14,15

Динамика деформации нематика под действием сильных скрещенных электрического и магнитного полей

© А.В. Захаров

Институт проблем машиноведения РАН, Санкт-Петербург, Россия E-mail: alexandre.zakharov@yahoo.ca

(Поступила в Редакцию 8 августа 2017 г.)

Предложен новый режим переориентации поля директора $\hat{\mathbf{n}}$ нематического жидкого кристалла (ЖК), инкапсулированного в прямоугольную ячейку под действием сильных скрещенных электрического E и магнитного B полей. Численные расчеты, выполненные в рамках линейного обобщения классической теории Эриксена–Лесли, показали, что при определенных соотношениях моментов и импульсов, действующих на единицу объема ЖК-фазы, и в случае $E \gg E_{th}$ в процессе переориентации $\hat{\mathbf{n}}$ могут возникнуть переходные периодические структуры, способствующие уменьшению эффективной вращательной вязкости нематика, образованного молекулами 4-*n*-пентил-4'-цианобифенила (5ЦБ). Расчеты, выполненные для 5ЦБ, указывают также на то, что в ЖК-ячейке формирующиеся периодические структуры способствуют уменьшению времени переориентации поля директора τ_{on} .

Работа выполнена при финансовой поддержке РФФИ (грант № 16-02-00041а).

DOI: 10.21883/FTT.2018.03.45568.246

1. Введение

Исследованию особенностей переориентации поля директора в нематических жидкокристаллических (ЖК) ячейках под действием внешних электрических и магнитных полей уделяется много внимания, ввиду важности этих процессов как с академической, так и технологической точек зрения [1-3]. В ЖК-ячейке ограниченной двумя плоскими электродами под действием сильного электрического поля ($\sim 1 \, \text{V}/\mu m$) могут возникнуть периодические структуры, способствующие уменьшению эффективной вращательной вязкости (ЭВВ) у_{еff}. А поскольку основным параметром, характеризующим качество ЖК-дисплея, является время $au \sim \frac{\gamma_{\mathrm{eff}}}{E^2}$ необходимое для переориентации поля директора n под действием сильного электрического поля Е, то уменьшение величины ЭВВ $\gamma_{\rm eff}$ будет способствовать уменьшению величины τ . Методы ЯМР-спектроскопии являются эффективным инструментом, позволяющим проследить эволюцию директора **n** под действием электрического поля **E** [1]. Это достигается тем, что ЖК-образец вначале ориентируется магнитным полем В с соответствующим расщеплением квадрупольного спектра $\Delta \overline{\nu}_0$. Если в какой-то момент времени включить сильное поперечное электрическое поле E (turn-on процесс), направленное под углом α к магнитному полю В, это приведет к убыванию величины расщепления квадрупольного спектра $\Delta \overline{\nu}$. При этом величина $\Delta \overline{\nu}(t) / \Delta \overline{\nu}_0 = P_2(\cos \theta(t))$ связана с углом отклонения $\theta(t)$ поля директора от направления магнитного поля **В**. Здесь $P_2(x)$ — полином Лежандра второго порядка. Таким образом, ЯМР-спектроскопия позволяет проследить эволюцию угла $\theta(t)$ от начального значения θ_0 до конечного θ_∞ . Располагая зависимостью

 $\theta(t)$ (или $\Delta \overline{\nu}(t) / \Delta \overline{\nu}_0$) от времени, можно определить время $\tau_{\rm on}(\alpha)$, необходимое для переориентации поля директора, которая характеризуется уменьшением $\Delta \overline{\nu}$ в два раза относительно $\Delta \overline{\nu}_0$ [1]. После того как электрическое поле выключено (E = 0), директор $\hat{\mathbf{n}}$ начинает релаксировать к первоначальной ориентации $\hat{\mathbf{n}}_0$ вдоль направления вектора **B** (turn-off процесс). Время τ_{off} , необходимое для переориентации поля директора в исходное положение $\hat{\mathbf{n}}_0$, есть время, необходимое для удвоения величины расщепления квадрупольного спектра $\Delta \overline{\nu}$. Анализ ЯМР-спектров ЖК-системы, образованной молекулами дейтерированного 4-п-пентил-4'-цианобифенила (5ЦБ-d₂) (см. рис. 2 ссылки [2]), показал, что величина $\tau_{\rm on}(\alpha)$ монотонно возрастает с ростом угла α и достигает максимального значения $au_{on}(\max)$ при $\alpha \sim 70^{\circ}$. Дальнейшее увеличение угла α , вплоть до значений $\alpha \sim 90^{\circ}$, приводит к тому, что величина $au_{
m on}(lpha \sim 90^\circ)$ быстро убывает на несколько милисекунд [1].

