02

Строение промежуточных продуктов термического разложения (NH₄)₂ZrF₆ до ZrO₂ по данным колебательной спектроскопии

© Е.И. Войт, Н.А. Диденко, К.А. Гайворонская

Институт химии Дальневосточного отделения РАН, 690022 Владивосток, Россия

e-mail: evoit@ich.dvo.ru

Поступила в редакцию 14.11.2017 г.

Методами термического и рентгенофазового анализа, ИК и КР-спектроскопии исследовано термическое разложение $(NH_4)_2 ZrF_6$ с образованием ZrO_2 в интервале температур 20–750°С. Установлено, что термолиз протекает в шесть стадий. Получены, систематизированы и обобщены данные колебательной спектроскопии промежуточных продуктов разложения.

DOI: 10.21883/OS.2018.03.45654.263-17

Введение

К числу соединений с высокой смешанной анионнокатионной проводимостью относится гексафторидоцирконат аммония [1]. Установлено, что при его нагревании в результате фазового перехода образуется модификация, в которой диффузионное движение ионов фтора и аммония начинается при более низких температурах, чем в исходной фазе. При этом в ходе исследований, связанных с характером внутренних движений, фазовых переходов и ионной проводимостью, не затрагивается вопрос термической стабильности соединения.

Термическому разложению гексафторидоцирконата аммония посвящен ряд работ [2–6]. Однако имеющиеся в литературе данные нуждаются в дополнении и уточнении в плане последовательности превращений. Было установлено, что $(NH_4)_2 ZrF_6$ при нагревании при температуре 138–145°C имеет фазовый переход (ФП) [2,3], при котором образуется высокотемпературная модификация β - $(NH_4)_2 ZrF_6$. Теплота перехода $\alpha \rightarrow \beta$ составляет 1.7 + 0.3 kcal/mol [2]. Данные о структуре (строении) высокотемпературной фазы $(NH_4)_2 ZrF_6$ до настоящего времени отсутствуют.

В большинстве случаев процесс разложения гексафторидоцирконата аммония на первой стадии представляется схемой

$$(NH_4)_2ZrF_6 \rightarrow NH_4ZrF_5 + NH_4F_5$$

Только в [3] предложена другая схема: разложение гексафторидоцирконата аммония до пентафторидоцирконата происходит в две стадии с максимумами эндоэффектов при 242 и 305°С. Обнаружено, что при охлаждении вещества после первой стадии разложения (247° С) и последующем нагреве эндоэффект при 140° С несколько смещается в область низких температур и имеет более размытый вид. В полученном продукте содержалось до 35% пентафторидоцирконата аммония. После второй стадии разложения при температуре 305° С вещество полностью переходит в NH₄ZrF₅.

Для соединения $(NH_4)_2 ZrF_6$ и промежуточных продуктов его термического разложения (предположительно таких, как $NH_4 ZrF_5$, $NH_4 Zr_2F_9$) приведены данные ИК и КР-спектроскопии [7].

Согласно данным [8], разложением $(NH_4)_2 ZrF_6$ при изотермической выдержке получены продукты $NH_4 ZrF_5$, $NH_4 Zr_2 F_9$, $NH_4 Zr_3 F_{13}$ и ZrF_4 , приведены рентгенометрические данные их порошков. Авторы отмечают, что при термолизе $(NH_4)_3 ZrF_7$ при 200°C в зависимости от скорости охлаждения продукта образуются фазы состава $ZrF_4 \cdot xNH_4F$ ($2 \ge x \ge 1.7$), причем фазы нестехиометрического состава с $2 > x \ge 1.7$ структурного типа $(NH_4)_2 ZrF_6$.

Таким образом, анализ литературных данных не дает четкого понимания последовательности превращений при термическом разложении $(NH_4)_2 ZrF_6$. Небольшой массив имеющихся экспериментальных спектроскопических данных не отображает полную картину изменения строения фторидоцирконатов при разложении $(NH_4)_2 ZrF_6$ до ZrO_2 через промежуточные продукты. В представленной работе с целью систематизации и обобщения спектроскопических данных получены колебательные спектры фторидоцирконатов, образующихся в процессе термического разложения $(NH_4)_2 ZrF_6$ до ZrO_2 , проведено отнесение полос в спектрах.

Экспериментальная часть

Синтез $(NH_4)_2 ZrF_6$ осуществлен из раствора ZrO_2 в 40%-ной фтористоводородной кислоте с добавлением NH₄F (отношение компонентов 1:2) и упариванием реакционной смеси до начала кристаллизации. Хорошо образованные крупные кристаллы были промыты ацетоном и высушены на воздухе. Рентгенограмма синтезированного соединения (рис. 1, *a*) соответствует $(NH_4)_2 ZrF_6$ [9], кристаллизующемуся в ромбической сингонии с параметрами элементарной ячейки a = 13.398(8), b = 7.739(3), c = 11.680(4) Å; пр. гр. $Pca2_1$; Z = 8. который образуется при термолизе промежуточной фазы NH₄ZrF₅.

В настоящей работе проведено подробное дериватографическое исследование термического разложения $(NH_4)_2$ ZrF₆ в атмосфере воздуха (с относительной влажностью 20-30%) в интервале температур 20-750°С. В указанных условиях картина меняется, термическое разложение (NH₄)₂ZrF₆ протекает в шесть стадий и характеризуется по данным ДТА рядом последовательных эндотермических эффектов (рис. 2). Фазовый состав продуктов термического разложения соединения после каждого термоэффекта был подтвержден методом рентгенофазового анализа (РФА) (рис. 1), а строение охарактеризовано методами колебательной спектроскопии (рис. 3). Необходимо отметить, что близкий ход кривых ДТА и ТГ, приведенных в работе [10] и на рис. 2, в области температур 120-310 (350)°С указывает на одинаковый характер термического поведения (NH₄)₂ZrF₆ как в инертной атмосфере, так и на воздухе.

