10,11

Особенности перколяционной схемы перестройки колебательного спектра сплава с составом для Ga_{1-x}Al_xP

© С.П. Козырев

Физический институт им. П.Н. Лебедева РАН, Москва, Россия E-mail: skozyrev@sci.lebedev.ru

(Поступила в Редакцию 30 октября 2017 г.)

Рассмотрены особенности свойств решеточных колебаний Ga–P в рамках перколяционной модели смешанного кристалла (сплава) Ga_{1-x}Al_xP с нулевым решеточным рассогласованием между бинарными компонентами сплава. В отличие от других двухмодовых систем сплавов, в Ga_{1-x}Al_xP перколяционное расщепление $\delta \sim 13 \, {\rm cm}^{-1}$ наблюдается для низкочастотной моды GaP-подобных колебаний. Отщепленная от основной, дополнительная GaP-мода (одна из компонент перколяционного дуплета) проявляется в сплаве, обогащенном GaP, и совпадает по частоте со щелью с нулевой плотностью однофононных состояний кристалла GaP. Также представлен расчет колебательного спектра примесного Al в кристалле GaP с использованием теории динамики кристаллической решетки. При замещении атома Ga более легким Al помимо локальной моды, в рассчитанном спектре в области щели с нулевой плотностью фононных состояний кристалла GaP наблюдается особенность, совпадающая с экспериментально наблюдаемой модой на частоте 378 cm⁻¹ в сплаве Ga_{1-x}Al_xP (x < 0.4).

DOI: 10.21883/FTT.2018.04.45693.306

1. Введение

Перколяционная модель полупроводникового сплава (твердого раствора), основанная на теории перколяции (the percolation site theory) [1], была предложена Pagès at al. [2] для интерпретации особенностей спектра комбинационного рассеяния света (КРС) сплавов халькогенидов (Zn, Be)VI (VI соответствует элементу VI группы) — в области BeVI-подобных колебаний наблюдается дуплет сильных колебательных мод с большим расщеплением. Замещение атомов Zn атомами Ве с малым ковалентным радиусом приводит к локальному уменьшению длины связи с соответствующим увеличением ее жесткости и значительному топологическому разупорядочению, вызванному таким замещением. Идея перколяционной модели заключается в том, что топологическое разупорядочение приводит к композитному характеру твердого раствора (Zn, Be)VI из жестких (обогащенных Be) и мягких (обогащенных Zn) областей. Для жесткой связи Be-VI локальное окружение в этих двух областях сплава разное, разные силовые константы связи и соответственно частоты собственных колебаний. Для пары BeVI-подобных колебаний величина расщепления перколяционного дуплета составляет $\delta_{
m BeSe}\sim 50\,{
m cm^{-1}}$ в (ZnBe)Se и $\delta_{
m BeTe}\sim 40\,{
m cm^{-1}}$ в (ZnBe)Те. Перколяционную схему (1-связь — 2-моды) перестройки спектра решеточных колебаний сплава с составом, предложенную для сплава (Zn, Be)VI с большим контрастом в жесткости связи бинарных компонент сплава, Pagès at al. [3] считают возможной для применения при интерпретации спектра решеточных колебаний сплавов $A_{1-x}B_xC$ с мягкими связями и соответственно с малым контрастом в жесткости, какими явля-

ются типичные полупроводниковые сплавы. В нашей работе [4] была представлена попытка интерпретации некоторых особенностей спектра решеточных колебаний сплава Cd_{1-v}Hg, Te исходя из перколяционной модели сплава $A_{1-x}B_xC$ как композитной среды, образованной в результате естественных флуктуации в составе сплава на локальном уровне двумя сосуществующими АС- и *BC*-обогащенными областями. Сплав Cd_{1-v}Hg, Te образован полупроводником CdTe и полуметаллом HgTe с одинаковой структурой цинковой обманки (ZB) и почти равными решеточными параметрами ($a_0 = 6.482$ и 6.461 Å соответственно для CdTe и HgTe). Из-за очень малого решеточного рассогласования бинарных компонент в сплаве Cd_{1-v}Hg, Te при катионном замещении длина связи с Те-фнионом не изменяется вне зависимости от того, находится ли катион в HgTe-обогащенной области или в CdTe-обогащенной области сплава. Это означает, что рассмотренная Pagès at al. [2,3] перколяционная схема перестройки колебательного спектра сплава с составом для Cd_{1-v}Hg_vTe не применима. В их схеме (1-связь — 2-моды) перколяционное расщепление в сплаве $A_{1-x}B_xC$ достигается за счет того, что и для А-С-связи, и для В-С-связи из-за различия решеточных параметров компонент сплава локальное окружение в АС- и ВС-обогащенных областях деформировано по-разному, что приводит к расщеплению частоты колебаний для данной связи. И чем больше решеточное рассогласование между компонентами сплава АС и ВС, тем больше величина расщепления перколяционного дуплета в сплаве. Подобные утверждения справедливы и для А-С-связи, и для В-С-связи, но для связи, соответствующей низкочастотным колебаниям, расщепление перколяционного дуплета значительно

Рис. 1. *а*) Однофононная плотность состояний для GaP [10]. В спектральной области LO–TO-расщепления (403–365 cm⁻¹) наблюдается щель с нулевой плотностью состояний. *b*) Однофононная плотность состояний для GaAs [10]. В спектральной области LO–TO расщепления (293–269 cm⁻¹) щель с нулевой плотностью состояний отсутствует.