Целью предлагаемого исследования является теоретическое описание быстрого убывания величины $\tau_{on}(\alpha)$ в ЖК-ячейке, образованной молекулами 4-*n*-пентил-4'-цианобифенила (5ЦБ) под действием сильного электрического поля (~ 1 V/ μ m), направленного практически под прямым углом к сильному магнитному полю (~ 7 T). В рамках линейного обобщения классической теории Эриксена–Лесли [4,5] будет показано, что до тех пор пока ЖК-фаза переориентируется под действием скрещенных полей как монодомен, величина $\tau_{on}(\alpha)$ будет монотонно расти с ростом угла α и достигнет максимального значения $\tau_{on}(max)$. Формирующаяся под действием электрического и магнитного полей периодическая структура, в изначально однородно ориентированном ЖК-образце, будет способствовать уменьшению вклада вязких сил в полную энергию этой консервативной ЖК-системы. Таким образом, дополнительные деформации, обусловленные формированием периодической структуры, будут способствовать уменьшению эффективной вращательной вязкости и, тем самым, уменьшат время переориентации $\tau_{on}(\alpha)$ поля директора.

2. Основные уравнения

Рассмотрим длинную прямоугольную ЖК-ячейку с размерами L и d ($L \gg d$), ограниченную твердыми горизонтальными и вертикальными поверхностями. Допустим, что директор **n** планарно ориентирован на горизонтальных ограничивающих поверхностях и гомеотропно на вертикальных, причем рассмотрим два случая: первый (случай А), характеризующийся сильным сцеплением ЖК-молекул с горизонтальными поверхностями, а второй (случай В) — случай мягкого сцепления ЖК-молекул с горизонтальными ограничивающими поверхностями. В обоих случаях влиянием вертикальных поверхностей будем пренебрегать и система координат отсчитывается от нижней поверхности ЖК-ячейки так, что ось Х и орт і совпадают с направлением директора на нижней горизонтальной поверхности ($\mathbf{i} \parallel \hat{\mathbf{n}}_{z=0}$), в то время как ось Z и орт k направлены ортогонально $(\hat{\mathbf{k}} \perp \hat{\mathbf{n}}_{z=0})$, а орт $\hat{\mathbf{j}} = \hat{\mathbf{k}} \times \hat{\mathbf{i}}$ [6]. Направим сильное магнитное поле $\mathbf{B} = B\mathbf{i} ~(\sim 7 \,\mathrm{T})$ параллельно горизонтальным поверхностям. Таким образом, в начальный момент времени мы имеем дело с планарно и однородно ориентированным ЖК-образцом, образованным молекулами 5ЦБ, при том, что вектор электрического поля $\mathbf{E} = E_x \hat{\mathbf{i}} + E_z \hat{\mathbf{k}} = E(z) \cos \alpha \hat{\mathbf{i}} + E(z) \sin \alpha \hat{\mathbf{k}}$ направлен под углом α $(\sim \frac{\pi}{2})$ к направлению магнитного поля $\mathbf{B} = B\mathbf{i}$. После включения электрического поля \mathbf{E} , направленного практически ортогонально к планарно и однородно ориентированному ЖК-образцу, в ЖК-фазе начинается переориентация полярных молекул и, как следствие, переориентация $\hat{\mathbf{n}}(\mathbf{r}, t)$ вдоль направления вектора Е. Этот процесс переориентации сопровождается формированием поля скорости $\mathbf{v}(\mathbf{r}, t)$ в объеме ЖК-фазы. Будем предполагать, что переориентация поля директора $\hat{\mathbf{n}} = n_x \mathbf{i} + n_z \mathbf{k} = \cos \theta(x, z, t) \mathbf{i} + \sin \theta(x, z, t) \mathbf{k}$ под действием скрещенных электрического Е и магнитного В полей осуществляется в плоскости XOZ. Здесь θ — угол, образованный директором $\hat{\mathbf{n}}$ и ортом і. Таким образом, формирование гидродинамического течения $\mathbf{v}(\mathbf{r}, t) = u(x, z, t)\mathbf{i} + w(x, z, t)\mathbf{k}$, обусловленного переориентацией поля директора n, под действием скрещенных электрического Е и магнитного В полей, может быть описано в рамках нелинейного обобщения классической теории Эриксена-Лесли [4,5], которая учитывает баланс массы, импульсов и угловых моментов действующих на единицу ЖК-фазы. Принимая во внимание микроскопические размеры ЖК-ячейки, мы можем предположить, что плотность ЖК-системы постоянна и мы имеем дело с несжимаемой жидкостью. Условие

