Колебательные и электронные свойства аморфных систем $Ni_{44}Nb_{56}$, $Ni_{62}Nb_{38}$ и $Cu_{33}Zr_{67}$ (из измерений теплоемкости)

© Г.Х. Панова, Г.Ф. Сырых, М.Н. Хлопкин, А.А. Шиков

Российский научный центр «Курчатовский институт», 123182 Москва, Россия

E-mail: shikov@isssph.kiae.ru

(Поступила в Редакцию 16 июля 2002 г.)

Исследованы теплоемкости аморфных систем Ni₄₄Nb₅₆, Ni₆₂Nb₃₈ и Cu₃₃Zr₆₇ в интервале температур 3–273 К. Полученные данные позволили выделить из экспериментально измеренной теплоемкости вклад, обусловленный колебаниями атомов, определить величину плотности электронных состояний на уровне Ферми и температурную зависимость характеристического дебаевского параметра Θ в широком интервале температур, а также вычислить значения некоторых моментов частот, характеризующих колебательный спектр. Информация о средних характеристиках колебательных спектров хорошо согласуется с ранее полученными данными по неупругому рассеянию нейтронов.

При переходе от системы Ni₄₄Nb₅₆ к Ni₆₂Nb₃₈ плотность электронных состояний на уровне Ферми уменьшается, а величины характерных частот колебательного спектра увеличиваются. Плотность электронных состояний на уровне Ферми для $Cu_{33}Zr_{67}$ близка по величине к полученной для Ni₆₂Nb₃₈. Значения характерных частот колебательного спектра системы $Cu_{33}Zr_{67}$ существенно (на 30%) меньше, чем в системах Ni₄₄Nb₅₆ и Ni₆₂Nb₃₈.

Работа поддержана Российским фондом фундаментальных исследований (проект № 00-02-16181).

Исследования динамики колебаний атомов и электронных свойств аморфных систем типа металл-металл имеют большое значение для понимания многих других физических свойств металлических стекол, состоящих из двух и более компонент [1,2]. Наиболее полная и достоверная информация по динамике таких систем может быть получена с помощью экспериментов по неупругому рассеянию нейтронов с применением метода изотопического контраста и в определенной мере из измерений теплоемкости.

По результатам измерений теплоемкости в широком интервале температур можно судить о характеристиках колебательных и электронных спектров возбуждений. При этом следует особо отметить, что экспериментальные данные по низкотемпературной теплоемкости дают возможность проанализировать низкочастотный участок колебательного спектра ($\hbar\omega < 2 \text{ meV}$), труднодоступный для методов неупругого рассеяния холодных нейтронов. Существенная информация об электронных свойствах может быть получена также из данных по температурной зависимости теплоемкости.

Цель настоящей работы состоит в термодинамическом изучении интегральных характеристик колебательных и электронных спектров возбуждений в аморфных системах типа металл-металл: в Cu₃₃Zr₆₇ и различающихся по концентрации компонент аморфных соединениях Ni₄₄Nb₅₆ и Ni₆₂Nb₃₈, а также в сравнении средних частот по колебательному спектру $\langle \omega^n \rangle$, полученных из температурной зависимости теплоемкости и непосредственно из нейтронных измерений.

1. Экспериментальные методики

Измерения теплоемкости проводились на тех же образцах, которые были исследованы методом неупругого рассеяния нейтронов [3,4]. Образцы в аморфном состоянии были получены быстрой закалкой расплава на поверхности вращающегося медного диска в инертной атмосфере. Состав образцов проверялся с помощью химического анализа. Структура исследуемых систем определялась методами рентгеновской и нейтронной дифракции. Общая форма кривых рентгеновской дифракции была типичной для аморфных систем и указывала на отсутствие дальнего порядка.

