Антистоксовая люминесценция в керамике LiYF₄: Ho³⁺, Yb³⁺ при возбуждении на длине волны 1.93 μ m

© А.П. Савикин, И.Ю. Перунин, С.В. Курашкин, А.В. Будруев, И.А. Гришин

Нижегородский государственный университет им. Н.И. Лобачевского, 603950 Нижний Новгород, Россия

e-mail: budruev@gmail.com

Поступила в редакцию 11.10.2017 г.

Показано преобразование ИК излучения Tm:YAP-лазера с длиной волны 1930 nm в видимый свет керамикой состава LiY_(1-x-y)Ho_x, Yb_y, где x = 1-5 mol.% и y = 0-15 mol.%. Показано, что величина пороговой плотности мощности визуализации ИК излучения снижается при увеличении концентрации ионов Ho³⁺, а дополнительное легирование образцов керамики ионами Yb³⁺ изменяет спектр антистоксовой люминесценции. Величина пороговой плотности мощности визуализации иК излучения снижается при увеличения Tm:YAP-лазера при увеличении содержания ионов гольмия снижалась и в образцах состава LiYF₄: 5%Ho³⁺–15%Yb³⁺ составляла $I_{\rm thr} \approx 0.8$ W cm⁻².

DOI: 10.21883/OS.2018.03.45650.229-17

Введение

Фторидные кристаллы являются перспективными матрицами для получения ап-конверсии на редкоземельных ионах (Er, Tm, Ho и др.) благодаря их малой энергии фононов, а в случае LiYF₄ и возможности изоморфного замещения иттрия на лантаноиды.

Вследствие большого времени жизни верхних возбужденных уровней ионов и сечения излучения матрица LiYF₄, допированная ионами редкоземельных элементов, является превосходным лазерным материалом [1,2]. Особый интерес вызывают исследования спектроскопических свойств кристаллов LiYF₄: Er³⁺ в спектральной области 1.5 μ m и их генерационных характеристик в условиях резонансной лазерной накачки на длине волны 1522 nm [3]. Малая величина вероятности безызлучательной внутрицентровой релаксации вследствие малой величины энергии высокочастотных фононов $hv_{phon} \approx 500 \text{ cm}^{-1}$ (сравнительно с оксидами) позволяет использовать матрицу LiYF₄ в визуализаторах излучения ближнего ИК диапазона спектра.

Так, в работе [4] зеленая (550 nm) полоса антистоксовой люминесценции возбуждалась излучением Ті-сапфирового лазера в спектральных областях 720–770, 880–920 и 960–990 nm.

Антистоксовая люминесценция ионов Ho^{3+} в матрице LiYF₄ исследовалась в работе [5]. Под действием возбуждающего излучения ($\lambda = 1100 \text{ nm}$) возникала люминесценция на длине волны 650 nm на переходе ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$, что использовалось для повышения эффективности кремниевых солнечных элементов.

В работе [6] были продолжены исследования ап-конверсии, но уже на монокристалле LiYbF₄:Ho³⁺ при возбуждении на длине волны $\lambda = 935$ nm. В спектре люминесценции наблюдались два перехода ${}^{5}S_{2}$, ${}^{5}F_{4} \rightarrow {}^{5}I_{8}$ ($\lambda = 550$ nm) и ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$ ($\lambda = 650$ nm) с преобладанием красной полосы. Широкая полоса поглощения ионов Ho³⁺ из основного состояния на переходе ${}^{5}I_{8} \rightarrow {}^{5}I_{7}$ позволяет осуществить возбуждение люминесценции видимого диапазона спектра излучением в области 1870–2150 nm [7,8].

Визуализация 2-микронного лазерного излучения необходима для многих областей медицины, где используются 2-микронные лазеры. К настоящему времени разработаны визуализаторы на основе низкофононных фторидов, таких как PbF₂, BiF₃, легированных гольмием [9,10]. Ранее керамика LiYF₄:Er³⁺,Yb³⁺ использовалась для преобразования 1-микронного лазерного излучения в видимый свет [11].