несжимаемости ЖК-материала принимает вид $\nabla \cdot \mathbf{v} = \mathbf{0}$ или

$$u_{,x} + w_{,z} = 0,$$
 (1)

где $u_{,x} = \frac{\partial u}{\partial x}$. В свою очередь, уравнения баланса моментов и импульсов, действующих на единицу объема ЖК-фазы, могут быть записаны в виде [7]

$$\mathbf{T}_{\text{elast}} + \mathbf{T}_{\text{vis}} + \mathbf{T}_{\text{el}} + \mathbf{T}_{\text{mag}} = 0 \tag{2}$$

И

$$\rho \, \frac{d\mathbf{v}}{dt} = \sigma_{ij,i} \, \left(i, \, j = x, \, z \right) \tag{3}$$

соответственно. Здесь $\mathbf{T}_{\text{elast}} = \frac{\delta W_F}{\delta \hat{\mathbf{n}}}$ — момент упругих сил, действующих на единицу объема ЖК-фазы, и представляет собой функциональную производную молекулярного поля $W_F = \frac{1}{2} \left[K_1 \left(\nabla \cdot \hat{\mathbf{n}} \right)^2 + K_3 \left(\hat{\mathbf{n}} \times \nabla \times \hat{\mathbf{n}} \right)^2 \right],$ где K_1 и K_3 — упругие коэффициенты Франка, соответствующие поперечному и продольному изгибам. Момент вязких сил, действующих на единицу объема ЖК-фазы, равен $\mathbf{T}_{\mathrm{vis}} = \hat{\mathbf{n}} \times (\gamma_1 \mathbf{N} + \gamma_2 M \cdot \hat{\mathbf{n}}),$ где вектор $\mathbf{N} = \frac{d\hat{\mathbf{n}}}{dt} - W \cdot \hat{\mathbf{n}}$, тензоры $2M = \nabla \mathbf{v} + (\nabla \mathbf{v})^T$ и $-2W = \nabla \mathbf{v} - (\nabla \mathbf{v})^{\mathrm{T}}$ являются симметричной и антисимметричной частями тензора скорости, символ Т означает транспонирование матрицы, соответствующей $\nabla \mathbf{v}$, а γ_1 и у2 — коэффициенты вращательной и сдвиговой вязкости соответственно. Моменты электрической и магнитной сил, действующих на единицу объема ЖК-фазы, равны $\mathbf{T}_{el} = \epsilon_0 \epsilon_a \hat{\mathbf{n}} \times \mathbf{E} (\hat{\mathbf{n}} \cdot \mathbf{E})$ и $\mathbf{T}_{mag} = \frac{\chi_a}{\mu_0} \hat{\mathbf{n}} \times \mathbf{B} (\hat{\mathbf{n}} \cdot \mathbf{B})$ соответственно. Здесь ϵ_0 и μ_0 — диэлектрическая проницаемость вакуума и магнитная постоянная, ϵ_a и χ_a диэлектрическая и магнитная анизотропии ЖК-системы соответственно. Тензор напряжения ЖК-системы имеет вид [4,5] $\sigma_{ij} = \mathscr{P} \delta_{ij} + \rho v_i v_j - \sigma_{ij}^{\text{vis}}$, где \mathscr{P} и ρ — гидростатическое давление и плотность ЖК-системы соответственно, а $\sigma_{ij}^{\text{vis}} = \alpha_1 n_k n_l M_{kl} n_i n_j + \alpha_2 n_i N_j + \alpha_3 n_j N_i$ $+ \alpha_4 M_{ij} + \alpha_5 n_i n_k M_{kj} + \alpha_6 n_j n_k M_{ki}$ — тензор вязких напряжений. В одноосной нематической фазе σ_{ii}^{vis} является линейной функцией градиентов скорости M_{ii}, описывающих прямолинейное сдвиговое течение, и эффективной скорости вектора N, а α_i (i = 1, ..., 6) — коэффициенты вязкости Лесли [5].