Установлено, что в интервале температур 140–240°С (первая стадия) на обратимый ФП с экстремумом эндоэффекта при 140°С накладывается начало разложения соединения, скорость которого увеличивается с ростом температуры.

На кривой ДТА образцов, полученных нагревом гексафторидоцирконата аммония до $240-250^{\circ}$ С (убыль массы составляет 3.8-4.0%) при повторном их нагревании, отмечается новый эндотермический эффект обратимого ФП (без убыли массы) при 125° С, что указывает на образование в данных условиях новой, отличной от (NH₄)₂ZrF₆ фазы.

По данным РФА вид рентгенограммы образцов с ростом температуры нагрева до 240°С меняется посте-

Рис. 2. Кривые нагревания $(NH_4)_2 Zr F_6$.

Рис. 1. Рентгенограммы соединения (*a*) $(NH_4)_2 ZrF_6$ и продуктов его нагревания до температур: (*b*) 240, (*c*) 300, (*d*) 360, (*e*) 390, (*f*) 500°C. • — γ -NH₄ZrF₅, \blacksquare — α -ZrF₄, **x** — неизвестная фаза.

Термическое исследование $(NH_4)_2 ZrF_6$ проведено на дериватографе Q-1000 MOM при скорости нагревания 5 grad/min. Навеска составляла 120 mg. В качестве эталона использовали прокаленный Al_2O_3 .

Данные порошковой дифракции записаны на дифрактометре "STOE STADI Р", оснащенном гониометром "на прохождение" (Си $K_{\alpha 1}$ -излучение, $\lambda = 1.5406$ Å, Ge(111) — монохроматор Йоханссона) и позиционночувствительным детектором. Индицирование рентгенограмм и уточнение параметров элементарных ячеек проведено с применением комплекса программ, входящего в состав WinXPOW (2008) [Stoe & Cie (2008). WINXPOW. Stoe & Cie, Darmstadt, Germany]. Для уточнения параметров элементарных ячеек по методу Ритвельда и определения пространственных групп дополнительно использовали программное обеспечение Jana2006.

Регистрация КР-спектров исследуемых соединений проведена на спектрометре RFS100/S (лазер Nd:YAG, $\lambda = 1064$ nm) с разрешением 4 сm⁻¹. ИК спектры получены при комнатной температуре с использованием прибора Vertex 70 с образцов, подготовленных в виде суспензии в вазелиновом масле на стекле KRS-5, в области 4000–400 сm⁻¹. Температурная съемка спектров проведена с использованием криостата Specac.

Результаты и их обсуждение

На приведенной в работе [10] термограмме, полученной при изучении термической диссоциации $(NH_4)_2 ZrF_6$ в инертной атмосфере (в токе гелия, скорость нагрева 10 grad/min), отмечаются эндоэффекты при 150°С (ф. п.), ~ 260°С (нечетко выраженный в виде плеча на ДТА), 330 и 410°С. Исходя из данных ТГ конечным продуктом разложения в указанных условиях является ZrF₄,

Рис. 3. ИК (1), КР (2) спектры соединения (a) (NH₄)₂ZrF₆ и продуктов его нагревания до температур: (b) 240, (c) 300, (d) 360, (e) 390, (f) 500°С. * — полосы вазелинового масла.

пенно, при этом рентгенограммы термообработанных продуктов и исходного соединения имеют много общих линий.

Совокупность данных термического и РФА анализов позволяет утверждать, что начало термического разложения $(NH_4)_2 ZrF_6$ инициировано ФП, в результате которого образуется термически лабильная фаза (диффузия ионов аммония и фтора согласно [1]). Постепенное отщепление NH₄F приводит к промежуточным нестехиометрическим фазам $(NH_4)_{2-x} ZrF_{6-x}$, в которых величина х стремится к постоянному значению, равному 0.25, что можно описать реакцией

$$(NH_4)_3 ZrF_6 \rightarrow (NH_4)_{1.75} ZrF_{5.75} + 0.25 NH_3 \uparrow +0.25 HF \uparrow$$
.

Убыль массы при 240°C составляет 4.0% ($\Delta m_{calc} = 3.84\%$).

Рентгенограмма продукта (рис. 1, *b*), полученного нагреванием $(NH_4)_2 ZrF_6$ до температуры 240°С, соответствует нестехиометрической фазе $(NH_4)_{2-x} ZrF_{6-x}$ (*x* = 0.25) или в предельном случае соединению

Оптика и спектроскопия, 2018, том 124, вып. 3

 $(NH_4)_7 Zr_4 F_{23}$ и индицируется с параметрами моноклинной элементарной ячейки a = 6.696(1), b == 11.635(1), c = 3.858(2) Å; $\beta = 92.028(5)^\circ$.

Как видно (рис. 1, *a*, *b*), рентгенограммы исходного соединения и продукта его нагревания до 240°С имеют достаточно много общих линий, что позволяет предположить сохранение цепочечного характера комплексного аниона в продукте нагрева. В пользу этого заключения, вероятно, также могут свидетельствовать близкие по величине параметры элементарной ячейки: *с* в $(NH_4)_2 ZrF_6$, вдоль которого распространяются Zr-цепи, и *b* в структуре $(NH_4)_{2-x} ZrF_{6-x}$ (*x* = 0.25).