Теплоемкость образцов измерялась адиабатическим методом с импульсным нагревом на двух экспериментальных установках: микрокалориметре в области температур 2-30 K (с экспериментальной ошибкой 1-2%) и на установке для измерений теплоемкости в области 4-300 K (с точностью 2% в температурной области 3-5 K, 1% в области 5-10 K и 0.2-0.5% в области 10-273 K).

2. Экспериментальные результаты

Результаты измерений теплоемкости при постоянном давлении для аморфных металлических сплавов представлены на рис. 1-4 и в табл. 1, 2. Из рис. 1 и табл. 1 видно, что во всей области температур теплоемкость аморфной системы Ni₄₄Nb₅₆ больше теплоемкости системы Ni₆₂Nb₃₈, а теплоемкость Cu₃₃Zr₆₇ существенно превышает теплоемкость Ni–Nb-сплавов.

Температурные зависимости теплоемкостей при низких температурах (в интервале 3-10 K) приведены на рис. 2 в координатах $C/T-T^2$. Из этого рисунка видно, что в области низких температур экспериментальные данные по теплоемкости хорошо описываются зависимостью вида $C = \gamma T + \beta T^3$, что в координатах $C/T-T^2$ соответствует прямым линиям. Следует отметить, что для данных аморфных систем эта зависимость выполняется в более широком интервале температур, чем для ранее исследованных сплавов Ni–B [5]. В интервале температур 3-10 K среднеквадратичное отклонение экспериментальных данных от зависимости вида $C = \gamma T + \beta T^3$ составляет величину порядка 1.5%.

Оценки величин коэффициентов γ и β , полученные аппроксимацией экспериментальных данных по методу

Таблица 1. Теплоемкость при постоянном давлении C_p аморфных систем Ni₄₄Nb₅₆, Ni₆₂Nb₃₈ и Cu₃₃Zr₆₇ в зависимости от температуры T

	C_p , J/g-atom · K						
<i>T</i> .K	Ni44Nb56	Ni62Nb38	Cu ₃₃ Zr ₆₇				
,	(1 g-atom = 77.85 g)	(1 g-atom = 71.7 g)	(1 g-atom = 82.09 g)				
3	0.0150	0.0128	0.0185				
4	0.0232	0.0191	0.0240				
5	0.0335	0.0280	0.0510				
6	0.0465	0.0395	0.0790				
7	0.0628	0.0536	0.1157				
8	0.0832	0.0708	0.1642				
9	0.1080	0.0923	0.2234				
10	0.1390	0.1203	0.2934				
12	0.1760	0.1940	0.467				
14	0.329	0.2937	0.688				
16	0.469	0.422	0.956				
18	0.642	0.580	1.265				
20	0.846	0.769	1.610				
22	1.079	0.988	1.987				
25	1.486	1.371	2.622				
30	2.355	2.144	3.873				
35	3.056	3.117	5.309				
40	4.732	4.150	6.82				
45	5.91	5.23	8.30				
50	7.10	6.33	9.69				
55	8.27	7.44	11.00				
60	9.42	8.52	12.16				
70	11.60	10.66	14.50				
80	13.52	12.55	16.42				
90	15.22	14.24	18.05				
100	16.73	15.75	19.45				
120	19.18	18.24	21.70				
140	21.05	20.14	23.14				
160	22.49	21.62	24.77				
180	23.64	22.79	25.87				
200	24.58	23.73	26.82				
220	25.37	24.51	27.64				
240	26.05	25.18	28.37				
260	26.65	25.76	29.05				
273.15	27.01	26.11	29.46				

Рис. 1. Зависимость теплоемкости аморфных сплавов от температуры в области 3-270 К. I — Ni₆₂Nb₃₈, 2 — Ni₄₄Nb₅₆, 3 — Cu₃₃Zr₆₇.

наименьших квадратов, а также предельное низкотемпературное значение характеристической температуры Дебая Θ_L , связанное с β соотношением $\beta = 12\pi^4 R/(5\Theta_L^3)$, приведены в табл. 2. Здесь и далее R — универсальная газовая постоянная.

