04,10,09

Рамановское рассеяние кристаллами гексаборидов редких земель с различными изотопами бора

© Ю.Ф. Марков¹, В.Н. Гурин¹, К.В. Понкратов²

¹ Физико-технический институт им А.Ф. Иоффе РАН, Санкт-Петербург, Россия ² ООО "Ренишоу", Москва, Россия E-mail: Yu.marhov@mail.ioffe.ru

(Поступила в Редакцию 10 октября 2017 г.)

Раствор-расплавным методом получены монокристаллы гексаборида лантана LaB₆, содержащие как природный бор, так и его изотопы ¹⁰В и ¹¹В. Впервые выращены полиэлементные гексабориды редких земель и синтезированы соответствующие керамики. Все эти кристаллы изучены при помощи различных методик, главным образом, при помощи рамановского рассеяния. Получены и интерпретированы рамановские спектры с приписанием различных линий спектра соответствующим неприводимым представлениям. Получены частоты и полуширины линий спектра, обнаружено индуцированное дефектами, главным образом, присутствием различных изотопов бора, снятие вырождения и проявление соответствующих расщеплений вырожденных колебаний. Определено влияние дефектов на рамановские спектры.

DOI: 10.21883/FTT.2018.04.45681.282

1. Введение

Из-за необычных физических и химических свойств гексабориды MB_6 имеют важные практические приложения. Они обладают высокой твердостью, химически инертны и являются огнеупорными материалами. Гексабориды, содержащие трехвалентные элементы (M = La, Nd, Gd, Tb, Dy), обычно являются металлическими проводниками, а содержащие двухвалентные элементы (M = Ca, Sr, Eu, Sm, Yb) — полупроводниками [1,2]. Соединения лантана LaB_n (n = 2, 4, 6...) являются сверхпроводниками при низких температурах [3] и используются в технике в качестве термоэлектронных эмиттеров (при n = 6).

Гексабориды кристаллизуются в простой кубической структуре типа CsCl (пространственная группа $Pm\bar{3}m = O_h^1$ [4]). Катион занимает центр куба, а октаэдры В₆ находятся в углах куба (рис. 1).

Изучению колебательных спектров гексаборидов ранее уделялось относительно мало внимания, прежде всего, из-за проблем, связанных с подготовкой образцов. Спектры инфракрасного излучения трудно изучать, поскольку образцы для измерений не могут быть легко приготовлены как в виде мелкодисперсных порошков, так и в виде подходящих и очень тонких ориентированных монокристаллических пластин. Монокристаллы гексаборидов имеют обычно темный цвет, от фиолетового до черного, что делает их плохими и трудоемкими объектами для изучения рамановских спектров. Тем не менее как инфракрасные, так и рамановские спектры этих соединений были успешно получены с помощью современных Фурье- и многоканальных спектрометров [5,6].

В настоящей работе были впервые выращены монокристаллы гексаборидов лантана LaB₆, синтезированные как на природном боре (11 В 80.2%, 10 В 19.8%), так и на его изотопах 10 В и 11 В, а также полиэлементные кристаллы гексаборидов La_{0.5}Ce_{0.1}Pr_{0.1}Nd_{0.1}Sm_{0.1}Eu_{0.1}B₆, содержащих одновременно 6 редкоземельных элементов, и соответствующие керамики этих полиэлементных гексаборидов. Последние соединения были впервые получены с целью изучения и расширения практического использования гексаборидов редких земель.

Полиэлементная керамика (те же 6 элементов, что и в монокристаллах) была синтезирована в Технологическом институте-университете (СПбГТУ) для напыления

Рис. 1. Кубическая элементарная ячейка гексаборидов *M*B₆ (*M* — редкие земли).

	Гексабориды		
Симметрия	La ^{10.81} B ₆ (естественное содержание изотопов бора)	$La^{10}B_6$	La ¹¹ B ₆
Рамановские спектры	207 (18)	207 (20)	207 (22)
второго порядка			588
T_{2g}	674 (20). На самом деле, это дублет: 672 (13), 683 (29)	695 (25). На самомо деле, это дублет: 691 (18), 699 (27)	675 (45) — идеальная симметрия (Гаусс) 986
E_{g}	1116, 1155 — дублет	1157, 1197 — дублет	1095, 1153 — дублет
A_{1g}	1244 (22) линия с максимальной интенсивностью	1280 (19)	1230 (32)
Рамановские спектры второго порядка	1383 (150)	1430 (85)	1376 (120)

Частоты полуширины (cm⁻¹) и интерпретация основных линий рамановских спектров кристаллов гексаборидов лантана

Примечание. В скобках приводятся полуширины линий рамановских спектров.