меньше и, как правило, спектрально не разрешается. В сплаве Cd_{1-v}Hg_vTe перколяционное расщепление $\delta_{HgTe} \sim 16 \, cm^{-1}$ наблюдается для низкочастотной НgТе-подобной моды колебаний, которая ниже частоты CdTe-подобных колебаний. Интерпретация колебательного спектра в сплаве Cd_{1-y}Hg_vTe допускает для атома Нд наличие двух решеточных состояний — с одноямным потенциалом в CdTe-обогащенной области сплава и с двуямным потенциалом в HgTe-обогащенной области [5]. Моды HgTe-подобных колебаний в этих областях соответствуют перколяционному дуплету. Проявление композитного характера сплава Cd_{1-v}Hg_vTe через наличие дополнительной отщепленной моды стало возможным благодаря различию типа химической связи в бинарных компонентах сплава: в CdTe связь считается ионно-ковалентной и осуществляется через sp³-орбитали, а в HgTe — связь тяжелой Hg с Те в значительной степени формируется с участием *d*-орбиталей [6,7].

Сплавы GaAlP и GaAlAsi, как и сплав CdHgTe, образованы бинарными компонентами с одинаковой структурой ZB и с почти нулевым решеточным рассогласованием. Для сплава GaAlP разница длин связи в бинарных компонентах GaP и AlP равна 2.360–2.367 = -0.007 Å для сплава GaAlAs разница длин связи в компонентах GaAs и AlAs равна 2.448-2.451 = -0.003 Å. Оба сплава GaAlP и GaAlAs характеризуются одинаковым типом связи — преимущественно ковалентным, как и для других III-V-соединений. При равенстве длин связи катионные места в сплавах GaAlP и GaAlAs эквивалентны, и следовало бы ожидать, что спектр решеточных колебаний в сплаве любого состава будет характеризоваться только двумя основными колебательными модами бинарных компонент сплава. Из ранних пионерских исследований спектров решеточных колебаний в сплавах $Ga_{1-x}Al_xP$ [8] и $Ga_{1-x}Al_xAs$ [9] установлено, что они соответствуют двухмодовому типу перестройки колебательного спектра с составом сплава. В отличие от сплава GaAlAs, где четко проявляются только две основные моды во всем интервале составов и никаких дополнительных структур, в сплаве GaAlP для составов с GaP-обогащением наблюдается дополнительная мода, отщепленная от основной GaP-подобной моды. Наличие дополнительной структуры у низкочастотной GaP-моды при практическом отсутствии решеточного рассогласования бинарных компонент сплава делают спектр решеточных колебаний сплава Ga1-rAlrP подобным спектру сплава Hg_{1-x}Cd_xTe (индекс состава 1 - x = y), для которого перколяционная схема перестройки колебательного спектра с составом сплава рассматривалась в [4]. Как и в HgCdTe дополнительная мода с $\omega = 378 \,\mathrm{cm}^{-1}$ в спектре решеточных колебаний сплава Ga_{1-x}Al_xP при малых x попадает в щель с нулевой плотностью фононных состояний кристалла GaP. На рис. 1, а и 1, b представлены однофононные плотности состояний для GaP [10] и для GaAs [10] соответственно. В плотности состояний для GaP щель с нулевой плотностью состояний расположена между LO $(= 403 \,\mathrm{cm}^{-1})$ и ТО $(= 365 \,\mathrm{cm}^{-1})$ модами колебаний GaP. В перколяционной схеме перестройки колебательного спектра сплава дополнительная мода является следствием проявления композитного состава сплава. Она является производной от основной моды Ga-P-колебаний и одной из компонент перколяционного дуплета. В плотности фононных состояний для GaAs (рис. 1, *b*) щель с нулевой плотностью состояний в области частот между LO- и ТО-модами отсутствует, и в спектре GaAlAs нет отщепленной моды.

Особенности спектра решеточных колебаний в Ga_{1-x}Al_xP

О существовании дополнительной третьей моды с $\omega = 378 \text{ cm}^{-1}$, помимо основных мод GaP- и AlP-подобных колебаний, в двухмодовом сплаве Ga_{1-x}Al_xP сообщалось в ранней работе [11]. Для состава x = 0.2 были даже представлены параметры трех осцилляторов (частота, сила осциллятора, параметр затухания), используемых при дисперсионном анализе экспериментального спектра решеточного отражения. И в сплаве GaP_{1-y}As_y

(y = 0.25) была обнаружена та же дополнительная мода с $\omega = 378 \text{ cm}^{-1}$. В сплаве Ga_{1-x}Al_xAs эта мода отсутствует. В последующей работе [8] авторы исследовали для сплава Ga_{1-x}Al_xP композиционную зависимость частот двух мод GaP- и AlP-подобных колебаний, игнорируя возможное наличие дополнительной третьей моды, считая ее индуцированной разупорядочением LO-модой вблизи границы зоны Бриллюэна. Измерения спектров КPC [12] подтвердили наличие двух полос продольных LO-колебаний, приписываемых модам GaP- и AlP-подобных колебаний.