Как следует из рис. 2 и табл. 2, замена в аморфной системе легких атомов никеля тяжелыми атомами ниобия приводит к увеличению коэффициентов как при линейном по температуре члене, так и при кубическом, причем коэффициент γ вырос на 25%, а коэффициент β увеличился на 9%. Коэффициенты при линейном по температуре члене для Cu₃₃Zr₆₇ и Ni₆₂Nb₃₈ близки по величине.

3. Анализ и обсуждение результатов

Колебательная теплоемкость C_{vib} выделялась из экспериментально измеряемой величины C_p с помощью вычитания поправки C_A , объединяющей вклады в теплоемкость, обусловленные ангармоническими эффектами, тепловым расширением вещества, а также электронами проводимости,

$$C_{\rm vib} = C_p - C_A = C_p - [\gamma + (A - \gamma)(C_{\rm vib}/3R)^2]T,$$
 (1)

где C_p — молярная теплоемкость при постоянном давлении, $C_{\rm vib}$ — колебательная составляющая теплоемкости в гармоническом приближении, γ — коэффициент электронной теплоемкости при низких температурах, A — коэффициент при линейном по температуре члене изобарной теплоемкости при высоких температурах.

Интерполяционная формула для C_A дает соответствующие линейные по температуре асимптотики как при низких, так и при высоких температурах и обеспечивает плавный переход между низко- и высокотемпера-

Параметр	Ni ₄₄ Nb ₅₆		Ni ₆₂ Nb ₃₈		Cu ₃₃ Zr ₆₇	
ThapantoTp	Из $C_p(T)$	Из $g(\omega)$	Из $C_p(T)$	Из $g(\omega)$	Из $C_p(T)$	Из $g(\omega)$
γ , mJ/g-atom · K ²	4.33		3.45		3.68	
β , mJ/g-atom · K ²	0.0960		0.0883		0.267	
$N_F(0)$, state/eV · atom	0.92		0.73		0.78	
Θ_L, \mathbf{K}	272		280		194	
Θ_H, K	337	359	356	367	292	284
$\Omega_{ m ln}, { m K}$	171	171	179	182	132	139
Ω_{-2}, K	163	160	170	173	125	131
Ω_{-1}, K	196	203	207	213	157	164
Ω_1, K	241	258	255	265	199	205
Ω_2, K	261	278	276	284	226	220
Ω_4, K	278	310	293	313	248	243
Ω_*, K	282		298		255	
$A, mJ/mol \cdot K^2$	14.1		11.5		21	

Таблица 2. Параметры, характеризующие аморфные системы Ni44Nb56, Ni62Nb38 и Cu33Zr67

П р и м е ч а н и е. Коэффициенты γ и β аппроксимируют теплоемкость в области низких температур зависимостью вида $C = \gamma T + \beta T^3$. $N_F(0)$ есть плотность электронных состояний на поверхности Ферми. Θ_L и Θ_H — низкотемпературное и высокотемпературное значения характеристического дебаевского параметра. Величины Ω_{-2} , Ω_{-1} , Ω_1 , Ω_2 , Ω_4 и Ω_{\ln} характеризуют средние частоты (моменты) колебательного спектра в соответствии с соотношениями (3) и (4). В таблице приведены данные, определенные из теплоемкости ($C_p(T)$) и вычисленные по колебательным спектрам, полученным неупругим рассеяниям нейтронов с использованием изотопического контраста ($g(\omega)$).

)

турной асимптотиками по закону, подобному формуле Нернста-Линдемана.