По данным РФА образец, полученный нагреванием $(NH_4)_2 ZrF_6$ до 240°С, содержит примесную фазу состава $NH_4 ZrF_5$, которая является основной монофазой при дальнейшем нагревании до 310°С (рис. 1, *c*). Суммарная убыль массы после двух стадий разложения составляет 15.4% ($\Delta m_{calc} = 15.35\%$). Рентгенограмма продукта, полученного нагреванием соединения $(NH_4)_2 ZrF_6$ до температуры 300°С, соответствует фазе γ -NH₄ZrF₅ [11].

При нагревании выше 310°С (третья стадия) процесс разложения пентафторидоцирконата аммония перекрывается с процессом пирогидролиза (влагой воздуха) образующейся фазы (рис. 2). Основываясь на величине убыли массы, а также на данных РФА и ИК спектроскопии образующегося продукта (см. ниже), разложение описывается предположительно реакцией

$$3NH_4ZrF_5 + H_2O \rightarrow (NH_4)_2Zr_3OF_{12} + NH_3\uparrow + 3HF\uparrow$$
,

либо общим уравнением

$$3(NH_4)_2ZrF_6 + H_2O = (NH_4)_2Zr_3OF_{12} + 4NH_3 \uparrow + 6HF \uparrow$$
.

Суммарная убыль массы при 360° С составляет 24% ($\Delta m_{calc} = 23.51\%$).

Аммонийное соединение (в котором отношение F/Zr меньше, чем пять, в частности равно 4.6) состава ZrF₄ · 0.6NH₄F обнаружено диэлектрическим методом при термолизе (NH₄)₃ZrF₇, но попытка выделения соли в чистом виде не увенчалась успехом [8]. Из соединений с отношением $F/Zr=4.66~(M_2Zr_3F_{14})$ в работе $\left[12\right]$ упомянуто цезиевое состава $Cs_2Zr_3F_{14} \cdot 2H_2O$. Напротив, оксофторидоцирконаты с общей формулой M2Zr3OF12, синтезированы с Rb+, Tl+, NH₄+, K+ и исследованы кристаллические структуры соединений с таллием и калием [13,14]. Соединения $M_2Zr_3OF_{12}$ по бруттосоставу можно рассматривать как производные от $M_2 Z r_3 F_{14}$, в которых два атома F замещены один О. Рентгенограмма продукта (рис. 1, d), на полученного нагреванием соединения (NH₄)₂ZrF₆ до температуры 360°С, соответствует фазе (NH₄)₂Zr₃OF₁₂, которая кристаллизуется с параметрами тригональной элементарной ячейки a = 7.717(1), c = 29.907(3) Å; пр. гр. $R\bar{3}m$; Z = 6, и является изотипной с соединениями составов Tl₂Zr₃OF₁₂ и K₂Zr₃OF₁₂ [13,14]. По данным РФА на рентгенограмме образца (360°С) заметны слабые рефлексы примесной фазы ZrF₄ (монокл.), которая образуется из-за низкой влажности воздуха в условиях эксперимента в результате термолиза NH_4ZrF_5 , а также малоинтенсивные рефлексы неидентифицированной нами фазы (они отмечены **x** на рис. 1, *e*).

При дальнейшем повышении температуры выше 370°С отмечается эндоэффект при 380°С (четвертая стадия), связанный с удалением одной молекулы фторида аммония из фазы $(NH_4)_2Zr_3OF_{12}$ ($NH_4/Zr = 0.66$; O/Zr = 0.33) и возрастанием степени пирогидролиза продукта в результате реакции

$$(NH_4)_2Zr_3OF_{12}+H_2O \rightarrow (NH_4)Zr_3O_2F_9+NH_4F+2HF\uparrow$$
.

Термическое разложение $(NH_4)_2 ZrF_6$ можно описать общим уравнением

$$3(NH_4)_2ZrF_6 + 2H_2O \rightarrow (NH_4)Zr_3O_2F_9 + 5NH_3\uparrow + 9HF\uparrow$$

Суммарная убыль массы при 390°С составляет 31.6% ($\Delta m_{calc} = 31.67\%$). Образование фазы (NH₄)Zr₃O₂F₉ можно также рассматривать как результат замещения четырех атомов F в NH₄Zr₃F₁₃ на два атома O.

Из-за несовершенства структуры образца, нагретого до 390°С, нам не удалось определить параметры элементарной ячейки (рис. 1, d). Хотя кристаллическая структура соединения (NH₄)Zr₃O₂F₉ неизвестна, но исходя из данных о структуре прекурсора и логических рассуждений, основанных на спектроскопических данных, можно сделать некоторые заключения о строении полученной фазы (см. ниже).

При нагревании выше 390°С (пятая стадия) полностью удаляются катионы NH_4^+ , а одновременное протекание процесса пирогидролиза приводит при 500°С к выравниванию в оксофториде отношений F/Zr и O/Zr. Рентгенограмма продукта, полученного нагреванием соединения (NH_4)₂ZrF₆ до 500°С (рис. 1, *f*), соответствует фазе Zr₇O₉F₁₀ [15], характеризующейся параметрами элементарной ячейки a = 6.443 (1), b = 26.851 (1), c = 4.071 (1) Å; пр. гр. *Pbam*; Z = 2.

При пирогидролизе $Zr_7O_9F_{10}$ (шестая стадия) образуется конечный продукт ZrO_2 (монокл.). Общая убыль массы при 750°C составляет 48.8% ($\Delta m_{calc} = 48.96\%$).

Методы колебательной спектроскопии позволяют получить дополнительную информацию о строении исследуемых продуктов разложения. На рис. 3 представлены колебательные спектры (до 4000 cm⁻¹) исходного соединения (NH₄)₂ZrF₆ и продуктов его нагревания до температур 240, 300, 360, 390 и 500°С. Известно, что в спектрах ниже 600 cm⁻¹ лежат полосы колебаний фторидоцирконатного аниона [16,17].

