Принято, что величина ΔR_g , приемлемая для эффективной работы гиротрона, не должна превышать $\lambda/6$, где λ — длина волны излучения, в противном случае снижается эффективность генерации на рабочей моде и возможно возбуждение паразитных мод [31]. В нашем случае при $\lambda \approx 4$ mm предельное значение ΔR_g равняется примерно 0.67 mm. Для катодов C2 и Mod величина ΔR_g довольно близка к этому предельному значению, а для катода C3 — заметно его превышает.

Заключение

Таким образом, выполненное в настоящей работе моделирование показало важность учета реального распределения плотности тока эмиссии по поверхности катода при анализе влияния эмиссионных неоднородностей на качество электронного пучка, формируемого в электронно-оптической системе гиротрона. Новые расчетные данные о влиянии эмиссионных неоднородностей на скоростной разброс электронов, полученные с использованием распределений плотности эмиссионного тока для разных катодов в гиротроне СПбПУ, удовлетворительно согласуются с результатами экспериментов. Сравнение расчетных данных, полученных для гиротрона с пушками разной геометрии, позволяет сделать вывод, что предельный уровень эмиссионных неоднородностей, приемлемый для конкретного прибора, зависит от относительного вклада всех факторов, влияющих на основные параметры ВЭП — скоростной и энергетический разброс электронов, пространственную структуру пучка, коэффициент отражения от магнитной пробки. Показано, что для катодов с одинаковым интегральным коэффициентом эмиссионной неоднородности δj_e , но различным видом распределения $j_e(\theta)$ могут заметно различаться значения энергетического разброса электронов, толщины стенки пучка и коэффициента отражения от магнитной пробки.

Исследование выполнено за счет гранта Российского научного фонда (проект № 16-12-10010). Часть результатов была получена с использованием вычислительных ресурсов суперкомпьютерного центра Санкт-Петербургского политехнического университета Петра Великого (http://www.scc.spbstu.ru).

Список литературы

- Nusinovich G.S. Introduction to the physics of gyrotrons. Baltimore, MD: Johns Hopkins University Press, 2004. 335 p.
- [2] Tsimring Sh.E. // Int. J. Infrared Millimeter Waves. 2001. Vol. 22. N 10. P. 1433–1468.
- [3] Glyavin M.Yu., Kuftin A.N., Venediktov N.P. et al. // Int. J. Infrared Millimeter Waves. 1997. Vol. 18. N 11. P. 2137– 2146.
- [4] Glyavin M.Yu., Goldenberg A.L., Kuftin A.N. et al. // IEEE Trans. Plasma Sci. 1999. Vol. 27. N 2. P. 474–483.
- [5] Anderson J.P., Korbly S.E., Temkin R.J. et al. // IEEE Trans. Plasma Sci. 2002. Vol. 30. N 6. P. 2117–2123.
- [6] Anderson J.P., Temkin R.J., Shapiro M.A. // IEEE Trans. Electron Devices. 2005. Vol. 52. N 5. P. 825–828.
- [7] Advani R., Hogge J.P., Kreischer K.E. et al. // IEEE Trans. Plasma Sci. 2001. Vol. 29. N 6. P. 943–950.
- [8] Kuftin A.N., Lygin V.K., Manuilov V.N. et al. // Int. J. Infrared Millimeter Waves. 1993. Vol. 14. N 4. P. 783–816.
- [9] Pagonakis J.Gr., Vomvoridis J.L. // IEEE Trans. Plasma Sci. 2004. Vol. 32. N 3. P. 890–898.
- [10] Zhang J., Illy S., Pagonakis I.G. et al. // IEEE Trans. Electron Devices. 2017. Vol. 64. N 3. P. 1307–1314.
- [11] Ives R.L., Borchard P., Collins G. et al. // IEEE Trans. Plasma Sci. 2008. Vol. 36. N 3. P. 620–630.
- [12] Лукша О.И. // Автореф. докт. дис., СПб., 2011. 285 с.
- [13] Nusinovich G.S., Vlasov A.N., Botton M. et al. // Phys. Plasmas. 2001. Vol. 8. N 7. P. 3473–3479.
- [14] Ходневич С.П. // Электронная техника. Сер. 1. Электроника СВЧ. 1969. Вып. 4. С. 118-130.
- [15] Andronov A.N., Ilyin V.N., Luksha O.I. et al. // Dig. 20th Int. Conf. Infrared and Millimeter Waves. Orlando, USA, 1995. P. 141–142.
- [16] Ilyin V.N., Louksha O.I., Mjasnikov V.E. et al. // Proc. 12th Int. Conf. High Power Particle Beams "BEAMS'98". Haifa, Israel, 1998. Vol. 2. P. 800–804.
- [17] Louksha O.I., Piosczyk B., Sominski G.G. et al. // Proc. 6th Int. Workshop Strong Microwaves in Plasmas. Nizhny Novgorod, Russia, 2005. Vol. 1. P. 135–140.
- [18] Louksha O., Piosczyk B., Sominski G. et al. // IEEE Trans. Plasma Sci. 2006. Vol. 34. N 3. P. 502–511.
- [19] Лукша О.И., Пиосчик Б., Соминский Г.Г. и др. // Изв. вузов. Радиофизика. 2006. Т. 49. Вып. 10. С. 880–886. (Luksha O.I., Piosczyk B., Sominski G.G. // Radiophys. Quantum Electron. 2006. Vol. 49. N 10. P. 793–798.)

