07;08

Оценки констант электрон-фононной связи молекул газа с графеном

© С.Ю. Давыдов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, Санкт-Петербург, Россия

E-mail: Sergei_Davydov@mail.ru

Поступило в Редакцию 15 сентября 2017 г.

В рамках простых моделей рассмотрена адсорбция молекул CO, NO, NO₂, H₂O и NH₃ на идеальном и допированном атомами алюминия графене. Для оценок констант электрон-фононной связи в первом случае использовался потенциал Леннарда–Джонса 6–12, во втором — потенциал 2–4. Показано, что в случае идеального графена безразмерная константа электрон-фононной связи $\xi \gg 1$, тогда как при допировании алюминием $\xi \sim 1$. Для обеих ситуаций обсуждаются способы использования графена как резистивного газового сенсора.

DOI: 10.21883/PJTF.2018.03.45577.17045

После появления пионерской работы [1], в которой было показано, что графен является сверхчувствительным резистивным сенсором, способным зафиксировать изменение проводимости, вызванное отдельной молекулой газа (NO₂, NH₃), началось интенсивное исследование его адсорбционных свойств (см. [2–4] и ссылки, приведенные там). Выяснилось, что адсорбция сопровождается сравнительно малым переходом заряда между адсорбентом и адсорбатом. При этом, например, NO₂ и H₂O действуют как акцепторы, тогда как NH₃, CO и NO являются донорами. Переход заряда имеет место как для собственного (идеального) графена, когда связь адмолекула—графен является слабой (близкой к ван-дер-ваальсовой), так и для графена, допированного и/или содержащего структурные дефекты. Более того, в последнем случае при адсорбции на примеси связь является сильной (ковалентной), что сопровождается значительным переходом заряда.

40

В настоящей работе, следуя [5], мы рассмотрим влияние электронфононной связи (ЭФС) адчастицы с графеном на концентрацию носителей в графене, что и является доминирующим фактором изменения его проводимости [1–4]. Исходя из упрощенных моделей мы продемонстрируем, как, опираясь на численные расчеты других авторов, можно оценить константы ЭФС.

В [5,6] показано, что гамильтониан системы адмолекула-подложка может быть представлен в виде

$$H = \sum_{\mathbf{k}} \varepsilon_G(k) \hat{n}_{\mathbf{k}} + \bar{\varepsilon}_a \hat{n}_a + V \sum_{\mathbf{k}} (c_{\mathbf{k}}^+ a + \mathbf{h. c.}) + H_{ph}.$$
 (1)

Здесь $\varepsilon_G(\mathbf{k})$ — закон дисперсии электронов в подложке-графене, $\hat{n}_{\mathbf{k}} = c_{\mathbf{k}}^+ c_{\mathbf{k}}$ — оператор числа заполнения состояния $|\mathbf{k}\rangle$ с волновым вектором \mathbf{k} , $c_{\mathbf{k}}^+(c_{\mathbf{k}})$ — оператор рождения (уничтожения) электрона подложки, $\bar{\varepsilon}_a = \varepsilon_a - \lambda n_a$, ε_a — энергия состояния $|a\rangle$ адсорбируемой молекулы, $\lambda = w^2/k$ — энергия ЭФС, $\hat{n}_a = a^+a$, $a^+(a)$ — оператор рождения (уничтожения) электрона в состоянии $|a\rangle$, $n_a = \langle \hat{n}_a \rangle$ число заполнения состояния $|a\rangle$ ($\langle \ldots \rangle$ — усреднение по основному состоянию); V — матричный элемент взаимодействия, спаривающий состояния $|\mathbf{k}\rangle$ и $|a\rangle$, $w = -\partial V/\partial d$ и k — деформационная константа ЭФС и центральная силовая константа связи адмолекулы с графеном, d — расстояние адчастица-графен (длина адсорбционной связи), δd смещение адатома в нормальном к плоскости графена направлении z; H_{ph} — гамильтониан фононной подсистемы [5,6].