Величина γ определялась стандартным способом по низкотемпературной асимптотике температурной зависимости теплоемкости в соответствии с законом $C = \gamma T + \beta T^3$. Величина A вместе с параметрами Ω_2 , Ω_4 и Ω_* , характеризующими колебательный спектр, определалась по высокотемпературной асимптотике теплоемкости аппроксимацией ее температурной зависимости соотношением вида

$$C_{p} = 3R \left[1 - \frac{1}{12} \left(\frac{\Omega_{2}}{T} \right)^{2} + \frac{1}{240} \left(\frac{\Omega_{4}}{T} \right)^{4} + \varphi \left(\frac{\Omega_{*}}{T} \right) \right] + AT, \quad (2)$$

где

(

$$\varphi(z) = \frac{z^2 \exp z}{\left[1 - (\exp z)^2\right]} - \left(1 - \frac{z^2}{12} + \frac{z^4}{240}\right).$$

Такое соотношение для асимптотического разложения колебательной теплоемкости при высоких температурах было предложено в [6] и использовалось в [7,8]. Величины Ω_2 и Ω_4 выражены в единицах температуры и связаны с моментами колебательного спектра соотношением

$$(\Omega_n)^n = \langle \omega^n \rangle = \left(\int_0^\infty g(\omega) \omega^n \, d\omega \right) \Big/ \left(\int_0^\infty g(\omega) \, d\omega \right). \quad (3)$$

Здесь $g(\omega)$ — энергетическая функция плотности колебательных состояний. Величина Ω_* в формуле (2) близка к величине Ω_n из формулы (3) при n = 6.

Варьируя четыре подгоночных параметра (A, Ω_2 , Ω_4 и Ω_*), с помощью соотношений (1)–(3) удалось аппроксимировать экспериментальные результаты в интервале температур 60–260 К со среднеквадратичным отклонением порядка 0.15%. Значения параметров A, Ω_2 , Ω_4 и Ω_* , определенные по высокотемпературной асимптотике теплоемкости в соответствии с соотношениями (1)–(3), приведены в табл. 2. Здесь же дано предельное высокотемпературное значение температуры Дебая Θ_H , связанное со среднеквадратичной частотой

Рис. 2. Температурная зависимость теплоемкости аморфных сплавов в области низких температур в координатах $C/T-T^2$. $I - \mathrm{Ni}_{62}\mathrm{Nb}_{38}$, $2 - \mathrm{Ni}_{44}\mathrm{Nb}_{56}$, $3 - \mathrm{Cu}_{33}\mathrm{Zr}_{67}$.

Рис. 3. Температурная зависимость колебательной теплоемкости аморфных сплавов в координатах $C_{\rm vib}/T^3 - T$. $I - {\rm Ni}_{62}{\rm Nb}_{38}, 2 - {\rm Ni}_{44}{\rm Nb}_{56}, 3 - {\rm Cu}_{33}{\rm Zr}_{67}.$

Рис. 4. Дебаевский параметр Θ в зависимости от температуры *T*. *1–3* — определен из теплоемкости; *4–6* — рассчитан по колебательному спектру, полученному неупругим рассеянием нейтронов [3,4]. *1*, *4* — Ni₆₂Nb₃₈, *2*, *5* — Ni₄₄Nb₅₆, *3*, *6* — Cu₃₃Zr₆₇.

колебательного спектра соотношением

$$\Omega_2 = \Theta_H / \sqrt{3/5}.$$

Моменты колебательного спектра, характеризующие преимущественно низкоэнергетическую его часть (среднюю обратную, среднелогарифмическую и среднюю частоты), выражаются через интегралы от колебательной теплоемкости [8]. Расчет моментов по этим соотношениям производился в области температур 10-270 К интегрированием по экспериментальным точкам, а вне этой области использовалась экстраполяция теплоемкости по низкотемпературной асимптотике вида $C = \beta T^3$ либо по высокотемпературной асимптотике в модели дебаевского спектра аналогично [9]. Результаты вычислений приведены в табл. 2, причем для удобства сравнения приводятся не моменты спектра $\langle \omega^n \rangle$, а соответствующие им средние частоты Ω_n , определенные

