04

Кристаллофизическая модель электропереноса в суперионном проводнике $Pb_{1-x}Sc_xF_{2+x}$ (x = 0.1)

© Н.И. Сорокин

Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

E-mail: nsorokin1@yandex.ru

(Поступила в Редакцию 26 сентября 2017 г.)

Исследованы частотные ($\nu = 10^{-1} - 10^7 \text{ Hz}$) зависимости электропроводности $\sigma(\nu)$ монокристаллов суперионного проводника Pb_{0.9}Sc_{0.1}F_{2.1} (10 mol% ScF₃) со структурой типа флюорита (CaF₂) в интервале температур 153–410 К. Из экспериментальных кривых $\sigma(\nu)$ определены статическая объемная проводимость $\sigma_{dc} = 1.5 \cdot 10^{-4}$ S/cm и средняя частота прыжков $\nu_h = 1.5 \cdot 10^7$ Hz носителей заряда (подвижных ионов F^-) при комнатной температуре (293 K). Энтальпии термоактивированных процессов ионной проводимости $\sigma_{dc}(T)$ ($\Delta H_{\sigma} = 0.393 \pm 0.005 \text{ eV}$) и диэлектрической релаксации $\nu_h(T)$ ($\Delta H_h = 0.37 \pm 0.03 \text{ eV}$) совпадают в пределах их погрешностей. Предложена кристаллофизическая модель фтор-ионного переноса в кристаллической решетке Pb_{0.9}Sc_{0.1}F_{2.1}. Рассчитаны характеристические параметры носителей заряда: концентрация $n_{mob} = 2.0 \cdot 10^{21} \text{ cm}^{-3}$, расстояние прыжков $d \approx 0.5$ nm и подвижность $\mu_{mob} = 4.5 \cdot 10^{-7} \text{ cm}^2/\text{sV}$ (293 K).

DOI: 10.21883/FTT.2018.04.45680.279

1. Введение

Фторид свинца PbF₂ является диморфным. Его низкотемпературная ромбическая форма α -PbF₂ относится к структурному типу котуннита (cotunnite PbCl₂), а высокотемпературная кубическая модификация β -PbF₂ к структурному типу флюорита (fluorite CaF₂). Флюоритовая форма β-PbF₂ является базовой матрицей для синтеза большого количества суперионных проводников твердых растворов $Pb_{1-x}R_xF_{2+(m-2)x}$, образующихся в бинарных системах $PbF_2 - RF_m$ ($m \le 5$) [1–3]. К их числу относятся анион-избыточные твердые растворы $Pb_{1-x}Sc_xF_{2+x}$ (*x* — мольная доля ScF_3) с переменным числом ионов в элементарной ячейке. Кристаллы Pb_{1-x}Sc_xF_{2+x} являются ярким примером влияния на электрофизические характеристики фторидов гетеровалентного изоморфизма, который переводит их анионную подрешетку в суперионное состояние.

Согласно фазовой диаграмме системы PbF_2-ScF_3 [4], введение ScF_3 в матрицу PbF_2 приводит к образованию флюоритовой нестехиометрической фазы $Pb_{1-x}Sc_xF_{2+x}$ с предельной концентрацией $16 \pm 2 \mod \%$ ScF_3 ($x = 0.16 \pm 0.02$) при эвтектической температуре $685 \pm 5^{\circ}$ С. Однако получение однофазных образцов $Pb_{1-x}Sc_xF_{2+x}$ представляет непростую задачу. Так, синтезированные твердофазным синтезом [5] поликристаллические образцы на основе матрицы PbF_2 с добавками до 10 mol% ScF_3 представляли собой смеси кубической и ромбической модификаций. Это привело к невоспроизводимости кондуктометрических данных для этих образцов в цикле нагрев–охлаждение.

В работе[6] направленной кристаллизацией из расплава методом Бриджмена были получены монокристаллы флюоритовой фазы $Pb_{1-x}Sc_xF_{2+x}$ в области составов 0–10 mol% ScF₃. При охлаждении монокристаллов $Pb_{1-x}Sc_xF_{2+x}$, выращенных из расплава, концентрация "кристаллохимических" анионных дефектов в них сохраняется, в противоположность "термическим" антифренкелевским дефектам во флюоритовой матрице β -PbF₂. Несоответствие валентности, ионных радиусов, различие электронных конфигураций катионов Pb²⁺ и Sc³⁺ являются причиной структурного разупорядочения анионной подрешетки и появления высокой фтор-ионной проводимости [1,2,5–7] у твердых растворов Pb_{1-x}Sc_xF_{2+x}.