Исходя из результатов исследований работ, выполненных G. Lucovsci at al. [8,11], мы провели комбинированные измерения решеточного ИК-отражения и КРС на эпитаксиальных пленках Ga_{1-x}Al_xP. Измерения проводились на пленках толщиной 6 µm, выращенных на подложке (111) GaP методом жидкофазной эпитаксии. Для исключения доминирующих в спектре КРС полос ТО- и LO-фононов подложки GaP, наблюдаемых при нормальном падении возбуждающего света, спектры КРС возбуждались сфокусированным пучком лазера до размера 2-3 µm с торца эпитаксиальной пленки. Результаты дисперсионного анализа спектров решеточного отражения — концентрационная зависимость частот ТО-ветвей — были подтверждены данными анализа спектров КРС. В колебательных спектрах исследованных составов проявляются 3 моды GaP-подобных колебаний и одна мода AlP-подобных колебаний (например, для состава x = 0.43 рис. 2, c). Из трех мод GaP-подобных колебаний одна мода с $\omega = 365 \,\mathrm{cm}^{-1}$ — мода Ga-Pколебаний бинарной компоненты сплава, другая мода с $\omega = 378 \, {\rm cm^{-1}}$ наблюдалась в [11], третья мода с $\omega = 355 \,\mathrm{cm}^{-1}$ — неизвестной природы, но ее наличие подтверждалось данными ИК- и КРС-измерений. Природа последних двух мод для нас оставалась неизвестной.

В настоящей работе мы заново провели интерпретацию спектров решеточного отражения сплава Ga_{1-x}Al_xP, представленных ранее в [8]. Измерения в [8] проводились на пленках, полученных жидкофазной эпитаксией на подложку GaP, с толщиной пленки до 100 μ m, достаточной чтобы в отношении ИК-отражения в области решеточных колебаний исключить интерференцию света на границе раздела пленки и подложки и рассматривать пленки как объемный материал. Именно по этой причине, чтобы избежать неоднозначности в интерпретации $R(\omega)$, мы отказались от дальнейшей работы с тонкими пленками из [13]. Последующий дисперсионный анализ диэлектрической функции $\varepsilon(\omega)$ проводился представлением ее в аддитивной форме

$$\varepsilon(\omega) = \varepsilon_{\infty} + \sum_{j} \frac{S_{j} \omega_{tj}^{2}}{\omega_{tj}^{2} - \omega^{2} - i\omega\gamma_{j}}.$$
 (1)

Здесь ω_{tj} , S_j и γ_j — частота *j*-ой решеточной ТО-моды, ее сила осциллятора и параметр затухания. Результаты дисперсионного анализа (частоты колебательных мод и

Рис. 2. *а*) Фрагмент функции однофононной плотности состояний в GaP. *b*) Мнимая часть диэлектрической функции Im $\varepsilon(\omega)$ кристалла GaP с примесью Al (x = 0.2), рассчитанная в соответствии с микроскопической теорией [14]. ТО мода с $\omega_{\rm TO} = 365 \,{\rm cm^{-1}}$ априорно задается при расчете. Особенность Im $\varepsilon(\omega)$ на $\omega = 378 \,{\rm cm^{-1}}$ соответствует нулевой плотности фононных состояний в GaP. *c*) Мнимая часть диэлектрической функции Im $\varepsilon(\omega)$ сплава Ga_{1-x}Al_xP (x = 0.43). В области GaP-подобных колебаний при x > 0.4 наблюдается дополнительная мода на $\omega = 355 \,{\rm cm^{-1}}$.

их силы осциллятора) для всего интервала составов сплава $Ga_{1-x}Al_xP$ представлены на рис. 3. Распределения частот ТО-мод колебаний в сплаве в зависимости от состава (рис. 3, *a*) аналогичны представленным ранее в [13] для тонких пленок — одна мода TO_{Al} AlP-подобных колебаний и три моды в области GaP-подобных

Рис. 3. *а*) Распределения частот TO_{GaP} мод GaP-подобных колебаний и TO_{AIP} моды AlP-подобных колебаний в зависимости от состава *x* сплава $Ga_{1-x}Al_xP$. Мода TO_{GaP}^{AI} — отщепленная от основной TO_{GaP}^{Ga} моды GaP-подобных колебаний, вместе образуют перколяционный дуплет. *b*) Распределение сил осциллятора TO мод Ga-P-колебаний и TO_{AIP} моды Al-P-колебаний в зависимости от состава *x* сплава $Ga_{1-x}Al_xP$. Распределение для моды TO_{GaP}^{Ga} с частотой $\omega \approx 365 \text{ cm}^{-1}$ аппроксимируется расчетной кривой $S(x) = 1.95[(1-x)^4 + 3x(1-x)^3]$. *c*) Распределение силы осциллятора колебаний отщепленной моды TO_{GaP}^{AI} в зависимости от состава сплава.