пленок с целью выбора материала для термоэлектрического тестера рентгеновского и ультрафиолетового излучения в однофотонном приближении. Керамика и монокристаллы имеют одинаковый период решетки, в этом составе она получена впервые.

Существовала необходимость сопровождения наших технологических экспериментов обнаружением и изучением изотопов ¹⁰В и ¹¹В. В этом случае весьма подходящей методикой служит рамановская спектроскопия, позволяющая фиксировать весьма тонкие изменения состава и структуры объектов исследования, а также получать информацию о качестве и степени дефектности синтезированных соединений.

В настоящей работе были получены, изучены и интерпретированы рамановские спектры этих гексаборидов, в том числе и полиэлементных, с целью диагностики и получения информации о динамике кристаллических решеток, симметрии и микроструктуре синтезированных образцов.

2. Методика эксперимента

Монокристаллы вышеуказанных соединений получали из раствора-расплава алюминия по методике [7,8]: навески редкоземельного металла и бора помещали в расплав алюминия, нагревали 2-3 h до 1400° C, выдерживали 4 h и охлаждали с "ускорением" до 600° C 6-12 h. Полученные слитки растворяли в разбавленной соляной кислоте (1:2-1:4). Из образовавшегося осадка отбирали кристаллы и подвергали их рентгеноструктурной диагностике, а затем прецизионным спектроскопическим исследованиям (рамановское рассеяние). Способ получения монокристаллов с различными изотопами бора ничем не отличался от такового с природным бором.

Спектры рамановского рассеяния в области 100–1500 ст⁻¹ регистрировались на спектрометре Renishaw, оборудованном охлаждаемой жидким азотом 2DCCD-камерой. В качестве источника возбуждения

использовали вторую гармонику непрерывного Nd: YAG-лазера с длиной волны излучения 532 nm. Для фокусировки и сбора рассеянного излучения применяли микроскоп с объективом 50×, размер пятна на образце не превышал 1-2 mm. Время интегрирования сигнала $\sim 0.3-10\,\mathrm{s}$ в зависимости от размеров и качества образцов и интенсивности рамановских спектров.

В случае кристаллов гексаборидов металлов, в том числе и редких земель, теоретико-групповой анализ [5,6] дает следующий набор оптических колебаний

$$\Gamma_{\text{opt}} = A_{1g} + E_g + T_{1g} + T_{2g} + 2T_{1u} + T_{2u}$$

В рамановских спектрах должны быть активны четные колебания симметрии A_{1g} , E_g и T_{2g} , а в инфракрасных (в отражении или в поглощении) — нечетные колебания симметрии T_{1u} ; колебания T_{1g} и T_{2u} запрещены в обоих спектрах. В рассматриваемых центросимметричных кристаллах должно иметь место правило альтернативного запрета — четные фононы наблюдаются только в рамановских спектрах и не проявляются в ИК спектрах, и наоборот, нечетные — только в ИК спектрах и запрещены в рамановских спектрах. В принципе, эти правила могут быть частично нарушены различными дефектами, локально понижающими симметрию кристаллов и индуцирующими проявление в спектрах запрещенных по симметрии малоинтенсивных фононов.

Рис. 2. Собственные вектора (нормальные колебания), соответствующие раман-активным фононам в кристаллах LaB₆.

Рис. 3. Рамановские спектры кристаллов гексаборидов лантана, содержащие различные изотопы бора (a) и кристаллов LaB₆ в области трижды вырожденных колебаний T_{2g} с разложением на исходные лоренцианы (штриховые линии) (b).

Собственные вектора (нормальные колебания), соответствующие раман-активным фононам, приведены на рис. 2. Можно видеть, что все смещения атомов бора симметричны относительно центра инверсии кристалла, что и должно иметь место.