 $(NH_4)_2 Zr F_6$. Согласно структурным данным, в кристаллической решетке $(NH_4)_2 Zr F_6$ каждый ион Zr окружен восемью атомами F. Координационные полиэдры $(K\Pi)$ Zr объединены общей треугольной гранью в димеры, которые связываясь вершинными атомами F, образуют бесконечные цепи $[Zr_2F_{12}]_{\infty}^{4-}$, так что при отношении F/Zr = 6 в структуре на каждый атом Zr приходится по четыре мостиковых и по четыре концевых

связей Zr–F. Катионы NH⁴⁺ сшивают водородными связями N–H···F (BC) фторидоцирконатные цепи в трехмерную постройку [9]. Низкая сайт-симметрия фторидоцирконатного аниона в (NH₄)₂ZrF₆ и лабильность при комнатной температуре катионов NH⁴₄, находящихся в двух позициях в структуре, не позволяют получить хорошо разрешенные экспериментальные спектры, поэтому нет полного соответствия спектра и факторгруппового анализа [7]. В связи с этим в настоящей работе проведен анализ спектров исходя из локального окружения ионов Zr⁴⁺.

В КР-спектре (NH₄)₂ZrF₆ в области колебаний фторидоцирконатного аниона наблюдаются широкие полосы с максимумами 537, 472, 360-330 и 221 cm⁻¹ (рис. 3, *a*). Учитывая стехиометрию F/Zr = 6, наиболее интенсивная полоса при 537 cm⁻¹ соответствует полносимметричному колебанию v_sZr-F_{end} (симметрии A1) в димере с локальной симметрией C_{2v}. Слабая по интенсивности полоса при 472 сm⁻¹ относится к близким по частотам и перекрывающимся асимметричным комбинациям валентных колебаний vas Zr-Fend, симметричные комбинации этих колебаний наиболее интенсивны в ИК спектре [17]. Наибольший вклад в полосу при 360-330 cm⁻¹ вносит валентное колебание *v*_sZr-F_{bridge} (A1), включающее движение мостиковых атомов F вдоль направления мостиковых связей. В область ниже 330 cm⁻¹ попадают всевозможные деформационные колебания $\delta \operatorname{ZrF}_n$ (где $n = \operatorname{KY}$ Zr) с участием мостиковых и концевых связей в КП ZrF₈ [17]. Наличие двух типов мостиковых связей в структуре (NH₄)₂ZrF₆ приводит к дополнительному уширению деформационной полосы. Наиболее интенсивную полосу с максимумом при 221 ст⁻¹ можно отнести к ножничному колебанию с участием концевых связей δ_{sc} ZrF_n (A1).

 $(NH_4)_{2-x}ZrF_{6-x}$ (x = 0.25). КР-спектр продукта нагревания до 240°С меняется в области колебаний анионной подрешетки (рис. 3, b). Сдвиг полосы v_sZr-F до $550 \,\mathrm{cm}^{-1}$ и рост ее полуширины свидетельствуют о наборе координационных чисел (КЧ) Zr в структуре образованной фазы; вероятно, наряду с КП ZrF₈ появляются КП с КЧ 7, поскольку сдвиг v_sZr-F в высокочастотную область связан с сокращением расстояния Zr-F [18]. Также немаловажным фактором, увеличивающим полуширину полос $v_s Zr - F$ и $\delta_{sc} Zr F_{end}$, являются динамические процессы в анионной подрешетке. Этим же обусловлено отсутствие четко выраженного максимума δ_{sc} ZrF_n на деформационной полосе. В то же время уменьшение полуширины полосы v_sZr-F_{bridge} и смещение ее до 380 ст⁻¹ свидетельствует о большем вкладе односортных мостиковых связей в анионе и об их общем упрочнении. Наиболее вероятно, что в результате ФП в структуре исходного соединения сначала мостиковые связи треугольной грань-вершины перестраиваются в реберные согласно механизму, описанному в [19]. Одновременно при перемещении от NH_4^+ протона к аниону и термической диссоциации с отщеплением

$(NH_4)_2 ZrF_6$		Продукты нагревания до T (°С)								Отнесение	
		240		300		360		390		$\mathrm{NH}^{4+}(\mathrm{Td})$	
ИК	КР	ИК	КР	ИК	КР	ИК	КР	ИК	КР	симметрия	
3221 3088		3243 3074		3199 3089		3377 3232 3088		3291		$ u_3 $ $ u_2 + u_4 $	<i>Т</i> 2 (ИК, КР)
	3147		3150		3121		3170		3096 3035	ν_1	А1 (КР)
2063		2041		2006		2035		2030		$\nu_{2} + \nu_{6}$	
1778 1699		1776 1692		1728 1689		1658		1636		$v_4 + v_6$	
	1709 1692		1710 1692		1680 1697		1700		1691	v_2	E (KP)
1423	1425	1422	1427	1435	1450	1421		1420		v_4	<i>Т</i> 2 (ИК, КР)

Колебательные частоты (ст⁻¹) аммонийных групп в (NH₄)₂ZrF₆ и продуктах его нагревания