В случае $\epsilon_a > 0$ внешнее электрическое поле стремится сориентировать молекулы ЖК-фазы вдоль направления Е. В результате возникает конкуренция между полем Е и поверхностными ориентирующими силами, которые транслируются в объем ЖК-системы посредством упругих сил. В случае $E \gg E_{th}$ ЖК-системы посредством упругих сил. В случае $\hat{\mathbf{n}} = \hat{\mathbf{n}}_0 + \delta \hat{\mathbf{n}}$ начинают расти выведенной из равновесного состояния и любые малые флуктуации поля директора $\hat{\mathbf{n}} = \hat{\mathbf{n}}_0 + \delta \hat{\mathbf{n}}$ начинают расти со своими коэффициентами роста, каждый из которых обратно пропорционален некоторой эффективной вязкости ЖК-системы. Поскольку $\hat{\mathbf{n}}^2 = \hat{\mathbf{n}}_0^2 = 1$, то в линейном приближении ($\hat{\mathbf{n}} \cdot \delta \hat{\mathbf{n}}_0$) ≈ 0 , то есть вектор $\delta \hat{\mathbf{n}} \perp \hat{\mathbf{n}}_0$. Таким образом, будем учитывать только δn_z -компоненту флуктационного отклонения от равновесного, в нашем

случае планарного, направления $\hat{\mathbf{n}}_0$. Пренебрегая инерционным вкладом, уравнение Навье–Стокса (3) может быть записано в виде

$$\mathcal{P}_{,x} = \eta_5 u_{,xx} + \eta_1 u_{,zz} + \eta_4 w_{,xz} + \alpha_3 \delta n_{z,zt} = 0,$$

$$\mathcal{P}_{,z} = \eta_2 w_{,xx} + \eta_6 u_{,xz} + 2\eta_3 w_{,zz} + \alpha_2 \delta n_{z,xt} = 0, \quad (4)$$

где $\mathscr{P}_{,x} = \partial \mathscr{P}/\partial x$, а $\eta_1 = \frac{1}{2} (\alpha_4 + \alpha_3 + \alpha_6)$, $\eta_2 = \frac{1}{2} (\alpha_4 + \alpha_5 + \alpha_2)$, $\eta_3 = \frac{1}{2} \alpha_4$, $\eta_4 = \frac{1}{2} (\alpha_4 + \alpha_6 - \alpha_3)$, $\eta_5 = \alpha_1 + \alpha_4 + \alpha_5 + \alpha_6$, $\eta_6 = \frac{1}{2} (\alpha_2 + \alpha_4 + \alpha_5)$ — линейные комбинации коэффициентов Лесли. В свою очередь, уравнение баланса моментов (2) имеет вид

$$\gamma_1 \delta n_{z,t} + \alpha_2 w_{,x} + \alpha_3 u_{,z} + \epsilon_0 \epsilon_a E^2 \cos 2\alpha \delta n_z + \frac{\chi_a}{\mu_0} B^2 \delta n_z - K_1 \delta n_{z,zz} - K_3 \delta n_{z,xx} = 0, \qquad (5)$$