Для кристаллов $Pb_{1-x}Sc_xF_{2+x}$ наблюдается нелинейный рост проводимости с изменением состава [1,6,7]. Составы $Pb_{1-x}Sc_xF_{2+x}$ (x = 0.07 - 0.1) обладают максимальной фтор-ионной проводимостью $1 \cdot 10^{-4}$ S/cm [1,7] для поликристаллических образцов и $1.5 \cdot 10^{-4}$ S/cm [2], $2 \cdot 10^{-4}$ S/cm [6] для монокристаллов, которая превышает в ~ 50–100 раз проводимость матрицы β -PbF₂ при комнатной температуре.

В работе [8] была измерена ионная проводимость σ_{dc} (индекс dc обозначает *direct current*) монокристаллов суперионного проводника Pb_{0.9}Sc_{0.1}F_{2.1} в широком температурном интервале 153-873 К (температура плавления $T_{\rm fus} = 1023$ К [4]). В этом интервале температур значения σ_{dc} монокристаллов Pb_{0.9}Sc_{0.1}F_{2.1} изменяются от 2 · 10⁻¹⁰ до 1.2 S/cm (на 10 порядков).

Однако характеристические параметры ионного переноса в суперионном проводнике $Pb_{0.9}Sc_{0.1}F_{2.1}$, такие как частота перескоков v_h , подвижность μ_{mob} и концентрация n_{mob} носителей заряда, оставались неизученными. Для микроскопического описания суперионной проводимости $Pb_{0.9}Sc_{0.1}F_{2.1}$ необходимо провести измерения частотно-температурных зависимостей электропроводности $\sigma(v, T)$. В рамках такого подхода нами проведены исследования подвижности ионов фтора в супериониках

 $R_{1-y}M_yF_{3-y}$ (тип тисонита) [9] и $Pb_{1-x}Cd_xF_2$ (тип флюорита) [10].

Целью работы являлось исследование частотных зависимостей электропроводности $\sigma(v)$ суперионного проводника $Pb_{0.9}Sc_{0.1}F_{2.1}$ в температурном интервале, охватывающем температуры ниже комнатных (153–410 K) и рассмотрение кристаллофизической модели ионного переноса.

2. Эксперимент

Монокристаллы твердого раствора $Pb_{0.9}Sc_{0.1}F_{2.1}$ получены из расплава методом направленной кристаллизации Бриджмена. Методика выращивания кристаллов дана в работах [4,6,8]. Для подавления реакции пирогидролиза рост фторидных кристаллов проводили во фторирующей атмосфере, содержащей гелий и газообразные продукты пиролиза политетрафторэтилена. Монокристаллы выращивали со скоростью протяжки тигля ~ 3.5 mm/h, скорость охлаждения до комнатной температуры ~ 100 K/h.

Сохранение кубической макросимметрии и принадлежность кристаллов к структурному типу флюорита (тип CaF₂) подтверждена рентгенографически (дифрактометр HZG-4, излучение CuK_α, внутренний стандарт—Si). На рентгенограммах не обнаружено расщепления флюоритовых рефлексов и/или появления новых сверхструктурных рефлексов, соответствующих упорядочению или распаду твердого раствора. Химический состав твердого раствора Pb_{0.9}Sc_{0.1}F_{2.1} определен с точностью $10 \pm 1 \text{ mol}\%$ ScF₃ по концентрационной зависимости параметра элементарной ячейки для твердых растворов Pb_{1-x}Sc_xF_{2+x} [11]. Содержание примеси кислорода в кристаллах 0.01–0.02 mas%.

Образец для электрофизических исследований имел высокое оптическое качество (оптический микроскоп Zeiss KL1500) и представлял собой плоскопараллельную пластину площадью $S = 37 \text{ mm}^2$ при толщине h = 2.05 mm. Его ориентировка относительно кристаллографических осей не проводилась в предположении изотропного поведения проводимости σ_{dc} (кубическая симметрия). На рабочие поверхности образца наносили серебряные электроды из пасты Leitsilber.