На рис. 3, а приведены рамановские спектры кристаллов чистых гексаборидов LaB₆, содержащих различные изотопы бора, в том числе естественный природный бор, являющийся смесью ¹¹В и ¹⁰В с атомным весом 10.81, а также спектры гексаборидов, содержащих только ¹⁰В или ¹¹В. Основные характеристики (параметры) этих спектров (частоты фононов, полуширины линий и интерпретация) приведены в таблице.

В этих спектрах присутствуют несколько интенсивных линий, соответствующих полносимметричным колебаниям (фононам) A_{1g} , дважды вырожденным колебаниям симметрии E_g и трижды вырожденным колебаниям симметрии T_{2g} . Интерпретация наиболее интенсивных линий спектра вполне очевидна и основана на

совпадении численных расчетов и экспериментальных спектров [9,10]. Полуширины этих линий достаточно большие, так как, например, в случае вырожденных колебаний в естественных гексаборидах $La^{10.81}B_6$ они обременены также частичным снятием вырождения в спектрах из-за наличия в каждом "боровском" октаэдре по крайней мере одного ¹⁰В из шести. В этом случае автоматически в октаэдрах реализуется понижение симметрии от кубической до тетрагональной, ромбической или до более низкой — моноклинной.

Из рис. 3, а можно видеть эти понижения симметрии, когда каждое дважды вырожденное колебание (симметрии E_g) расщепляется на дублет (обозначен квадратной скобкой). Трижды вырожденное колебание T_{2g} также, по крайней мере, состоит из двух компонент (см. разложение асимметричного контура на два Лоренциана — штриховые линии на рис. 3, b). В спектре гексаборида La¹⁰B₆ также надежно наблюдаются расщепления вырожденных колебаний, но индуцированные как присутствием небольшого количества других изотопов бора, так и достаточно большим количеством неконтролируемых дефектов.

В случае гексаборида La¹¹B₆ в явном виде аналогичные расщепления трижды вырожденного колебания T_{2g} надежно наблюдать не удается (рис. 3, *b*), что, возможно, скрыто в бо́льшей полуширине линий спектра по сравнению с другими гексаборидами (рис. 3, *a*, *b*).

Остальные менее интенсивные линии спектра можно приписать, но достаточно неоднозначно, спектрам второго порядка, т.е. комбинациям четных (gxg = g) или нечетных (uxu = g) фононов, что дает четный фонон, активный в рамановских спектрах. Достаточно узкая и малоинтенсивная линия с частотой 207 cm⁻¹ может быть приписана проявлению разностных фононов [9], хотя этот наблюдаемый и значительно более узкий максимум напоминает проявление какого-то локального (квазилокального) колебания, возможно, связанного с образованием каких-либо кластеров. Из-за понижения локальной симметрии (в том числе из-за потери центра инверсии) мог бы проявиться и ИК активный фонон в области 1100 ст⁻¹ [5], который, возможно, и присутствует в этой области частот рамановского спектра. Линия 1385 cm⁻¹ также в ряде работ интерпретирована (спектры II порядка), что, по-видимому, соответствует действительности [9].

Все приведенные на рис. 3, *a*, *b* рамановские спектры гексаборидов лантана, содержащих различные изотопы бора ^{10.81}B, ¹⁰B и ¹¹B, в основных чертах похожи, но есть и принципиальные отличия: в последовательности La¹¹B₆, La^{10.81}B₆, La¹⁰B₆ имеет место убедительный сдвиг частот фундаментальных колебаний A_{1g} , E_g и T_{2g} в сторону более высоких значений, на 30–10 сm⁻¹ для колебаний различных симметрий, чего, в принципе, и следовало ожидать, так как изотоп бора с массой 11 замещается на более легкий изотоп с массой 10. При учете только этого дефекта масс в случае чисто валентных колебаний атомов бора эти смещения могли бы

Рис. 4. Рамановские спектры кристаллов полиэлементных гексаборидов редких земель La_{0.5}Ce_{0.1}Pr_{0.1}Nd_{0.1}Sm_{0.1}Eu_{0.1}B₆ (*a*) соответствующих керамик (*b*).

достигать ~ 50 сm⁻¹, исходя лишь из простой оценки сдвига частот по формуле $v \sim \sqrt{k/\mu}$, где k — силовая константа, μ — приведенная масса колеблющихся атомов. Как видно, эксперимент и теоретические оценки не противоречат друг другу.