В настоящей работе исследовалось преобразование излучения YAP: Tm^{3+} -лазера с длиной волны 1930 nm керамикой LiYF₄: Ho^{3+} , Yb^{3+} . Присутствие в материале керамики ионов Yb^{3+} позволяет регистрировать лазерное излучение с длиной волны в области 980 nm. Как было показано в работе [8], ионы Yb^{3+} могут играть роль не только донорного элемента, но и участвовать в кооперативном процессе перевода ионов Ho^{3+} на верхние возбужденные уровни.

Целью настоящей работы являлось создание эффективного и доступного керамического визуализатора 2-микронного лазерного излучения на основе керамики LiYF₄:Ho³⁺.

Экспериментальная часть

Керамические образцы в виде таблеток состава LiY_(1-x-y)Ho_x,Yb_y, где x = 1-5 mol.% и y = 0-15 mol.% получали из шихты, содержащей LiF, YF₃, HoF₃ и YbF₃. Фторид лития имел квалификацию ЧДА, остальные фториды — квалификацию ОСЧ. Компоненты перетирали и прессовали таблетки под давлением 30 MPa. Полученные таблетки прокаливали в течение 1 h в муфельной печи при температуре 700-750°C.

Рис. 1. Спектр антистоксовой люминесценции керамики $LiYF_4:5\%Ho^{3+} - 0.5\%Yb^{3+}$.

В качестве источника возбуждения антистоксовой люминесценции использовался Tm : YAP-лазер с диодной накачкой, работающий в режиме свободной генерации на длине волны 1930 nm. Схема экспериментальной установки аналогична схеме, рассмотренной в работе [12].

Результаты и обсуждение

Для построения диаграммы энергетических уровней иона Ho³⁺ использовались значения волновых чисел электронных уровней с учетом штарковского расщепле-

ния, взятые из [13]. Величины штарковских подуровней состояний ${}^{2}F_{7/2}$, ${}^{2}F_{5/2}$ ионов Yb³⁺ в LiYF₄ взяты из работы [14].

В спектрах антистоксовой люминесценции образцов состава LiYF₄: Ho³⁺ наиболее интенсивное излучение в области длины волны 650 nm соответствовало переходам ${}^5F_5 \rightarrow {}^5I_8$. Также наблюдались полосы, соответствующие переходам: ${}^5I_5 \rightarrow {}^5I_8$, 5S_2 , ${}^5F_4 \rightarrow {}^5I_8$ и ${}^5I_4 \rightarrow {}^5I_8$, которые перечислены в порядке убывания интенсивности (рис. 1). Структура спектральных полос люминесценции (переходам ${}^5I_5 \rightarrow {}^5I_8$ и ${}^5F_5 \rightarrow {}^5I_8$) хорошо объясняется переходами на штарковские подуровни основного состояния 5I_8 , которые сформированы в две группы 0–72 и 270–315 сm⁻¹. Наибольшую интенсивность имеют пики, соответствующие переходам с нижних штарковских подуровней состояний 5I_5 , 5F_5 на верхний штарковский подуровень основного состояния.

В образцах LiYF₄: Ho³⁺–Yb³⁺ содержание ионов Yb³⁺ с концентрацией $N_{\rm Yb} < 0.1\%$ приводит к появлению люминесценции, соответствующей переходам ионов Yb³⁺ с уровня ${}^{2}F_{5/2}$ на нижние подуровни основного состояния ${}^{2}F_{7/2}$. При увеличении содержания ионов иттербия ($N_{\rm Yb} \ge 0.5\%$) возникает излучение и на переходах на верхние подуровни основного состояния (рис. 1).

В образцах керамики LiYF₄: 5%Ho³⁺–15%Yb³⁺ интенсивность люминесценции иттербия заметно возрастает. Вместе с этим исчезает полоса, соответствующая переходу ${}^{5}I_{5} \rightarrow {}^{5}I_{8}$ ионов гольмия, и увеличиваются интенсивности люминесценции красной и зеленой полос. Снижение интенсивности люминесценции в области длины волны 900 nm (при увеличении содержания

Рис. 2. Диаграмма энергетических уровней ионов Ho³⁺ и Yb³⁺ в матрице LiYF₄.