Электропроводность $\sigma(v)$ измеряли переменно-токовым методом (импедансметр Solartron 1260, диапазон частот $10^{-1}-10^7$ Hz, напряжение 30 mV). Электрофизические измерения выполнены при охлаждении в интервале температур 410-153 K в вакууме $\sim 10^{-3}$ Pa. Описание экспериментальной установки приведено в работе [12]. Погрешность кондуктометрических измерений $\leq 2\%$. Предварительные данные по проводимости σ_{dc} кристаллов Pb_{1-x}Sc_xF_{2+x} опубликованы в работе [8].

3. Обсуждение результатов

Частотные зависимости $\sigma(\nu)$ для монокристаллов Pb_{0.9}Sc_{0.1}F_{2.1} при разных температурах показаны

Рис. 1. Частотные зависимости $\sigma(\nu)$ для монокристалла Pb_{0.9}Sc_{0.1}F_{2.1} при 152.9 (*I*), 172.2 (*2*), 191.4 (*3*), 210.3 (*4*), 230.5 (*5*), 254.9 (*6*), 273.8 (*7*), 292.5 (*8*), 311.0 (*9*), 329.6 (*10*), 348.1 (*11*), 366.6 (*12*), 385.4 (*13*) и 409.8 K (*14*).

на рис. 1. В области низких частот на кривых $\sigma(v)$ наблюдается участок частотно-независимой электропроводности, который соответствует статической проводимости на постоянном токе σ_{dc} . С увеличением частоты электропроводность возрастает по степенному закону $\sigma(v) \sim v^n$, где 0 < n < 1. С ростом температуры участок $\sigma(v)$, соответствующий σ_{dc} , смещается в сторону высоких частот, при этом в области низких частот проявляются поляризационные процессы накопления заряда на межфазных границах Ag/Pb_{0.9}Sc_{0.1}F_{2.1} (не показаны на рис. 1).

Частотные зависимости электропроводности суперионного проводника Pb_{0.9}Sc_{0.1}F_{2.1} находят объяснение в рамках прыжкового механизма [13]:

$$\sigma(\nu) = \sigma_{dc} \left[1 + (\nu/\nu_h)^n \right],\tag{1}$$

где v_h — средняя частота прыжков носителей заряда, которая характеризует их распределение по частотам (энергиям). При $v < v_h$ ионные носители участвуют в процессе электропроводности, а при $v > v_h$ — в процессе диэлектрической релаксации. При $v = v_h$ выполняется равенство:

$$\sigma(\nu_h) = 2\sigma_{dc}.\tag{2}$$

Значения σ_{dc} и ν_h , определенные математической обработкой зависимостей $\sigma(\nu)$ по уравнениям (1) и (2) в интервале температур 153–255 К, приведены в таблице.

На рис. 2 показана температурная зависимость ионной проводимости $\sigma_{dc}(T)$ кристалла $Pb_{0.9}Sc_{0.1}F_{2.1}$ при 153–410 К. Кривая $\sigma_{dc}(T)$ удовлетворяет уравнению Френкеля–Аррениуса:

$$\sigma_{dc} = (\sigma_0/T) \exp[-\Delta H_\sigma/kT], \qquad (3)$$

где $\sigma_0 = 2.5 \cdot 10^5 \,\text{S} \cdot \text{K/cm}$ — предэкспоненциальный множитель электропроводности, $\Delta H_{\sigma} = 0.393 \pm 0.005 \,\text{eV}$ — Значения статической проводимости σ_{dc} , средней частоты прыжков v_h , подвижности μ_{mob} и расстояние прыжков d носителей заряда в монокристалле Pb_{0.9}Sc_{0.1}F_{2.1}