Гамильтониану (1) отвечает плотность состояний адмолекулы вида $\rho_a(\varepsilon) = \pi^{-1}\Gamma(\varepsilon)/[\overline{\Omega}^2(\varepsilon) + \Gamma^2(\varepsilon)]$, где ε — энергия, $\overline{\Omega}(\varepsilon) =$ $= \varepsilon - \overline{\varepsilon}_a - \Lambda(\varepsilon)$, $\Gamma(\varepsilon)$ и $\Lambda(\varepsilon)$ — полуширина и сдвиг квазиуровня адчастицы. Для дальнейшего рассмотрения можно было бы воспользоваться *М*-моделью или низкоэнергетическим приближением [6]. Мы, однако, поступим проще, аппроксимировав $\rho_a(\varepsilon)$ контуром Лоренца, полагая $\Lambda(\varepsilon)$ и $\Gamma(\varepsilon)$ равными соответственно $\Lambda = \Lambda(\varepsilon^*)$ и $\Gamma = \Gamma(\varepsilon^*)$, где ε^* корень уравнения $\overline{\Omega}(\varepsilon) = 0$ [6]. Тогда получим $n_a = \pi^{-1} \operatorname{arcctg}(\overline{\varepsilon}'_a/\Gamma)$, где $\overline{\varepsilon}'_a = \varepsilon'_a - \lambda n_a$, $\varepsilon'_a = \varepsilon_a + \Lambda(\varepsilon^*)$ и уровень Ферми $\varepsilon_F = 0$. В результате приходим к самосогласованному уравнению

$$\operatorname{ctg}(\pi n_a) = \eta_a - \xi n_a, \tag{2}$$

где $\eta_a = \varepsilon'_a / \Gamma$ и $\xi = \lambda / \Gamma$. Подчеркнем, что от значения константы ξ зависит возможность скачкообразной перестройки электронной и геомет-

CO NO NO_2 H_2O Параметр NH_3 14 29 67 47 E_{ads} , meV 31 d Å 3.74 3.76 3.61 3.50 3.81 w, meV/Å 45 93 223 161 98 k, meV/Å² 72 148 370 276 154 λ , meV 28 58 134 94 62 ζ 107 52 22 32 48

Таблица 1. Исходные значения энергии адсорбционной связи E_{ads} и ее длины d [7] и результаты расчета параметров ЭФС для идеального графена

рической структуры адсорбированного слоя во внешнем электрическом поле [5,6]. Поэтому далее мы сосредоточимся на оценках величины ξ .

Начнем с адсорбции на идеальном графене. Поскольку энергия связи молекул газа с графеном E_{ads} составляет десятки meV и $d \sim 3-4$ Å [7], ясно, что имеет место ван-дер-ваальсово взаимодействие. Воспользуемся поэтому для дальнейших оценок потенциалом Леннарда–Джонса

$$V_{LJ}(z) = 4E_{ads}[(\sigma/z)^{12} - (\sigma/z)^6],$$
(3)

где равновесное значение $z_0 = d = \sqrt[6]{2\sigma}$. Входящий в гамильтониан (1) матричный элемент принимаем равным $V = -2E_{as}$ (ван-дер-ваальсово притяжение). Отсюда находим $w = 12E_{ads}/d$. Полагая $k = (\partial^2 V_{LJ}/\partial z^2)_d$, получим $k = 72E_{ads}/d^2$ и $\lambda = 2E_{ads}$. Воспользовавшись значениями E_{ads} и d, вычисленными для СО, NO, NO₂, H₂O, NH₃ в [7], получим результаты, представленные в табл. 1.

Перейдем теперь к оценке параметра $\xi = \lambda/\Gamma$. В соответствии с моделью Андерсона полуширина квазиуровня адчастицы $\Gamma = \pi \rho_G V^2$, где ρ_G — параметр, характеризующий плотность состояний графена [6]. Учитывая, что валентная π -зона графена, содержащая один электрон, имеет ширину 3t ($t \sim 3 \text{ eV}$ — энергия перехода между ближайшими соседями в графене), положим $\rho_G = 1/3t$. Тогда $\Gamma \sim 4E_{ads}^2/t$ и $\xi \sim t/2E_{ads}$. Так как $t \sim 3 \text{ eV}$, получаем $\xi \gg 1$ (табл. 1). При этом из анализа плотностей состояний адмолекул, приведенных в [7], следует, что $|\eta_a| \gg \xi$, так как значения $|\varepsilon_a'|$ для рассматриваемых молекул газа составляют несколько eV относительно уровня Ферми, совпадающего с точкой Дирака. Тогда из уравнения (2) следует, что $n_a \sim 1$ при $\eta_a < 0$

Таблица 2. Исходные значения энергии адсорбционной связи E_{ads} и ее длины d [9] и результаты расчета параметров ЭФС для адсорбции на атоме алюминия в графене

Параметр	СО	NO	NO ₂	H_2O	NH_3
E_{ads} , eV	0.66	1.35	2.48	0.81	1.37
<i>d</i> , Å	2.05	1.90	1.79	1.99	2.03
w, eV/Å	1.29	2.84	5.54	1.63	2.70
k, eV/Å ²	1.26	2.99	6.19	1.64	2.66
λ, eV	1.32	2.70	4.96	1.62	2.74
ζ	2.27	1.11	0.60	1.85	1.09

(донорные адмолекулы) и $n_a \sim 0$ при $\eta_a > 0$ (акцепторные адмолекулы). Поскольку до адсорбции у доноров $n_a^0 = 1$, а у акцепторов $n_a^0 = 0$, ясно, что переход заряда крайне мал. Это подтверждается расчетами [7], где показано, что величина перехода заряда лежит в интервале 0.01-0.03 и только в случае NO₂ равна ~ 0.1 .