согласно (3) и выраженные в температурных единицах; величина среднелогарифмической частоты Ω_{ln} получена с помощью соотношения

$$lg(\Omega_{ln}) = \frac{\langle \omega^{-1} \ln \omega \rangle}{\langle \omega^{-1} \rangle} \\ = \left(\int_{0}^{\infty} \frac{g(\omega) \ln \omega}{\omega} \, d\omega \right) / \left(\int_{0}^{\infty} \frac{g(\omega)}{\omega} \, d\omega \right).$$
(4)

Поскольку существенный вклад в колебательную теплоемкость при температуре Т вносят колебания в той области энергии E, где E < 5kT, низкотемпературная теплоемкость содержит информацию о низкочастотной части спектра колебаний. В работе [10] показано, что в области низких температур и низких энергий величина $C_{\rm vib}/T^3$ является хорошим приближенным образом функции $g(\omega)/\omega^2$ при $\omega = 4.93T$ (частота выражена в единицах температуры). Поэтому анализ колебательной компоненты теплоемкости в области низких температур удобно вести, представив на графике температурную зависимость теплоемкости в координатах $C_{\rm vib}/T^3 - T$. Такие зависимости для исследованных систем приведены на рис. 3. В этих координатах традиционно проводится анализ отклонения температурной зависимости теплоемкости от дебаевского закона, согласно которому колебательная теплоемкость при низких температурах пропорциональна кубу температуры.

Как видно из рис. 3, величина $C_{\rm vib}(T)/T^3$ в области температур ниже 10 К является практически константой. С повышением температуры величина $C_{\rm vib}(T)/T^3$ в системе Cu₃₃Zr₆₇ монотонно падает, а в системах Ni₄₄Nb₅₆ и Ni₆₂Nb₃₈ проходит через небольшой максимум при температуре 15 К и лишь затем плавно спадает с ростом температуры. Наличие этих максимумов связано с отклонением колебательной теплоемкости от закона T^3 , что свидетельствует о перестройке плотности колебательных состояний в области низких частот.

Отметим, что при увеличении температуры информативность анализируемой зависимости падает из-за быстрого убывания величины $C_{\rm vib}/T^3$. Поэтому обсуждение температурной зависимости теплоемкости в широком интервале температур удобнее вести с помощью температурной зависимости характеристического параметра Дебая Θ , который является более тонкой характеристикой, определяющей, в частности, скорость выхода $C_{\rm vib}(T)$ на высокотемпературную асимптотику. На рис. 4 приведены температурные зависимости характеристического параметра Θ для рассматриваемых систем, определенные из данных по теплоемкости в настоящей работе и рассчитанные по парциальным энергетическим спектрам колебаний, полученным методом неупругого рассеяния нейтронов с использованием метода изотопического контраста в работах [3,4]. При этом в области низких энергий (ниже 4 meV) плотность колебательных состояний заменялась квадратичной зависимостью вида $g(\omega) = \text{const}\,\omega^2$, гладко смыкающейся с экспериментальными данными по $g(\omega)$ при $\hbar\omega = 4$ meV.

В области температур выше 10 К наблюдается хорошее согласие данных, полученных из теплоемкости, с результатами нейтронного эксперимента как в абсолютных величинах дебаевского параметра, так и при изменениях его с концентрацией Ni в сплавах Ni–Nb. Максимальное различие нейтронных и калориметрических данных в области температур 10–220 К не превышает 6%.

В интервале температур выше 10 K для системы Cu₃₃Zr₆₇ и выше 15 K для систем Ni₄₄Nb₅₆ и Ni₆₂Nb₃₈ наблюдается возрастание дебаевского параметра Θ с температурой с выходом на постоянное значение в области температур выше 70 K для системы Cu₃₃Zr₆₇ и 100 K для системы Ni–Nb. Масштаб изменения дебаевского параметра Θ с ростом температуры составляет 50 % для системы Cu₃₃Zr₆₇ и 25% для систем Ni–Nb.