Т,К	σ_{dc} , S/cm	v_h , Hz	$\mu_{mob},{ m cm}^2/{ m sV}$	d, nm
254.9	$1.4\cdot 10^{-5}$	$1.6\cdot 10^6$	$4.4\cdot 10^{-8}$	0.6
230.5	$2.5\cdot 10^{-6}$	$5.0 \cdot 10^5$	$7.8\cdot10^{-9}$	0.4
210.3	$4.0 \cdot 10^{-7}$	$7.9 \cdot 10^4$	$1.3\cdot10^{-9}$	0.4
191.4	$5.0\cdot10^{-8}$	$4.0 \cdot 10^{3}$	$1.6\cdot 10^{-10}$	0.6
172.2	$4.5 \cdot 10^{-9}$	$5.6 \cdot 10^{2}$	$1.4 \cdot 10^{-11}$	0.5
152.9	$2.0\cdot10^{-10}$	$3.5 \cdot 10^1$	$6.3 \cdot 10^{-13}$	0.4

энтальпия активации ионной проводимости. При комнатной температуре (293 K) ионная проводимость кристалла Pb_{0.9}Sc_{0.1}F_{2.1} $\sigma_{dc} = 1.5 \cdot 10^{-4}$ S/cm, что превышает в ~ 10⁴ раз электропроводность кристалла β -PbF₂ (1.0 \cdot 10⁻⁸ S/cm [14], 1.5 \cdot 10⁻⁸ S/cm [15]).

Средняя частота прыжков носителей заряда v_h имеет активационный характер, и ее температурная зависимость $v_h(T)$ соответствует уравнению аррениусовского типа (рис. 3):

$$\nu_h = \nu_0 \cdot \exp[-\Delta H_h/kT], \qquad (4)$$

где предэкспоненциальный множитель $v_0 = 3.5 \cdot 10^{13}$ Hz, энтальпия активации прыжков анионных носителей $\Delta H_h = 0.37 \pm 0.03$ eV.

В условиях тепловой активации в переносе заряда во флюоритовом кристалле Pb_{0.9}Sc_{0.1}F_{2.1} участвуют ионные носители, расположенные в кристаллографических позициях анионной подрешетки (механизм проводимости прыжкового типа). Величина ионной проводимости кристалла Pb_{0.9}Sc_{0.1}F_{2.1} определяется произведением концентрации и подвижности носителей заряда:

$$\sigma_{dc} = q n_{mob} \mu_{mob}$$
$$= (q n_0 \mu_0 / T) \exp[-(\Delta H_f + \Delta H_h) / kT], \qquad (5)$$

где q — заряд, n_0 и μ_0 — предэкспоненциальные множители концентрации и подвижности соответственно, ΔH_f — энтальпии образования анионных носителей.

В пределах экспериментальной точности наблюдается совпадение энтальпий активации проводимости и частоты перескоков носителей: $\Delta H_{\sigma} \approx \Delta H_h$. Этот факт свидетельствует о том, что процессы ионного транспорта (низкие частоты) и прыжковой диэлектрической релаксации (высокие частоты) взаимосвязаны и определяются одними и теми же носителями заряда.

Поскольку $\Delta H_{\sigma} \approx \Delta H_h$, из выражений (2) и (4) следует, что концентрация носителей заряда не зависит от температуры ($\Delta H_f = 0$) и определяется механизмом гетеровалентных замещений Pb²⁺ на Sc³⁺. Гетеровалентные замещения катионов Pb²⁺ на Sc³⁺ (зарядовая неоднородность катионной подсистемы) приводят к образованию дополнительных ионов фтора в кристаллах

 $Pb_{1-x}Sc_xF_{2+x}$ (к пространственной неоднородности анионной подсистемы). Структурно-разупорядоченное состояние анионной подсистемы в кристалле $Pb_{0.9}Sc_{0.1}F_{2.1}$, имеющее кристаллохимическую (нетермическую) природу, сохраняется и при низких температурах.

Для флюоритовых твердых растворов $Pb_{1-x}Sc_xF_{2+x}$ реализуется междоузельный механизм гетеровалентных замещений:

$$Pb^{2+} \rightarrow Sc^{3+} + F_{int}^{-}$$

где F_{int} — междоузельный ион фтора. Концентрация избыточных (по отношению к стехиометрическому со-

Рис. 2. Температурная зависимость $lg(\sigma_{dc}T)$ для монокристалла $Pb_{0.9}Sc_{0.1}F_{2.1}$.

Рис. 3. Температурная зависимость $\lg v_h$ для монокристалла $Pb_{0.9}Sc_{0.1}F_{2.1}$.