Рассмотрим теперь работы по адсорбции на дефектах [3,8–10]. В табл. 2 в качестве исходных значений E_{ads} и d представлены результаты расчетов [9] для адсорбции газов на атоме Al, замещающем атом углерода в графене (AG в обозначениях [9]), так как именно для алюминия энергия адсорбционной связи Al-X (X = O, N, C) максимальна, а ее длина минимальна. При этом атом алюминия образует с тремя соседними атомами углерода в плоскости графена и атомом X молекулы подобие тетраэдрического комплекса [8–10]. Здесь нужно отметить, что расчет [8] для CO на AG дает $E_{ads} = 4.98 \text{ eV } u$ d = 1.96 Å, тогда как в [10] приводятся $E_{ads} = 2.69 \text{ eV } u$ d = 1.88 Å. Значения E_{ads} свидетельствуют о том, что связь Al-X ковалентная.

Для оценок констант ЭФС в этом случае введем потенциал 2-4 (см., например, [11]), представив его в виде

$$U(z) = -\frac{C_1}{z^2} + \frac{C_2}{z^4},\tag{4}$$

где $C_{1,2}$ — константы. Из условия равновесия $(\partial U(z)/\partial z)_d = 0$ следует, что $C_1 d^2 = 2C_2$, так что $U(d) = -C_1/2d^2$. Полагая $E_{ads} = C_1/2d^2$, получим $w = 4E_{ads}/d$, $k = 8E_{ads}/d^2$ и $\lambda = 2E_{ads}$. Считая, как и выше,

 $ho_G = 1/3t$ и полагая $V = C_1/d^2$, т.е. $V = 2E_{ads}$, получаем $\Gamma \sim 4E_{ads}^2/t$ и $\xi \sim t/2E_{ads}$. Результаты расчетов по данным [9] представлены в табл. 2. Для адсорбции CO на AG исходя из результатов работы [8] получим $w = 10.2 \text{ eV/Å}, k = 10.4 \text{ eV/Å}^2, \lambda = 10 \text{ eV}, \xi = 0.30.$ Если же воспользоваться данными [10], то $w = 5.7 \,\mathrm{eV/\AA}$, $k = 6.1 \,\mathrm{eV/\AA^2}$, $\lambda = 5.4 \,\mathrm{eV}$, $\xi = 0.56$. Оценки показывают, что значения $|\eta_a|$ и ξ одного порядка (так, для доноров $\varepsilon_a = \phi - I + e^2/4d[6]$, где $\phi = 4.5 \,\mathrm{eV}$ — работа выхода графена [12], I — энергия ионизации молекулы, меняющаяся от 9.78 eV для NO $_2$ до 14.20 eV для NO [13], $e^2/4d$ — кулоновский сдвиг $\sim 2 \, {
m eV}$ (см. [6]); для акцепторов $\varepsilon_a = \phi - A - e^2/4d$ [6], где A — сродство к электрону, причем максимальное значение A = 2.42 eV отвечает NO₂). Следовательно, числа заполнения n_a должны заметно отличаться от $n_a^0 = 1$ и 0, т.е. переход заряда по сравнению со случаем идеального графена существенно увеличивается. Действительно, по данным [8] для AG переход заряда Малликена возрастает от 0.003 до ~ 0.03 в единицах заряда электрона, тогда как в [10] заряд Бадера меняется от -0.01 до +0.23; по данным [9] для BG и SG (допированный бором и серой графен) переход заряда Лёвдина равен 0.35 и 0.76 соответственно.

Обращаясь к графену как объекту для создания резистивных газовых сенсоров, нужно учитывать не только его адсорбционную способность, но и селективность. Один из путей усиления обеих этих характеристик — подбор конкретной примеси, рассчитанной на адсорбцию конкретных газовых молекул: например, Al и CO [8–10], Fe и CO₂ [14]. Тот же подход используется в биосенсорах [15].

Другой способ — одновременное измерение наведенных адсорбцией изменений проводимости графена и работы выхода адсорбционной системы (см. [4] и ссылки, приведенные там). Этот способ не требует обязательного допирования. Следует отметить, что адсорбированные молекулы практически не снижают подвижность носителей в графене [1,4,6,16].