Из рис. 4 и табл. 2 видно также, что величины средних частот, характеризующих моменты колебательного спектра, при переходе от Ni₄₄Nb₅₆ к Ni₆₂Nb₃₈ увеличиваются на 4–5.5%. Такой масштаб изменения частот примерно соответствует зависимости $\Theta(T)$, ожидаемой при учете изменения средней массы атома M.

В системе Cu–Zr величины соответствующих частот существенно меньше (на 30%), чем в системах Ni–Nb, что указывает на значительное уменьшение силовых постоянных в этой системе по сравнению с системой Ni–Nb.

В результате проведенных исследований можно сделать следующие выводы. Изменение относительного содержания атомов Ni и Nb приводит к изменению как фононной, так и электронной подсистем. При этом изменение фононной подсистемы строго следует за изменением средней массы соединения. Для системы $Cu_{33}Zr_{67}$ величина, характеризующая частотный колебательный спектр, на 30% меньше, чем для систем $Ni_{44}Nb_{56}$ и $Ni_{62}Nb_{38}$.

Общая характеристика колебательного спектра трех систем (Ni₄₄Nb₅₆, Ni₆₂Nb₃₈ и Cu₃₃Zr₆₇), восстановленная из температурной зависимости теплоемкости, с точностью, не превышающей 6%, согласуется с данными, полученными из измерений неупругого рассеяния нейтронов с использованием метода изотопического контраста.

Анализ низкочастотного участка колебательного спектра ($\hbar\omega < 2 \text{ meV}$), труднодоступный для методов неупругого рассеяния нейтронов, показал, что при переходе от Ni₄₄Nb₅₆ к Ni₆₂Nb₃₈ плотность электронных состояний на уровне Ферми уменьшается, а значение указанной плотности для Cu₃₃Zr₆₇ близко по величине к полученному для Ni₆₂Nb₃₈.

Авторы выражают благодарность М.Г. Землянову за обсуждение результатов и ценные замечания.

Список литературы

- [1] Металлические стекла. В. 2. Атомная структура и динамика, электронная структура, магнитные свойства / Под ред. Г. Бека, Г. Гюндерота. Мир, М. (1986).
 456 с. [Glassy metals II. Atomic Structure and Dynamics, Electronic structure, Magnetic Properties / Ed. H. Beck, H.-J. Guntherodt. Springer-Verlag, Berlin-Heidelberg-N. Y.-Tokyo. Topics in Applied Physics 53, (1983)].
- [2] Г.Х. Панова. Динамические, электронные и сверхпроводящие свойства аморфных систем и их кристаллических аналогов. V Школа по нейтронной физике. Алушта (1986). Сб. лекций. ОИЯИ, Дубна (1987). 480 с.
- [3] G.F. Syrykh, M.N. Khlopkin, S.N. Ishmaev, P.I. Soldatov. J. Non-Cryst. Sol. **192-193**, 282 (1995).
- [4] G.F. Syrykh, S.N. Ishmaev, M.G. Zemlyanov, I.L. Sashin. J. Non-Cryst. Sol. 250–252, 642 (1999).
- [5] Г.Х. Панова, М.Н. Хлопкин, Н.А. Черноплеков, А.А. Шиков. ФТТ 44, 7, 1168 (2002).
- [6] V.N. Naumov. Phys. Rev. B |bf 49, 18, 13 247 (1994).
- [7] M.I. Katsnelson, I.I. Naumov, A.V. Trefilov, M.N. Khlopkin, K.Yu. Khromov. Phil. Mag. B **75**, *3*, 389 (1997).
- [8] A. Junod. Solid State Commun. 33, 1, 55 (1980).
- [9] А.В. Мирмельштейн, А.Е. Карькин, В.Е. Архипов, В.И. Воронин. ФММ 58, 5, 1008 (1984).
- [10] A. Junod, T. Jarlborg, J. Muller. Phys. Rev. B 27, 3, 1568 (1983).