NH₃ + HF происходит изменение стехиометрии с последующим преобразованием отдельных реберных связей в вершинные. Учитывая близкий вид рентгенограмм и небольшие изменения в КР-спектрах, можно предположить сохранение цепочечного характера комплексного аниона в решетке продукта нагревания, но, вероятно, характер связывания КП Zr меняется. Вышеперечисленные факты согласуются с образованием нестехиометрической фазы (NH₄)_{2-x}ZrF_{6-x} (x = 0.25). Упорядочение ее структуры либо уменьшение лабильности в анионной подрешетке реализуется при замене части NH⁺ на катионы другой природы в соединениях состава $M(NH_4)_6Zr_4F_{23}$ (M = Li, K, Na, Rb) [20,21]. В структуре $Li(NH_4)_6Zr_4F_{23}$ КП Zr объединяются в бесконечные цепи, где можно выделить тетраядерные фрагменты $-[ZrF_7-ZrF_8-ZrF_8-ZrF_7]-$. Внутри тетрамеров КП Zr связаны друг с другом только по общим ребрам, а между собой тетрамеры объединены мостиковыми вершинными атомами F. Структурно-неупорядоченные нестехиометрические фазы $(NH_4)_{2-x}ZrF_{6-x}$ могут рассматриваться как потенциальные кандидаты в материалы с более высокой ионной проводимостью, чем в соединениях $(NH_4)_2 ZrF_6$, $M(NH_4)_6 Zr_4 F_{23}$ (M = Li, K, Na, Rb) [1].

NH₄ZrF₅. В структуре γ -NH₄ZrF₅ анион представлен полимерными слоями (ZrF₅)_nⁿ⁻¹, в которых каждый КП Zr восьмикоординирован и делит общее ребро с соседним КП и четыре вершины с четырьмя другими полиэдрами [11]. Уменьшение отношения F/Zr до 5 приводит к сокращению количества концевых связей во фторидоцирконатном анионе.

В КР-спектре NH₄ZrF₅ полоса $\nu_s Zr - F_{end}$ имеет максимум при 521 сm⁻¹, а $\nu_s Zr - F_{bridge}$ закономерно сдвигается в сторону высоких частот до 405 сm⁻¹ по сравнению со спектрами предшествующих фаз (рис. 3, *c*). Длины мостиковых связей в структуре NH₄ZrF₅ лежат в интервале 2.062–2.196 Å, а в $(NH_4)_2 ZrF_6$ — существенно длиннее 2.119–2.349 Å. Упорядочивание аниона приводит к сужению полосы деформационных колебаний и образованию четко выраженного максимума $\delta_{sc} ZrF_n$ при 247 сm⁻¹. Все указанные изменения в спектрах находятся в соответствии со структурными данными [11].

Валентным асимметричным колебаниям $v_{as}Zr-F_{end}$ фторидоцирконатных анионов в ИК спектрах (NH₄)₂ZrF₆, (NH₄)_{2-x}ZrF_{6-x} (x=0.25) и NH₄ZrF₅ соответствует одна широкая полоса поглощения. Ее сдвиг 466 \rightarrow 478 \rightarrow 489 cm⁻¹ по мере уменьшения отношения F/Zr от 6 до 5 (рис. 3, *a*-*c*) говорит об общем понижении заряда аниона и соответственно изменении дипольного момента структурной единицы.

В спектрах $(NH_4)_2 ZrF_6$ и продуктов его нагревания до 240, 300°С в высокочастотной области 4000-700 ст⁻¹ лежат колебания внешнесферных катионов NH₄⁺ (рис. 3). Полосы валентных колебаний катионов NH₄⁺ (симметрии Td) находятся в области $3000-3250 \text{ cm}^{-1}$ (ν_3 , v_1 , $v_2 + v_4$), деформационных — 1700 и 1400 cm⁻¹ $(v_2, v_4 + v_6, v_4)$. В структуре аммонийных соединений симметрия катионов NH₄⁺ снижена вследствие взаимодействия с анионом, кроме того, уже при комнатной температуре наблюдаются реориентации и изотропное вращение аммонийных групп [1]. В связи с этим полосы валентных колебаний v₃, v₁ не расщеплены на отдельные компоненты даже в спектре $(NH_4)_2 ZrF_6$ (в структуре катионы NH⁴⁺ занимают две позиции). Вследствие динамических движений катионов и переключения ВС составные колебания, зависящие от сил BC, $v_4 + v_6$ (1700 cm⁻¹) и $v_2 + v_6$ (2000 cm⁻¹), мало интенсивны [7]. Подробные отнесения колебаний NH₄⁺ в спектрах изучаемых соединений (таблица) находятся в соответствии с результатами исследований [7,22] и известными структурными данными

Puc. 4. КР-спектры в процессе нагревания $(NH_4)_2 ZrF_6$ (*a*) в области колебаний анионов, (*b*) в области валентных и деформационных колебаний катионов: (*1*) 50, (*2*) 120, (*3*) 140, (*4*) 200, (*5*) 240, (*6*) 260, (*7*) 270, (*8*) 280, (*9*) 290, (*10*) 300, (*11*) 330°C.

для $(NH_4)_2ZrF_6$, NH_4ZrF_5 . Исходя из положений полос в экспериментальных спектрах катионы аммония сшивают ФЦ цепи/слои в каркас средними по силе ВС N-H...F с длиной связи 2.6–2.9 Å. При переходе от гекса- к пентафторидацирконату ВС незначительно упрочняются.

С целью описания динамики изменения строения катионной и анионной подрешеток в процессе нагревания $(NH_4)_2 ZrF_6$ от 50 до 350°C была дополнительно проведена температурная съемка КР-спектров (рис. 4).

При нагревании $(NH_4)_2 ZiF_6$ до 140°C уже заметны постепенные изменения в спектрах, связанные с ФП и началом образования фазы нестехиометрического состава. Увеличение степени нестехиометрии по мере нагревания отражается в спектрах уширением и постепенным высокочастотным смещением полосы $v_s Zr - F_{end}$ и одновременным сужением и высокочастотным смещения происходят до температуры 240°C. В диапазоне 240–290°C КР-спектр соответствует смеси продуктов, а при 300°C — однофазному NH_4ZrF_5 .