Обсуждая полуширины основных линий спектра, можно отметить, что минимальные полуширины линий проявляются в случае кристаллов с природным бором и изотопом бора ¹⁰В, что может указывать на достаточно высокое качество этих гексаборидов. Образцы La¹¹B₆ демонстрируют в спектрах несколько размытую картину с проявлением бо́льшего количества малоинтенсивных линий. Возникает предположение, что последние кристаллы более дефектны, однако снятие вырождения для колебаний T_{2g} явно в них не наблюдается, хотя оно, по-видимому, "спрятано" в большой полуширине линии этого колебания. Этот вывод достаточно аргументирован, так как в этих кристаллах La¹¹B₆ убедительно проявляется расщепление дважды вырожденных колебаний симметрии E_g .

На рис. 4, *a*, *b* приведены типичные (характерные) спектры рамановские смешанных кристаллов полиэлементных гексаборидов земель редких La_{0.5}Ce_{0.1}Pr_{0.1}Nd_{0.1}Sm_{0.1}Eu_{0.1}B₆, а также спектры соответствующих керамик. В первом случае мы имеем дело с редкоземельными твердыми растворами гексаборидов, а во втором — с керамиками этих соединений, приготовленными по специальной технологии и имеющими тот же самый химический состав и тот же период кристаллической решетки. Видно, что имеется удовлетворительное соответствие спектров твердых растворов и спектров монокристаллов чистого LaB₆. Отметим также бо́льшую полуширину линий фононов симметрии A_{1g}, E_g и T_{2g} относительно этих линий в спектре соответствующих керамик. Значительно меньшую полуширину линий в последнем случае можно связать лишь с достаточно

длительной термообработкой, главным образом, с высокотемпературным отжигом керамических образцов.

Все изученные гексабориды несколько неоднородны по структуре, составу и локальной симметрии. Каждый образец (монокристалл) гексаборидов, использованный в настоящей работе, изучали в нескольких различных точках, когда имела место удовлетворительная воспроизводимость спектров, однако наблюдались и некоторые различия в рамановских спектрах как по интенсивности, так и по частоте и полуширине линий фононов. Разброс значений частот в соседних точках одного и того же образца достигал 2-3 cm⁻¹. Как указывалось в работе [10], гексабориды содержат большое количество дефектов, в том числе значительное количество катионных (анионных) вакансий (до 2-3%), наличие которых понижает локальную симметрию кристаллов от кубической до тетрагональной, ромбической и т.д., а также может приводить к нарушению центросимметричности этих кристаллов и соответственно к нарушению альтернативных правил отбора, когда в рамановских спектрах могут проявляться и нечетные ИК активные фононы (в частности, в области 1100 cm^{-1} [5]), но этот эффект однозначно в наших экспериментах наблюдать не удалось.

Авторы выражают признательность участникам технологических экспериментов по получению монокристаллов гексаборидов редкоземельных металлов (М.М. Корсукова) и полиэлементной керамики (С.С. Орданьян).

Список литературы

- [1] Редкоземельные металлы и их соединения. Наук. думка, Киев (1970).
- [2] Редкоземельные полупроводники. Наука, Л. (1977).
- [3] B.T. Matthias, T.H. Geballe, K. Andress, E. Gorenzwit, G.W. Hull, J.P. Maita. Science **159**, 530 (1968).
- [4] I. Morke, V. Dvorak, P. Wachter. Solid State Commun. 40, 331 (1981).
- [5] Z. Yahia, S. Turrell, G. Turrell, J.P. Mercurio. J. Mol. Struct. 224, 303 (1990).
- [6] T.M. Mattox, S. Chockkalingam, I. Roh, J.J. Urban. J. Phys. Chem. C 20, 9, 5188 (2016).
- [7] V.N. Gurin, M.M. Korsukova. Prog. Cryst. Growth Charact. 6, 59 (1983).
- [8] В.Н. Гурин, М.М. Корсукова, ЖВХО 26, 6, 79 (1981).
- [9] N. Ogito, S. Nagai, N. Okamoto, M. Odagava, F. Iga, M. Sera, J. Akimitsu, S. Kunii. Phys. Rev. B 68, 224305 (2003).
- [10] Z. Yahia, S. Turrell, J.P. Mercurio, G. Turrell. J. Raman Spectroscopy 24, 207 (1993).