ионов иттербия) является следствием роста вероятности нерезонансного переноса энергии (с участием фононов матрицы) от ионов $\text{Ho}^{3+}({}^{5}I_{5})$ к ионам $\text{Yb}^{3+}({}^{2}F_{5/2})$. Ионы гольмия выполняют в данном процессе функцию доноров (переходы 3, 3', 3", рис. 2). Часть ионов иттербия, находящихся в возбужденном состоянии ${}^{2}F_{5/2}$, возвращает полученную энергию при переходах $({}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}) - ({}^{5}I_{7} \rightarrow {}^{5}F_{5}), ({}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}) - ({}^{5}I_{6} \rightarrow {}^{5}F_{4})$ (переходы 5, 5', 5'' и 6, 6', 6'', рис. 2). Вероятность первого процесса, а именно заселения уровня ${}^{5}F_{5}$ можно считать резонансным, поскольку величина суммарной энергии $E({}^{2}F_{5/2}) + E({}^{5}I_{7})$, получаемой ионами гольмия, приблизительно равна энергии электронного состояния ${}^{5}F_{5}$. Однако кросс-релаксационный распад этого состояния, происходящий с участием ионов иттербия, имеет такую же вероятность. Заселение верхнего штарковского подуровня состояния ${}^{5}F_{4}$ происходит с избытком предаваемой энергии, минимальная величина которого, равная $\Delta E_{\min} \approx 220 \,\mathrm{cm}^{-1}$, не превышает энергии фонона матрицы.

Величина энергии, отдаваемая ионами гольмия при обратном кросс-релаксационном распаде состояния 5S_2 , примерно на $\Delta E \approx 580 \,\mathrm{cm}^{-1}$ меньше энергии, необходимой для перехода ${}^2F_{7/2} \rightarrow {}^2F_{5/2}$ иона иттербия. Поэтому возбуждение зеленой полосы антистоксовой люминесценции ионов Ho³⁺ при межионном взаимодействии с участием ионов Yb³⁺ преобладало над возбуждением красной полосы люминесценции. Действительно, в образцах керамики LiYF₄:5%Ho³⁺–15%Yb³⁺ интенсивность зеленой полосы антистоксовой люминесценции увеличивалась примерно в 6 раз, и цвет свечения изменялся с красного на зеленый.

Наличие интенсивной полосы люминесценции ионов иттербия в спектральной области $\lambda \approx 1000$ nm свидетельствует о том, что перенос энергии от ионов иттербия к ионам гольмия не слишком уменьшает населенность уровня ${}^2F_{5/2}$. Величина пороговой плотности мощности визуализации излучения Tm : YAP-лазера при увеличении содержания ионов гольмия снижалась и в образцах состава LiYF₄: 5%Ho³⁺–15%Yb³⁺ составляла $I_{\rm thr} \approx 0.8 {\rm W cm}^{-2}$.

Заключение

Таким образом, в результате проведенных исследований зарегистрировано преобразование излучения Tm: YAP-лазера с длиной волны $\lambda = 1930$ nm в видимый диапазон спектра в образцах керамики LiYF₄, легированной ионами Ho³⁺. Показано, что величина пороговой плотности мощности визуализации ИК излучения снижается при увеличении концентрации ионов Ho³⁺, а дополнительное легирование образцов керамики ионами Yb³⁺ изменяет спектр антистоксовой люминесценции.