колебаний. На рис. 3, *b* и 3, *c* представлены распределения сил осциллятора для соответствующих мод. Мода с $\omega = 378 \,\mathrm{cm^{-1}}$ (TO_{Ga}^{Al}) проявляется для составов x < 0.5, также как и в КРС-спектрах [13], причем ее интенсивность резко падает при $x \sim 0.3$ (рис. 3, *c*). При этом же составе ($x \sim 0.3$) проявляется еще одна дополнительная мода TO_{Ga}^{Ad}. На рис. 2, *c* представлена Im $\varepsilon(\omega)$ для сплава Ga_{1-x}Al_xP (x = 0.43). В области частот GaP-подобных колебаний разрешаются три моды, одна из них TO_{Ga}^{Ad} с $\omega = 355 \,\mathrm{cm^{-1}}$, ее интенсивность сравнима

с основной модой GaP-подобных колебаний ТОGaP с $\omega = 365 \,\mathrm{cm}^{-1}$ для составов x > 0.4 (рис. 3, *b*). В сплаве составов $x \sim 0.4$ происходит структурная модификация. На рис. 4 представлена суммарная сила осцилляторов S_{GaP} для всех GaP-подобных колебаний в зависимости от состава сплава х (показано темными символами) совместно с распределением сил осциллятора SAIP для AIPподобных колебаний. При рассмотрении изменения состава сплава со стороны AlP (от x = 1) суммарная сила осцилляторов S_{GaP} для GaP-подобных колебаний линейно увеличивается с составом сплава $S_{\text{GaP}} = 1.95(1-x)$ для x > 0.4, но в области составов $x \sim 0.4$ наблюдается сильный разрыв в распределении сил осцилляторов и для x < 0.4 распределение сил осцилляторов становится $S_{\text{GaP}} = 1 + 0.95(1 - x)$ с дополнительным увеличением сил осцилляторов $\Delta S_{\text{GaP}} \sim 1.0x$ в области составов x < 0.4. Подобное поведение в распределении сил осциллятора наблюдается и для AIP-подобных колебаний, но для составов x < 0.4 S_{AIP} резко падает. В сплавах $Zn_{1-x}Cd_xSe$ и $CdTe_{1-x}Se_x$ подобные скачки значений в композиционной зависимости сил осцилляторов наблюдаются для составов, соответствующих фазовому переходу между кубической (ZB) кристаллической структурой и гексагональной (W). На рис. 4 незаштрихованными символами показаны распределения сил осцилляторов $S_{\text{GaP}}^{(-)} = S_{\text{GaP}} - S_{\text{GaP}}^{\text{Al}}$ (с вычетом распределения сил осциллятора дополнительной моды TO_{GaP}) и $S_{
m AlP}^{(+)}=S_{
m AlP}+S_{
m GaP}^{
m Al}$ Функция $S_{
m GaP}^{(-)}(x)$ становится практически линейной по всему составу сплава. Сглаживается и распределение $S_{\rm AlP}^{(+)}$ Увеличение суммарной силы осцилляторов GaP-подобных колебаний $\Delta S_{\mathrm{GaP}} \sim 1.0 x$ в области составов x < 0.4 вызвано Ga-P-колебаниями дополнительной моды TO_{GaP} с увеличенной силой осциллятора в пересчете на единичную связь. В осциллятор-

Рис. 4. Распределения суммарной силы осцилляторов S_{GaP} для всех GaP-подобных колебаний и силы осциллятора S_{AIP} для AlP-подобных колебаний в зависимости от состава сплава x (показано темными символами). Светлыми символами показаны распределения, если от S_{GaP} вычесть распределение силы осциллятора отщепленной $\text{TO}_{\text{GaP}}^{\text{AI}}$ моды $\left(S_{\text{GaP}}^{(-)}\right)$, а к распределению S_{AIP} — прибавить $\left(S_{\text{AIP}}^{(+)}\right)$.

ной модели ТО-колебаний в полярном полупроводнике, из которой получено дисперсионное выражение (1) для диэлектрической функции $\varepsilon(\omega)$, сила осциллятора для *j*-ой ТО-моды $S_j = \frac{e_{Tj}^2}{\mu_j \omega_{if}^2} \frac{N_j}{\varepsilon_0}$, где μ — приведенная масса ионной пары, e_T — поперечный эффективный заряд, N — количество ионных пар на единицу объема. Увеличенное значение суммарной силы осцилляторов S_{GaP} для

GaP-подобных колебаний сопровождается появлением дополнительной моды GaP-подобных колебаний TO^{Al}_{GaP}, в которой сила осциллятора в пересчете на единичную связь увеличивается за счет перераспределения заряда между Al–P-связью и Ga–P-связью. К дополнительному обсуждению этого вопроса вернемся позже.