Необходимо отметить, что при переходе от $(NH_4)_2 ZrF_6$ к фазам нестехиометрического состава происходит постепенное изменение спектров, а при

последующем переходе к NH₄ZrF₅ — скачкообразное, что связано со значительными структурными изменениями в решетке.

Температурная съемка также позволяет проследить за поведением катионов NH₄⁺ по мере нагрева исходного соединения (NH₄)₂ZrF₆. Резкое возрастание интенсивности и полуширины полосы валентных колебаний катионов NH₄⁺ по мере нагрева вызвано возрастающей лабильностью катионов, включающей первоначально реориентационные, а затем и диффузионные движения аммонийных групп в катионной подрешетке [1]. При нагревании до 240°C возрастают интенсивность и полуширина валентной полосы в ИК спектре (рис. 4, b), а выше, с началом образования фазы NH₄ZrF₅, происходят изменения в низкочастотной области: растет интенсивность и полуширина полосы, захватывающая область деформаций и либраций (рис. 4, b, вставка) что, вероятно, связано с интенсивными процессами разложения и выходом летучих компонентов NH₃ и HF.

 $(NH_4)_2 Zr_3 OF_{12}$. Согласно данным РФА, полученная при 360°С фаза изотипна соединениям составов $Tl_2 Zr_3 OF_{12}$ и $K_2 Zr_3 OF_{12}$. Их структура состоит из многогранников [ZrOF₇] (KЧ Zr 8) и многогранников Tl⁺ (K⁺). Атомы О лежат в общей вершине трех реберносвязанных элементов [ZrOF₇] (в Tl₂Zr₃OF₁₂ расстояние Zr–O равно 2.063(5), а в K₂Zr₃OF₁₂ — 2.044(2) Å). Связанные вершинами и ребрами эти многогранники строят блоки [Zr₃OF₁₈], которые разделяют общие вершины с образованием гексаядерных фрагментов [Zr₆O₄F₃₀]. Связанные ребрами гексамерные группы образуют бесконечные сдвоенные слои [ZrOF₁₂]_∞ [13,14].

В КР-спектре (NH₄)₂Zr₃OF₁₂ присутствует большой набор полос 671, 594, 537, 519, 419, 266 ст⁻¹ (рис. 3, *d*). Спектр исследуемой фазы ниже 550 сm⁻¹ близок к спектру NH₄ZrF₅, что говорит о присутствии КП Zr 8 в обеих структурах. Усложненный набор полос в области колебаний мостиковых связей подтверждает наличие различных типов мостиковых связей Zr-F-Zr (вершина), Zr < F > Zr (ребро), Zr < (F, O) > Zr (ребро). Сдвиг деформационной полосы до 266 cm⁻¹ указывает на возрастание энергии ножничных колебаний δ_{sc} ZrF_n в этом случае с участием как концевых, так и мостиковых атомов F. Основное отличие спектра изучаемой фазы от предшествующих заключается в присутствии двух полос с максимумами 671 ст⁻¹ (интенсивна в ИК, КР) и 594 ст $^{-1}$ (слабо интенсивна в ИК и интенсивна в КР). Первую из этих полос можно отнести к валентному колебанию фрагмента [Zr₃O], регулярно повторяющемуся в структуре [23]. Вторая мода при 594 ст⁻¹, вероятно, связана с колебаниями Zr-Fend (расстояние Zr-F 1.968 Å) в димере [$Zr_2F_{12}O_2$], сшивающем одинарные слои в двойной [13].

Контур полосы валентного колебания $\nu_{as}Zr-F(O)$ в ИК спектре $(NH_4)_2Zr_3OF_{12}$ усложнен по сравнению с аналогичной полосой в спектре NH_4ZrF_5 и имеет ряд максимумов при 519, 475, 426 и 393 сm⁻¹ (рис. 3, *d*), что связано с кардинальным изменением симметрии кристаллической решетки и локального окружения иона Zr^{4+} при сохранении КЧ Zr.

 $NH_4Zr_3O_2F_9$. Нагревание до 390°C приводит к уменьшению отношения F/Zr при одновременном увеличении вклада О в структуру и образованию соединения NH₄Zr₃O₂F₉. Изменение стехиометрии при переходе от $(NH_4)_2 Zr_3 OF_{12}$ к $NH_4 Zr_3 O_2 F_9$ должно приводить к возрастанию числа мостиковых связей и уменьшению концевых. Также в результате ступенчатого замещения двух мостиковых атомов F на один О должно произойти изменение характера части мостиковых связей в структуре предшественника. Анализируя строение $(NH_4)_2 Zr_3 OF_{12}$, можно предположить, что изменение стехиометрии вследствие отщепления NH₄F и перехода к NH₄Zr₃O₂F₉ должно приводить к преобразованию концевых связей Zr-F в вершинные мостиковые Zr-F-Zr и в итоге к сшиванию двойных слоев в анионной подрешетке. Связь же Zr-O-Zr может реализоваться при замещении в двойных слоях реберных мостиковых связей Zr<F>Zr на вершинную Zr-O-Zr.