ставу) ионов фтора n_{ns} в Pb_{1-x}Sc_xF_{2+x}:

$$n_{ns} = Zx/a^3, (6)$$

где *Z* = 4 — количество формульных единиц в структуре флюорита, *х* — мольная доля ScF₃ в твердом растворе, *а* — параметр элементарной ячейки. Для кристалла $Pb_{0.9}Sc_{0.1}F_{2.1}$ при $x = 0.10 \pm 0.01$ и a = 0.587 нм концентрация избыточных (междоузельных) ионов фтора равна $n_{ns} = (2.0 \pm 0.2) \cdot 10^{21} \,\mathrm{cm}^{-3}.$

что все Предполагая, междоузельные ионы фтора подвижны, полученная величина $n_{mob} = n_{ns}$ $= (2.0 \pm 0.2) \cdot 10^{21} \, \mathrm{cm}^{-3}$ в кристалле $Pb_{0.9}Sc_{0.1}F_{2.1}$ превышает в ~ 10⁶ раз концентрацию антифренкелевских дефектов во флюоритовой матрице β-PbF2 $(n_{mob} = 4.3 \pm 10^{15} \,\mathrm{cm}^{-3}$ [14]), что является прямым доказательством сильного структурного разупорядочения анионной подсистемы кристаллов $Pb_{1-x}Sc_xF_{2+x}$.

Зная статическую проводимость σ_{dc} и концентрацию носителей заряда n_{mob}, можно оценить подвижность носителей μ_{mob} :

$$\mu_{mob} = \sigma_{dc}/qn_{mob} = (\mu_0/T) \exp[-\Delta H_h/kT], \quad (7)$$

где предэкспоненциальный множитель $\mu_0 = \sigma_0/qn_{mob}$ $= 7.8 \cdot 10^2 \,\mathrm{cm}^2 \mathrm{K/sV}.$ температур В интервале по 153-255 K рассчитанные уравнению (7)значения μ_{mob} для кристалла $Pb_{0.9}Sc_{0.1}F_{2.1}$ приведены в таблице. Подвижность носителей заряда при 293 К $\mu_{mob} = 4.5 \cdot 10^{-7} \, {\rm cm}^2 / {\rm sV}$ в суперионном кристалле выше подвижности междоузельных $Pb_{0.9}Sc_{0.1}F_{2.1}$ ионов фтора F_{int}^- в матричном кристалле β -PbF₂ $(\mu_{int} = 8.9 \cdot 10^{-9} \,\mathrm{cm}^2/\mathrm{sV}$ [14], 7.5 · 10⁻⁹ cm²/sV [15]), но ниже подвижности вакансий фтора V_F⁺ в этом кристалле $(\mu_{vac} = 2.0 \cdot 10^{-5} \text{ cm}^2/\text{sV} [14], 5.5 \cdot 10^{-6} \text{ cm}^2/\text{sV} [15]).$

Подвижность μ_{mob} носителей заряда задается соотношением Нернста-Эйнштейна и определяется частотой их прыжков v_h и расстоянием прыжков d:

$$\mu_{mob} = q \nu_h d^2 / 6kT. \tag{8}$$

Зная подвижность носителей μ_{mob} и частоту прыжков ν_h , можно оценить расстояние прыжков d:

$$d = [6kT\mu_{mob}/q\nu_h]^{1/2}.$$
 (9)

В интервале температур 153-255 К рассчитанные по уравнению (9) значения *d* для кристалла Рb0.9Sc0.1F2.1 приведены в таблице. Среднее значение $d = 0.5 \pm 0.1$ nm.

Теоретические расчеты методом молекулярной динамики [16] показывают, что во флюоритовых кристаллах $M_{1-x}R_xF_{2+x}$ наиболее вероятными являются прыжки подвижных ионов фтора по неколлинеарному междоузельному (эстафетному) механизму. В этом случае междоузельный анион F_{int}, находящийся в кристаллографической позиции 4b пространственной группы Fm3m, вытесняет ближайший анион, расположенный

в основной позиции 8с, в соседнее незанятое междоузельное положение (в элементарном акте ионного переноса участвуют два иона фтора). Для механизма проводимости с неколлинеарными прыжками ионов фтора расстояние прыжка с учетом параметра элементарной ячейки кристалла $Pb_{0.9}Sc_{0.1}F_2$ $a \approx 0.587 \text{ nm}$ [4,6] (в первом приближении в качестве междоузельной взята позиция 4b пространственной группы $Fm\bar{3}m$) $d = a\sqrt{3/2} \approx 0.508$ nm при 293 K. "Кристаллохимическое" значение $d \approx 0.51$ nm, рассчитанное из структурных данных, хорошо совпадает со средним значением $d = 0.5 \pm 0.1 \,\mathrm{nm}$, полученным из экспериментальных данных в интервале 153-255 К.