Для идентификации природы неизвестных мод в области GaP-подобных колебаний мы провели расчет колебательного спектра примесного Al в кристалле GaP с использованием микроскопической теории динамики кристаллической решетки в приближении малой концентрации примеси [14]. В рамках этой теории рассматривается поведение локальной моды, возникающей при замещении атома Ga более легким атомом Al в кристалле GaP с функцией плотности однофононных состояний, в которой имеется щель с нулевой плотностью состояний в области частот LO-TO-расщепления Ga-P колебаний (рис. 2, a). При расчете вводится только один примесный параметр, дефект массы $\eta = m_{\rm Al}/(m_{\rm Ga}-m_{\rm Al}),$ при неизменном параметре кристаллической решетки. В соответствии с микроскопической теорией, диэлектрическая функция $\varepsilon(\omega)$ сплава $A_{1-x}B_xc$ при малом содержании одной из компонент ($x \ll 1$) определяется из уравнений [14]

$$\varepsilon(\omega) = \varepsilon_{\infty} + \frac{(\varepsilon_0 - \varepsilon_{\infty})\omega_{\text{TO}}^2}{\omega_{\text{TO}}^2 - (\omega^2 + i\omega\gamma)\chi(x,\omega)},$$
$$\chi(x,\omega) = \frac{(1-x)F(A,\omega^2) - \eta}{(1-x)F(A,\omega^2) - \eta - x\frac{m_C}{m_s + m_C}}.$$

Здесь $\eta = m_B/(m_B - m_A)$ — массы соответствующих атомов, ω_{TO} — частота ТО-колебаний беспримесного кристалла *AC*,

$$F(A, \omega^2 = -1 + \omega^2 G(A, \omega^2),$$

 $G(A, \omega^2) - \phi$ ункция Грина для кристалла *AC*, в котором замещается атом *A*. Для сплава $Ga_{1-x}Al_xP$ с малым содержанием Al функция Грина $G(Ga, \omega^2)$ рассчитывалась с использованием функции плотности фононных состояний чистого GaP из [10], хотя для расчета необходимо знать парциальную плотность квадратов частот. Мы не нашли в литературе расчет для этой функции. При определенных условиях, например при близких значениях масс атомов в элементарной ячейке, такая замена вполне оправдана. Более подробное изложение микроскопической теории представлено в совместной с автором теории работе [15]. В рассчитанной диэлектрической функции Im $\varepsilon(\omega)$ (рис. 2, b) помимо основной решеточной моды GaP (с $\omega = 365 \,\mathrm{cm}^{-1}$), априорно задаваемой при расчете, и локальной моды для малых значений x, которая с увеличением x переходит в кристаллическую AlP-подобную ТО-моду, проявляется слабая мода с $\omega = 378 \,\mathrm{cm}^{-1}$, соответствующая по частоте нулевому провалу в однофононной плотности состояний GaP (рис. 2, *a*). Аналогичное отщепление слабой моды с $\omega = 378 \,\mathrm{cm}^{-1}$ от основной моды GaP наблюдается при расчете колебательного спектра примесного As в кристалле GaP. В отличие от предыдущего расчета Im $\varepsilon(\omega)$ для Ga_{1-x}Al_xP, в рассчитанной диэлектрической функции Im $\varepsilon(\omega)$ сплава GaP_{1-v}As_v для малых у замещение атома Р более тяжелым As индуцирует появление щелевой моды, переходящей с увеличением у в кристаллическую GaAs-подобную ТО-моду, и моды Ga-Р-колебаний оказываются высокочастотной полосой в сплаве GaP_{1-v}As_v. Ранее [16] подобная слабая мода на частоте, попадающей в щель с нулевой плотностью фононных состояний ZnSe, наблюдалась и расчитывалась для II-VI сплавов Zn_{1-x}Cd_xSe и ZnSe_{1-x}Te_x с малой концентрацией Cd и Te соответственно. И позже [15] дополнительная слабая мода в сплаве $Hg_{1-x}Cd_xTe$, индуцированная Cd-примесным замещением атома Hg, рассчитывалась и наблюдалась на частоте, соответствующей сильному провалу в однофононной плотности состояний HgTe. Представленные выше расчеты колебательного спектра примесных атомов Al и As в кристалле GaP показывают, что дополнительная мода с $\omega = 378 \,\mathrm{cm}^{-1}$ не является дефектной модой, связанной с несоверешенством сплава или с неконтролируемым наличием примесей, а вызвана особенностями фононной системы сплава.