Образование в структуре $NH_4Zr_3O_2F_9$ связи Zr-O-Zr подтверждается появлением новой полосы при 893 сm⁻¹ в ИК и KP-спектрах $NH_4Zr_3O_2F_9$ (рис. 3, *e*). Также видно, что в ИК спектре относимая к колебаниям

группировки [Zr₃O] полоса (676 cm⁻¹) теряет интенсивность, и вид спектра в области колебаний фторидоцирконатного аниона упрощается. Но положение трех максимумов при 507, 455 и 390 (сл) ст⁻¹ близко к спектру $(NH_4)_2 Zr_3 OF_{12}$, что предполагает сохранение КЧ Zr. Исчезновение отнесенной к колебаниям концевых связей полосы при 594 ст⁻¹ в КР-спектре (есть в спектре предшественника) при одновременном увеличении интенсивности полосы при 485 cm⁻¹ позволяет отнести ее к поперечным колебаниям мостиковых связей v_sZr-F_{bridge}. Сдвиг моды валентного колебания и высокочастотное смещение деформационной моды $\delta_{sc} \operatorname{Zr} F_n$ до 290 cm⁻¹ указывают на увеличение степени полимеризации аниона с переходом в каркасную структуру. Полученные спектроскопические данные не противоречат высказанным предположениям относительно строения комплексного аниона в структуре $NH_4Zr_3O_2F_9$.

При низких стехиометрических соотношениях F/Zr от 4 до 5 аммонийные комплексные фториды циркония неустойчивы [8,12]. С уменьшением отношений F/Zr< 5, NH₄/Zr< 1 в продуктах нагревания одновременное включение в комплексный анион атомов О стабилизирует в целом структуру оксофторидоцирконатов аммония [13], что подтверждает проведенное исследование.

Интенсивность полос колебаний групп NH_4^+ в спектрах уменьшается при переходе от $(NH_4)_2Zr_3OF_{12}$ к $NH_4Zr_3O_2F_9$, и KP-спектр в области выше 1000 cm⁻¹ становится малоинформативен (рис. 3, *d*–*e*). В ИК спектре $(NH_4)_2Zr_3OF_{12}$ полоса валентных колебаний NH_4^+ в области 3400–3000 cm⁻¹ расщеплена на несколько компонент (см. таблицу), что говорит о снижении сайтсимметрии катионов NH_4^+ и присутствии в структуре большего разброса длин BC. Неэквивалентность позиций катионов в структуре подтверждается структурными данными для $Tl_2Zr_3OF_{12}$ [13]. Предположительно, оксофторид (NH_4)₂Zr₃OF₁₂ может являться хорошим ионным проводником, так же как аналогичные соединения Tl^+ , Rb^+ [24].

Полоса валентных колебаний катионов NH_4^+ в спектре $NH_4Zr_3O_2F_9$ не расщеплена и имеет один максимум. Она близка по положению аналогичной полосы в спектрах гекса- и пентафторидоцирконатов, что указывает на близкие силы BC $N-H\cdots$ F в структурах этих соединений.

Zr₇O₉F₁₀. С увеличением степени пирогидролиза вклад кислорода в валовый состав соединения возрастает и при 500°С образуется продукт Zr₇O₉F₁₀. Согласно [15], соединение имеет каркасную структуру (нет концевых связей Zr–O, F) и кристаллизуется в структурном типе α -U₃O₈ (пр. гр. *Pbam*). Октаэдры (КЧ 6) и пентагональные бипирамиды (КЧ 7) соединяются ребрами и вершинами в плоскости и только вершинами вдоль одной из кристаллографических осей. Позиции атомов О и F неразличимы.

Спектры $Zr_7O_9F_{10}$ значительно изменяются по сравнению со спектрами $(NH_4)_2Zr_3OF_{12}$ и $NH_4Zr_3O_2F_9$ (рис. 3, *f*). В ИК спектре присутствуют три полосы

340

при 870, 611 и 502 сm⁻¹, характеризующие валентные колебания $v_{as}Zr-X$ (X = F, O) в КП Zr. Так как в структуре Zr₇O₉F₁₀ нет Zr–F-концевых связей, наблюдаемое изменение спектра ниже 1000 сm⁻¹ связано с различной прочностью связей Zr–O и/или Zr–X в решетке. Полоса при 502 сm⁻¹ относится к колебаниям $v_{as}Zr-X_{bridge}$ в полиэдре [ZrX₇], а полоса при 611 сm⁻¹ — в [ZrX₆]. Несмотря на то, что в структуре позиции атомов О и F неразличимы, присутствующую в ИК спектре полосу при 870 сm⁻¹ однозначно можно отнести к колебаниям Zr–O–Zr [25].

В КР-спектре $Zr_7O_9F_{10}$ наблюдается набор полос с максимумами 532, 447, 315(плечо), 282 и 190 сm⁻¹. Первый максимум относится к полносимметричным колебаниям v_sZr-X в КП Zr, второй при 447 сm⁻¹ является суперпозицией нескольких мод с наибольшим вкладом мостиковых колебаний v_sZr-X . Максимумы при 315 и 282 сm⁻¹ относятся к деформационным колебаниям в КП Zr в полимерной решетке. Наблюдаемое сближение валентных полос друг к другу связано с ростом степени полимеризации [18]. Исчезновение полосы при 675 сm⁻¹ в КР-спектре $Zr_7O_9F_{10}$ происходит вследствие кардинальной перестройки фторидоцирконатного каркаса, т.е. в структуре исчезают фрагменты [Zr₃O] и возрастает число связей Zr–O–Zr. В ИК спектре $Zr_7O_9F_{10}$ полосы в области колебаний аммонийных групп отсутствуют.

Данные колебательной спектроскопии конечного продукта ZrO_2 (монокл.), полученного при 750°С, соответствуют опубликованным в [7].

Выводы

Методами ДТА-ТГА, РФА, ИК, КР-спектроскопии исследовано термическое разложение $(NH_4)_2 ZrF_6$ с образованием ZrO₂ в интервале температур 20–750°С.