Заключение 4.

Суперионная проводимость монокристаллов твердого раствора Pb_{0.9}Sc_{0.1}F_{2.1} обусловлена появлением высокой подвижности у ионов F⁻ вследствие структурного разупорядочения анионной подрешетки при изоморфных гетеровалентных замещениях катионов Pb2+ на Sc³⁺. Процессы ионного транспорта и прыжковой диэлектрической релаксации в суперионном проводнике Рb_{0.9}Sc_{0.1}F_{2.1} обусловлены, по-видимому, неколлинеарными прыжковыми перемещениями подвижных междоузельных F⁻_{int} (носителями заряда) по флюоритовой решетке. Проведенные исследования частотных зависимостей электропроводности $\sigma(v)$ совместно с результатами температурных исследований зависимости статической проводимости $\sigma_{dc}(T)$ позволили рассчитать параметры ионного переноса в суперионном проводнике $Pb_{0.9}Sc_{0.1}F_{2.1}$: проводимость $\sigma_{dc} = 1.5 \cdot 10^{-4}$ S/cm, средняя частота прыжков $v_h = 1.5 \cdot 10^7$ Hz, подвижность носителей заряда $\mu_{mob} = 4.5 \cdot 10^{-7} \, \mathrm{cm}^2/\mathrm{sV}$ (при 293 K), концентрация носителей заряда $n_{mob} = 2.0 \cdot 10^{21} \, \mathrm{cm}^{-3}$, средняя длина прыжков $d \approx 0.5$ nm.

Автор благодарит И.И. Бучинскую за предоставленный кристалл и профессора Б.П. Соболева за обсуждение работы.

Список литературы

- [1] И.В. Мурин. Изв. СО АН СССР. Сер. хим. н. 53 (1984).
- [2] Н.И. Сорокин, П.П. Федоров, Б.П. Соболев. Неорг. материалы 33, 5 (1997).
- [3] И.И. Бучинская, П.П. Федоров. Усп. хим. 73, 404 (2004).
- [4] П.П. Федоров, В. Трновцова, В.А. Мелешина, В.Д. Чугунов, Б.П. Соболев. Неорг. материалы 30, 406 (1994).
- [5] A. Meyer, J. ten Eiken, O.V. Glumov, W. Gunsser, M. Karus, I.V. Murin. Radiation Effects and Defects in Solids 137, 147 (1995).
- [6] V. Trnovcova, P.P. Fedorov, I.I. Buchinskaya, V. Smatko, F. Hanic. Solid State Ionics 119, 181 (1999).
- [7] J. Eicken, W. Gunsser, S.V. Chernov, A.V. Glumov, I.V. Murin. Solid State Ionics 53–56, 843 (1992).

- [8] Н.И. Сорокин, Б.П. Соболев, М. Брайтер. ФТТ 44, 1506 (2002).
- [9] Н.И. Сорокин, Б.П. Соболев. ФТТ 50, 402 (2008).
- [10] Н.И. Сорокин. ФТТ 57, 1325 (2015).
- [11] П.П. Федоров, Б.П. Соболев. Кристаллография 37, 1210 (1992)
- [12] Н.И. Сорокин, Б.П. Соболев. ФТТ 50, 402 (2008).
- [13] D.P. Almond, C.C. Hunter, A.R. West. J. Mater. Sci. 19, 3236 (1984).
- [14] R.W. Bonne, J. Schoonman. J. Electrochem. Soc. 124, 28 (1977).
- [15] И.В. Мурин, А.В. Глумов, О.В. Глумов. Электрохимия **15**, 1119 (1979).
- [16] И.Ю. Готлиб, И.В. Мурин, И.В. Пиотровская, Е.Н. Бродская. Неорган. материалы **38**, 358 (2002).