В перколяционной схеме (одна связь — две моды) перестройки колебательного спектра сплава с составом дополнительная мода с $\omega = 378 \, {\rm cm^{-1}} \, ({\rm TO}_{\rm GaP}^{\rm Al}),$ отщепленная от основной ТО-моды Ga-P-колебаний с $\omega = 365 \, {\rm cm^{-1}}$ (TO_{GaP}), является одной из компонент перколяционного дуплета GaP-подобных колебаний. Pagès at al. [17], предлагая перколяционную схему перестройки колебательного спектра для сплава GaP_{1-v}As_v, рассматривают тот же перколяционный дуплет GaP-подобных колебаний с отщепленной от ТО-моды GaP дополнительной моды с $\omega = 378 \,\mathrm{cm}^{-1}$. Проявления перколяционного дуплета для Ga-Asколебаний авторы не ожидают из-за большой дисперсии частоты ТО-колебаний ($\sim 15\,{
m cm}^{-1}$) в чистом GaAs кристалле. В соответствии с критерием Андерсона (the Ayderson's criterion), так называемая фононная локализация, т.е. регистрация нескольких ТО-мод колебаний на связь, проявляется, если флуктуация по частоте ТО-моды превышает ее дисперсию в соответствующем чистом кристалле [18]. В GaP дисперсия ТО-моды почти нулевая, смещаясь только на $\sim 1.5\,{
m cm}^{-1}$ в зоне от центра до края (X) зоны [17], тем самым допуская фононную локализацию для GaP-подобных колебаний с конечным расщеплением перколяционного дуплета. Наши расчеты колебательного спектра примесных атомов в II–VI и III–V кристаллах, в которых в плотности фононных состояний между частотами ТО- и LO-мод колебаний имеется щель с нулевой плотностью фононных состояний, указывают на наличие критерия проявления в спектре сплава перколяционного дуплета — если дополнительная мода по частоте попадает в щель с нулевой плотностью фононных состояний, она является компонентой перколяционного дуплета. Это утверждение не противоречит критерию Андерсона, т. к. наличие щели с нулевой плотностью фононных состояний между частотами ТО- и LO-мод колебаний чистого кристалла указывает на малую дисперсию частоты ТО-колебаний в кристалле.

В [17] Pagès at al. рассматривают сплав $GaP_{1-v}As_v$ как композитную среду, образованную сосуществующими GaP- и GaAs-обогащенных областями. Две колебательные моды на связь возникают из-за различия длин связи, вызванного локальными искажениями связи в соответствии с тем, в какой области GaP-обогащенной или GaAs-обогащенной, рассматривается связь. В случае со сплавом $Ga_{1-x}Al_xP$, в котором решеточные параметры бинарных компонент сплава почти совпадают, никакого изменения в длине связи не происходит, но перколяционный дуплет GaP-подобных колебаний с отщепленной от ТО-моды GaP дополнительной моды с $\omega = 378 \, \mathrm{cm}^{-1}$, наблюдается. Имеет смысл обратиться к старой кристаллической модели поля валентных сил VFF (valenceforce-field) [19] для тетраэдрически координированных кристаллов, в которой все межатомные силы разделяются на центральные (bond-stretching) и нецентральные (bond-bending) силы. В этом приближении все искажения кристаллической решетки описываются через скалярные изменения длины связи (Δr) и угла между связями ($\Delta \theta$) соответственно. Для расчетов упругих свойств кристалла и представления их результатов используются константы валентных сил α и β , которые соотносятся с силовыми константами центральных и нецентральных сил

$$k_r = 3\alpha + \beta/2$$
 и $k_\theta = 2\beta/3$.

В таблице представлены значения длин связи (в А) и констант валентных сил α и β (N/m) для некоторых соединений [20]. Прослеживается общая тенденция к уменьшению константы β по мере увеличения ионности связи f_r. В [19] было найдено эмпирическое соотношение $\beta/\alpha \sim 1 - f_i$, из которого следует $\beta = 0$ при $f_i = 1$ (для ионного кристалла). Параметр β для GaP из общей тенденции сильно выделяется, он близок к Si и совпадает с Ge. чисто ковалентными кристаллами. Для пары GaAs и AlAs — бинарных компонент сплава GaAlAs — параметры валентных сил α и β почти совпадают (в пределах 5%). Это означает, что при образовании сплава никаких существенных деформаций связей не происходит, в колебательном спектре сплава проявляются только GaAs- и AlAs-подобные моды колебаний. Для пары GaP и AlP — бинарных компонент

Длины связи d (в Å) и параметры валентных сил α и β (N/m)

Compound	d	α	β
Si	2.352	48.50	13.81
Ge	2.450	38.67	11.35
AlP	2.367	44.323	8.068
AlAs	2.451	40.849	8.717
GaP	2.360	44.764	10.737
GaAs	2.448	39.235	9.159
CdTe	2.806	26.569	2.722
HgTe	2.798	26.396	2.746