И наконец, можно использовать перестройку адсорбционного комплекса, вызванную сильной ЭФС адсорбат–адсорбент [5,6]. Действительно (см. соответствующие ссылки в [5]), если с помощью внешнего электрического поля смещать квазиуровень адмолекулы таким образом, чтобы он перекрылся с точкой Дирака собственного графена ($\xi = 0$ в уравнении (2)), то при $\xi > 0$ происходит скачок перехода заряда и соответствующее скачкообразное изменение длины адсорбционной

связи. Согласно оценкам настоящей работы, такой способ годится для недопированного графена.

В принципе в плане сенсорики может быть использована и акустодесорбция [17] (во всяком случае для адатомов галогенов), когда возбужденная внешним источником волна сжатия-растяжения, распространяющаяся в плоскости графена, меняя расстояние между ближайшими атомами углерода, увеличивает вероятность десорбции адчастиц, что, естественно, приводит к соответствующему изменению проводимости графена. Это, однако, сложнее осуществить на практике, чем в случае наложения внешнего электрического поля (по схеме полевого транзистора). Более того, монотонное увеличение амплитуды звуковой волны приводит к монотонному же изменению концентрации носителей в графене, пропорциональному количеству слетевших частиц. При приложении электрического поля в случае сильной ЭФС адчастицы с графеном имеет место скачок проводимости, который проще как фиксировать, так и интерпретировать.

Список литературы

- Schedin F., Geim A.K., Morozov S.V., Hill E.W., Blake P., Katsnelson M.I., Novoselov K.S. // Nature Mater. 2007. V. 6. N 9. P. 652–655.
- [2] Kong L., Enders A., Rahman T.S., Dowben P.A. // J. Phys.: Condens. Matter. 2014. V. 26. N 44. P. 443001.
- [3] You Y., Denga J., Tan X., Gorjizadeh N., Yoshimura M., Smith S.C., Sahajwalla V., Joshi R.K. // Phys. Chem. Chem. Phys. 2017. V. 19. N 8. P. 6051– 6056.
- [4] Давыдов С.Ю., Посредник О.В. // ЖТФ. 2017. Т. 87. В. 4. С. 635-638.
- [5] Давыдов С.Ю. // Письма в ЖТФ. 2012. Т. 38. В. 21. С. 1-6.
- [6] Давыдов С.Ю. Теория адсорбции: метод модельных гамильтонианов. СПб.: Изд-во СПбГЭТУ "ЛЭТИ", 2013. 235 с; twirpx.com/file/1596114/
- [7] Leenaerts O., Partoens B., Peeters F.M. // Phys. Rev. B. 2008. V. 77. N 12.
 P. 125416.
- [8] Ao Z.M., Yang J., Li S., Jiang Q. // Chem. Phys. Lett. 2008. V. 461. N 4–6. P. 276–279.
- [9] Dai J., Yuan J., Giannozzi P. // Appl. Phys. Lett. 2009. V. 95. N 23. P. 232105.
- [10] Wang W., Zhang Y., Shen C., Chai Y. // AIP Adv. 2016. V. 6. N 2. P. 025317.
- [11] Harrison W.A., Kraut E.A. // Phys. Rev. B. 1988. V. 37. N 14. P. 8244-8256.
- [12] Kim J.-H., Hwang J.H., Suh J., Tongay S., Kwon S., Hwang C.C., Wu J., Park J.Y. // Appl. Phys. Lett. 2013. V. 103. N 17. P. 171604.

- [13] Физические величины. Справочник. / Под ред. И.С. Григорьева, Е.З. Мейлихова. М.: Энергоатомиздат, 1991. 1232 с.
- [14] Berdiyorov G.R., Abdullah H., Al Ezzi M., Rakhmatullaeva G.V., Bahlouli H., Tit N. // AIP Adv. 2016. V. 6. N 12. P. 125102.
- [15] Лебедев А.А., Давыдов В.Ю., Новиков С.Н., Литвин Д.П., Макаров Ю.Н., Климович В.Б., Самойлович М.П. // Письма в ЖТФ. 2016. Т. 42. В. 14. С. 28–34.
- [16] Wehling T.O., Novoselov K.S., Morozov S.V., Vdovin E.E., Katsnelson M.I., Geim A.K., Lichtenstein A.I. // Nano Lett. 2008. V. 8. N 1. P. 173-177.
- [17] Давыдов С.Ю. // ФТТ. 2017. Т. 59. В. 4. С. 825–830.