- [20] Лукша О.И., Самсонов Д.Б., Соминский Г.Г., Семин С.В. // ЖТФ. 2013. Т. 83. Вып. 5. С. 132–140. (Louksha O.I., Samsonov D.B., Sominskii G.G., Semin S.V. // Tech. Phys. 2013. Vol. 58. N 5. P. 751–759.)
- [21] Louksha O.I., Sominski G.G., Arkhipov A.V. et al. // IEEE Trans. Plasma Sci. 2016. Vol. 44. N 8. P. 1310–1319.
- [22] Louksha O., Piosczyk B., Sominski G., Thumm M. // Dig. Joint 31st Int. Conf. Infrared and Millimeter Waves and 14th Int. Conf. Terahertz Electronics. Shanghai, China, 2006. P. 86.
- [23] Louksha O., Sominski G., Samsonov D. et al. // Dig. 35th IEEE Int. Conf. Plasma Science. Karlsruhe, Germany, 2008. P. 226.
- [24] Электронный ресурс. Режим доступа: http://www.cst.com
- [25] Лукша О.И., Самсонов Д.Б., Соминский Г.Г., Цапов А.А. // ЖТФ. 2012. Т. 82. Вып. 6. С. 101–105. (Louksha O.I., Samsonov D.B., Sominskii G.G., Tsapov A.A. // Tech. Phys. 2012. Vol. 57. N 6. P. 835–839.)
- [26] Hermannsfeldt W.B. Electron trajectory program // SLAC Report 226, Stanford Linear Accelerator Center, Stanford University, 1979. 119 p.
- [27] Dumbrajs O., Koponen J.P.T. // Phys. Plasmas. 1999. Vol. 6. N 6. P. 2618–2621.
- [28] Завольский Н.А., Запевалов В.Е., Моисеев М.А. // Изв. вузов. Радиофизика. 2006. Т. 49. Вып. 2. С. 121–133. (Zavolsky N.A., Zapevalov V.E., Moiseev М.А. // Radiophys. Quantum Electron. 2006. Vol. 49. N 2. P. 108–119.)
- [29] Лыгин В.К., Цимринг Ш.Е., Шевцов Б.И. // Изв. вузов. Радиофизика. 1991. Т. 34. Вып. 4. С. 419–425. (Lygin V.K., Tsimring Sh.E., Shevtsov B.I. // Radiophys. Quantum Electron. 1991. Vol. 34. N 4. P. 351–356.)
- [30] Schuldt R., Borie E. // Int. J. Infrared Millimeter Waves. 1995. Vol. 16. N 10. P. 1675–1700.
- [31] Pu R., Nusinovich G.S., Sinitsyn O.V., Antonsen T.M., jr. // Phys. Plasmas. 2010. Vol. 17. N 8. P. 083105–083105-6.