сплава GaAlP — соотношение параметров валентных сил иное, при равенстве длин связи разница в значениях параметра β (параметра нецентральных сил) достигает 30%. В GaP очень высокая степень ковалентности связи. Ранее [21], при исследовании аномальных свойств решеточных колебаний HgTe в сплаве HgCdTe мы встречались с фотоэмиссионными исследованиями электронной структуры матрицы HgTe при введении в нее Mn и Сd для изучения стабильности Hg-Te-связи [22]. Связь Cd-Те осуществляется через *sp*³-орбитали, а в HgTe связь тяжелой Hg с Te в значительной степени формируется с участием *d*-орбиталей [6,7] и в меньшей степени через sp³-орбитали. Из расчетов соответствующих "химических сдвигов" установлена сильная дестабилизация Hg-Те-связи за счет того, что сильная Cd-Те *sp*³-связь оттягивает Те *p*-орбиталь от более слабой Hg-Te-связи. Если допустить, что в сплаве GaAlPGa-P sp³-связь значительно сильнее A1-Р *sp*³-связи в соответствии со значениями параметра β , то она может стать более жесткой в AlP-обогащенной области сплава за счет оттягивания анионной Р *p*--орбитали, которое будет сопровождаться перераспределением заряда между Al-P- и Ga-P--связями. Частота Ga-P-колебаний в этом случае увеличится (для дополнительной моды), увеличится и сила осциллятора дополнительной моды в пересчете на единичную связь.

В спектре решеточных колебаний сплава Ga_{1-x}Al_xP в области частот Ga-P-подобных колебаний проявляется еще одна мода TO_{GaP}^{add} на частоте 355 cm (рис. 2, c), производная от щелевой моды AlP : Ga при $x \to 1$ (рис. 3, а). С подобной многомодовостью мы сталкивались при интерпретации колебательных спектров сплава HgCdTe (например, [5]), в котором решеточное рассогласование между бинарными компонентами сплава практически отсутствует, как и в GaAIP. По аналогии с HgCdTe, расщепление моды GaP-подобных колебаний в сплаве GaAlP интерпретируется в квазимолекулярном приближении [23], в соответствии с которым сплав рассматривается образованным пятью базисными ячейками Ga(4 - n)Al(n)P (n = 0, 1, 2, 3, 4) из катионов Ga и Al, тетраэдрически расположенных вокруг общего аниона Р. Каждой базисной ячейке соответствует своя мода Ga-Pи Al-P-колебаний, и спектр решеточных колебаний сплава апроксимируется свойствами четырех мод Ga–Pколебаний с $^{GA}\omega_n$ (n = 0, 1, 2, 3) и четырех мод Al–Pколебаний с $^{Al}\omega_n$ (n = 1, 2, 3, 4) пяти базисных ячеек Ga(4 – n)Al(n)P (n = 0, 1, 2, 3, 4) через соответствующее распределение вероятностей $P_n(x)$ их различных конфигураций в сплаве Ga_{1-x}Al_xP разного состава. В реальном спектре сплава конкретного состава все моды проявляться не могут, наблюдаются наиболее сильные. Расщепления AlP-подобных мод не наблюдалось из-за большой дисперсии частоты TO-колебаний в AlP. В GaP дисперсия TO-моды колебаний почти нулевая, около 1.5 сm⁻¹, тем самым допуская фононную локализацию (т.е. многомодовость) для GaP-подобных колебаний. Расчетные кривые для сил осциллятора $^{Ga}S_n(x)$ *n*-ой моды GaPколебаний определяются выражением [5]

^{Ga}S_n(x) = ^{Ga} f_nN
$$\frac{4-n}{4} \frac{4!}{n!(4-n)!} (1-x)^{4-n} x^n$$
,

где ^{Ga}f_n — приведенная к единичной связи Ga-P сила осциллятора. Аппроксимирующая кривая для композиционной зависимости сил осциллятора GaP-подобной моды TO_{GaP}^{Ga} на рис. 3, *b* описывается расчетными функциями ${}^{\mathrm{Ga}}S_n(x)$ для n = 0 и 1, ${}^{\mathrm{Ga}}S_0(x) + {}^{\mathrm{Ga}}S_1(x) =$ $= 1.95[(1-x)^4 + 3x(1-x)^3]$. Композиционная зависимость сил осциллятора дополнительной GaP-подобной моды ТО $_{\mathrm{GaP}}^{\mathrm{add}}$ описывается функциями $^{\mathrm{Ga}}S_n(x)$ для n=2 и 3, ${}^{Ga}S_2(x) + {}^{Ga}S_3(x)$. Многомодовое расщепление в сплаве вызвано диполь-дипольным взаимодействием между ближайшими ионами, связанным с многообразием локального окружения общего аниона Р катионами Ga и Al. Из-за различия масс катионов их смещения (амплитуды колебаний) и соответствующие дипольные моменты, индуцированные макроскопическим полем, будут различными, что и приводит к различным частотам мод для разных катионных конфигураций (n = 0-5) вокруг общего аниона в сплаве. Дополнительной причиной проявления многомодовости в сплаве GaAlP является большое различие (в соответствии с валентным параметром β) в сдвиговой жесткости Ga–P- и Al–P-связей. В сплаве HgCdTe — различие в природе химической связи компонентов сплава. А проявится ли многомодовость в спектре сплава GaAlP, зависит в соответствии с критерием фононной локализации Андерсона от дисперсии ТО-моды в чистом GaP. Она очень низкая, $\sim 1.5\,{
m cm}^{-1}$. Дополнительная мода ТО $_{
m GaP}^{
m add}$ является модой GaP-подобных колебаний в сплаве GaAlP, обогащенном AlP (x > 0.5).