Проведенные исследования показали, что термическое разложение гексафторидоцирконата аммония на воздухе можно описать последовательностью превращений

$$\begin{split} (NH_4)_2 ZrF_6 &\rightarrow (NH_4)_{2-x} ZrF_{6-x} \quad (x=0.25) \rightarrow \\ &\rightarrow NH_4 ZrF_5 \rightarrow (NH_4)_2 Zr_3 OF_{12} \rightarrow \\ &\rightarrow (NH_4) Zr_3 O_2 F_9 \rightarrow Zr_7 O_9 F_{10} \rightarrow ZrO_2 . \end{split}$$

Получены, систематизированы и обобщены данные колебательной спектроскопии промежуточных продуктов разложения.

Работа была выполнена при финансовой поддержке Министерства образования и науки Российской Федерации (Федеральное агентство научных организаций, проект № 0265-2014-0001).

Авторы выражают благодарность к.х.н. Герасименко А.В. за консультации при обсуждении результатов рентгенофазового анализа.

Список литературы

- Кавун В.Я., Сергиенко В.И. Диффузионная подвижность и ионный транспорт в кристаллических и аморфных фторидах элементов IV группы и сурьмы (III). Владивосток: Дальнаука, 2004. 298 с.
- Hull H., Turnbull A.G. // J. Inorg. Nucl. Chem. 1967. V. 29.
 N 4. P. 951. doi: 10.1016/0022-1902(67)80077-0
- [3] Эпов Д.Г., Михайлов М.А. // Журн. неорг. химии. 1977. Т. 22. № 4. С. 967.
- [4] Михайлов М.А., Эпов Д.Г. // Изв. СО АН СССР. Сер. хим. наук. 1970. Т. 12. № 5. С. 99.
- [5] Rodriguez A.M., Martinez J.A., Caracoche M.C., Rivas P.C., Lopez Garcia A.R., Spinelli S. // J. Chem. Phys. 1985. V. 82. N 3. P. 1271. doi: 10.1063/1.448448
- [6] Гордиенко П.С., Васильев А.М., Эпов Д.Г. // Журн. физич. химии. 1982. Т. 56. № 3 С. 542.
- [7] Kruger A., Heyns A.M. // Vibrational Spectroscopy. 1997.
 V. 14. P. 171. doi: 10.1016/S0924-2031(96)00072-0
- [8] Gaudreau B. // Rev. Chim. Miner. 1965. V. 2. P. 1.
- [9] Zalkin A., Eimerl D., Velsko S.P. // Acta Crystallogr. 1988.
 V. C44. N 12. P. 2050. doi: 10.1107/S0108270188008303
- [10] Давидович Р.Л. Атлас дериватограмм комплексных фторидов металлов III-IV групп. М.: Наука, 1976. 284 с.
- [11] Ткачев В.В., Давидович Р.Л., Атовмян Л.О. // Коорд. химия. 1991. Т. 17. № 11. С. 1485.
- [12] Годнева М.М., Мотов Д.Л. Химия подгруппы титана. Сульфаты, фториды, фторосульфаты из водных сред. М.: Наука, 2006. 302 с.
- [13] Mansouri I, Avignant D. // J. Sol. St. Chem. 1984. V. 51.
 P. 91. doi: /10.1016/0022-4596(84)90319-0
- [14] Saada M.A., Hemon-Ribaud A., Maisonneuve V., Smiri L.S., Leblanc M. // Acta Crystallogr. 2003. E59. P. 131. doi: 10.1107/S1600536803018567
- [15] Holmberg B.B. // Acta Cryst. 1970. B26. P. 830. doi: 10.1107/S0567740870003199
- [16] Давидович Р.Л., Кайдалова Т.А., Левчишина Т.Ф., Сергиенко В.И. Атлас инфракрасных спектров поглощения и рентгенометрических данных комплексных фторидов металлов IV и V групп. М.: Наука, 1972. 250 с.
- [17] Войт Е.И., Диденко Н.А., Галкин К.Н. // Опт. и спектр. 2015. Т. 118. № 1. С. 118. doi: 10.1134/S0030400X15010257
- [18] Phifer C.C., Gosztola D.J., Kieffer J., Angell C.A. // J. Chem. Phys. 1991. V. 94. N 5. P. 3440. doi: 10.1063/1.459766
- [19] Войт Е.И., Войт А.В., Кавун В.Я., Сергиенко В.И. // Журн. структ. химии. 2004. Т. 45. № 4. С. 644. doi: 10.1007/s10947-005-0035-4
- [20] Герасименко А.В., Кавун В.Я., Сергиенко В.И., Антохина Т.Ф. // Коорд. химия. 1999. Т. 25. № 8. С. 604.
- [21] Кавун В.Я., Антохина Т.Ф., Савченко Н.Н., Подгорбунский А.Б., Кайдалова Т.А. // Журн. неорг. химии. 2015. Т. 60. № 5. С. 681. doi: 10.7868/S0044457X15050098
- [22] Smith P.W., StoessigerR., Turnbull A.G. // J. Chem. Soc. (A).
 1968. P. 3013. doi: 10.1039/J19680003013
- [23] Misra N., Dwivedi A., Pandey A.K. // J. At. Mol. Sci. 2012.
 V. 3. P. 187. doi: 10.4208/jams.052511.070411a
- [24] Avignant D., Mansouri I., Cousseins J.C., Alizon J., Battut J.P., Dupuis J., Robert H. // Mat. Res. Bull. 1982. V. 17. P. 1103.
- [25] Sengupta A.K., Bhattacharyya U. // J. Fluor. Chem. 1990.
 V. 46. N 2. P. 229. doi: 10.1016/S0022-1139(00)80992-6