Список литературы

- Heine F., Heumann E., Danger T., Schweizer T., Huber G., Chai B. // Appl. Phys. Lett. 1994. V. 65. N 4. P. 383–384. doi: 10.1063/1.112335
- Metz P. W., Reichert F., Moglia F., M?ller S., Marzahl D.T., Kränkel C., Huber G. // Opt. Lett. 2014. V. 39. N 11. P. 3193-3196. doi: 10.1364/ol.39.003193
- [3] Горбаченя К.Н., Курильчик С.В., Кисель В.Э., Ясюкевич А.С., Кулешов Н.В., Низамутдинов А.С., Кораблева С.Л., Семашко В.В. // Квант. электрон. 2016. Т. 46. № 2. С. 95–99; [Gorbachenya K.N., Kurilchik S.V., Kisel V.E., Yasukevich A.S., Kuleshov N.V., Nizamutdinov A.S., Korableva S.L., Semashko V.V. // Quant. Electron. 2016. V. 46. N 2. P. 95–99. doi10.1070/qel15974]
- Wnuk A., Kaczkan M., Frukacs Z., Pracka I., Chadeyron G., Joubert M.F., Malinowski M. // J. All. and Comp. 2002. N 341. P. 353–357.
- [5] Martín-Rodríguez R., Meijerink A. // J. Luminesc. 2014.
 V. 147. P. 147–154.
- [6] Казаков Б.Н., Михеев А.В., Гориев О.Г., Кораблева С.Л., Семашко В.В. // Опт. и спектр. 2016. Т. 121.
 № 4. С. 574-585. doi: 10.7868/S0030403416100111 [Kazakov B.N., Mikheev A.V., Goriev O.G., Korableva S.L., Semashko V.V. // Opt. Spectrosc. 2016. V. 121. N 4. P. 523-533. doi: 10.1134/s0030400x1610009x]
- [7] Fedorov P.P., Luginina A.A., Popov A.I. // J. Fluorine Chem. 2015. V. 172. P. 22–50. doi: 10.1016/j.jfluchem.2015.01.009
- [8] Савикин А.П., Егоров А.С., Будруев А.В., Гришин И.А. // Опт. и спектр. 2016. Т. 120. № 6. С. 963–970. doi: 10.7868/S0030403416060192 [Savikin A.P., Egorov A.S., Budruev A.V., Grishin I.A. // Opt. Spectrosc. 2016. V. 120. N 6. P. 902–908. doi: 10.1134/S0030400X16060199]
- [9] Савикин А.П., Егоров А.С., Будруев А.В., Перунин И.Ю., Гришин И.А. // Письма в ЖТФ. 2016. Т. 42.
 № 21. С. 47-54. doi: 10.21883/pjtf.2016.21.43840.16262
 [Savikin A.P., Egorov A.S., Budruev A.V., Perunin I.Yu., Grishin I.A. // Tech. Phys. Lett. 2016. V. 42. N 11.
 P. 1083-1086. doi: 10.21883/pjtf.2016.21.43840.16262]
- [10] Савикин А.П., Егоров А.С., Будруев А.В., Гришин И.А. // ЖПХ. 2016. Т. 89. № 2. С. 283–286; Savikin А.Р., Egorov A.S., Budruev A.V., Grishin I.A. // Rus. J. Appl. Chemistry. 2016. V. 89. N 2. Р. 337–340. doi: 10.1134/S1070427216020270
- [11] Chen X., Xu W., Song H., Chen C., Xia H., Zhu Y., Zhou D., Cui S., Dai Q., Zhang J. // ACS Appl. Mater. Interfaces. 2016.
 V. 8. N 14. P. 9071–9079. doi: 10.1021/acsami.5b12528
- [12] Савикин А.П., Егоров А.С., Будруев А.В., Гришин И.А. // Неорганические материалы. 2016. Т. 52. № 3. С. 352–355. doi: 10.7868/S0002337X16030131; Savikin A.P., Egorov A.S., Budruev A.V., Grishin I.A. // Inorg. Mater. 2016. V. 3. N 52. P. 309–312. doi: 10.7868/S0002337X16030131
- [13] *Каминский А.А., Антипенко Б.М.* Многоуровневые функциональные схемы кристаллических лазеров. М.: Наука, 1989. С. 270.
- [14] Miller J.E., Sharp E.J. // J. Appl. Phys. 1970. V. 41. N 11.
 P. 4718-4722. doi: 10.1021/acsami.5b12528