3. Заключение

Спектр решеточных колебаний сплава $Ga_{1-x}Al_xP$ в области GaP-подобных колебаний характеризуется (рис. 3, *a*) тремя модами колебаний. Расчет спектра примесного атома Al в кристалле GaP с использованием микроскопической теории динамики кристаллической решетки в приближении малой концентрации

примеси показал, что помимо основной решеточной моды TO_{GaP}^{Ga} (с $\omega = 365 \, \text{cm}^{-1}$), априорно задаваемой при расчете, и локальной моды для малых значений x, которая с увеличением x переходит в кристаллическую AlP-подобную TO_{Al} моду, проявляется слабая мода с $\omega = 378 \,\mathrm{cm}^{-1}$, по частоте совпадающая с нулевым провалом в однофононной плотности состояний кристалла GaP (рис. 2, a, b). В перколяционной схеме перестройки колебательного спектра сплава Ga_{1-x}Al_xP с составом x дополнительная мода на частоте $\omega = 378 \,\mathrm{cm}^{-1}$, отщепленная от основной GaPмоды, является следствием проявления композитного состава сплава. Мода TO_{Ga}^{Al} с $\omega = 378 \, {\rm cm}^{-1}$ является производной от основной моды Ga-P-колебаний и одной из компонент перколяционного дуплета. Область перколяционного расщепления ограничивается составом сплава с $x \le 0.4$ и сопровождается структурной модификацией, связанной с переносом заряда между Ga-Pи Al-P-связями. Сила осциллятора моды решеточных колебаний пропорциональна e_T^2 (e_T — поперечный эффективный заряд связи). При анализе композиционного распределения сил осцилляторов GaP-подобных и AlPподобных колебаний наблюдается скачек в распределениях: при x < 0.4 суммарная сила осцилляторов GaPподобных колебаний резко увеливается, а AIP-подобных колебаний — в такой же степени уменьшается. Мода ТО $_{GaP}^{add}$ проявляется в сплаве Ga $_{1-x}Al_xP$, обогащенном AlP (x > 0.5), и является модой GaP-подобных колебаний для составов, в которых преимущественными структурными элементами считаются базисные ячейки Ga(4 - n)Al(n)P (n = 2 и 3) из катионов Ga и Al, тетраэдрически расположенных вокруг общего аниона Р.

Список литературы

- D. Stauffer. Introduction to Percolation Theory. Taylor and Francis, London (1985).
- [2] O. Pagès, M. Ajjoun, D. Bormann, C. Chauvet, E. Tourniè, J.P. Faurie. Phys. Rev. B 65, 035213 (2002).
- [3] O. Pagès, T. Tite, K. Kim, P.A. Graf, O. Maksimov, M.C. Tamargo. J. Phys.: Condens. Matter 18, 577 (2006).
- [4] С.П. Козырев. ФТТ 57, 1790 (2015).
- [5] С.П. Козырев. ФТТ 54, 1743 (2012).
- [6] S.H. Wei, A. Zunger. Phys. Rev. B 37, 8958 (1988).
- [7] Duan He, Dong You-Zhong, Huang Yan, Chen Xiao-Shuang. Chin. Phys. B 20, 043103 (2011).
- [8] G. Lukovsky, R.D. Burnham, A.S. Alimonda. Phys. Rev. B 14, 2503 (1976).
- [9] O.K. Kim, W.G. Spitzer. Phys. Rev. J. Appl. Phys. 50, 4362 (1979).
- [10] K. Kunc, M. Balkanski, M.A. Nasimovici. Phys. Status Solidi B 72, 229 (1975).
- [11] P.N. Sen, G. Lukovsky. Phys. Rev. B 12, 2998 (1975).

- [12] G. Armelles, J.N. Calleja, E. Munoz. Solid State Commun. 65, 779 (1988).
- [13] Л.К Водопьянов, С.П. Козырев, Н.Н. Мельник. ФТТ 42, 618 (2000).
- [14] В.С. Виноградов. ФТТ 11, 2062 (1969).
- [15] С.П. Козырев, В.С. Виноградов. ФТТ 55, 375 (2013).
- [16] С.П. Козырев. ФТП 48, 1297 (2014).
- [17] O. Pagès, J. Souhabi, A.V. Postnikov, A. Chafi. Phys. Rev. B 80, 035204 (2009).
- [18] M. Cardona, P. Etchegoin, H.D. Fuchs, P. Molina-Mata. J. Phys.: Condens. Matter 5, A61 (1993).
- [19] R.M. Martin. Phys. Rev. B 1, 4005 (1970).
- [20] A.-B. Chen, A. Sher. Phys. Rev. B 32, 3695 (1985),
- [21] С.П. Козырев. ФТТ 53, 153 (2011).
- [22] A. Wall, C. Capnele, A. Franciosi, R. Reifenberger, U. Debska. J. Vac. Sci. Technol. A 4, 818 (1986).
- [23] H.W. Verleur, A.S. Barker. Phys. Rev. 149, 715 (1966).