где $\delta n_{z,t} = \partial \delta n_z / \partial t$, а $\delta n_{z,zz} = \partial^2 \delta n_z / \partial z^2$ соответственно. Таким образом, мы имеем систему линейных дифференциальных уравнений (4)–(5), которую необходимо дополнить граничными и начальными условиями, как для величины флуктуации поля директора δn_z , так и скорости $\mathbf{v} = (u, 0, w)$. В дальнейшем мы будем изучать два случая сцепления поля директора с ограничивающими поверхностями: первый (случай A) — случай жесткого сцепления, когда граничные условия для δn_z могут быть записаны в виде

$$\left(\delta n_z\right)_{z=0,d} = 0,\tag{6}$$

и второй (случай *B*) — случай мягкого сцепления, когда граничные условия могут быть записаны в виде

$$(\delta n_{z,z})_{z=0,d} = \frac{\mathcal{W}}{K_1} \Delta n, \tag{7}$$

где $\Delta n = (\delta n_z)_{z=0,d} - n^e$, \mathcal{W} — плотность энергии сцепления ЖК-молекул с горизонтальными ограничивающими поверхностями, а n^e — направление оси легкого ориентирования. Граничные условия для поля скорости **v** могут быть записаны в виде

$$w (z = 0) = 0,$$

 $u_{,z} (z = 0) = 0,$ (8)

а начальные условия для флуктуации поля директора δn_z и скорости **v** = (u, 0, w) принимают вид

$$\delta n_z (t=0) = n_0,$$

$$\mathbf{v} (t=0) = \mathbf{0}.$$
 (9)

Таким образом, система уравнений (4)—(5), дополненная граничными (6)—(8) и начальными (9) условиями, образует самосогласованную систему линейных дифференциальных уравнений в частных производных, описывающих эволюцию как флуктуаций поля директора δn_z , так и скорости $\mathbf{v} = (u, 0, w)$ к их равновесным распределениям по всему объему ЖК-ячейки под действием скрещенных электрического и магнитного полей.

Анализ линеаризованной системы уравнений

Поскольку мы предполагаем, что под действием сильного электрического поля в однородно ориентированной ЖК-ячейке возможно формирование периодических структур, то будем искать решение системы (4)-(5) в виде гармонических зависимостей от x и z. Для этого представим δn_z , u и w в виде

$$\delta n_z = n_0 \sin(q_x x) \sin(q_z z) \exp(st),$$

$$u = v_0 q_x \sin(q_x x) \cos(q_z z) \exp(st),$$

$$w = -v_0 q_z \cos(q_x x) \sin(q_z z) \exp(st),$$
 (10)

где $n_0 = \delta n_z (t = 0)$ — амплитуда, q_x и q_z — волновые числа соответствующей Фурье-моды, а *s* — коэффициент роста. Далее мы будем использовать безразмерные пространственные переменные $\overline{x} = x/d$ и $\overline{z} = z/d$, причем в дальнейшем верхняя черта над пространственными переменными будет опущена. Теперь уравнение баланса моментов (5) принимает вид

$$\mathcal{A}_1 v_0 - \mathcal{A}_2 n_0 = 0, \tag{11}$$

где $\mathscr{A}_1 = \frac{1}{d} \left(\alpha_2 q_x^2 - \alpha_3 q_z^2 \right)$ и $\mathscr{A}_2 = -\mathscr{B} - \frac{K_1}{d} q_z^2$ $- \frac{K_3}{d} q_x^2 - \gamma_1 s.$ Здесь $\mathscr{B} = \epsilon_0 \epsilon_a E^2 \cos 2\alpha + \frac{\chi_a}{\mu_0} B^2 = \left(\frac{U}{U_{th}}\right)^2 \lambda_1$ $\times \cos 2\alpha + \lambda_2, \quad \lambda_1 = \epsilon_0 \epsilon_a \frac{U_{th}^2}{K_1}$ и $\lambda_2 = \frac{\chi_a}{\mu_0} \frac{(Bd)^2}{K_1}$ — два параметра ЖК-системы, а $U_{th} = \pi \sqrt{\frac{K_1}{\epsilon_0 \epsilon_a}}$ — величина

порогового напряжения Фредерикса [8].

В свою очередь линеаризованное уравнение Навье-Стокса (4) принимает вид

$$\mathcal{A}_3 v_0 - \mathcal{A}_4 n_0 = 0, \tag{12}$$

где $\mathcal{A}_3 = \frac{1}{d^2} \left(\eta_1 q_z^4 + \eta_8 q_z^2 q_x^2 + \eta_2 q_x^4 \right), \quad \mathcal{A}_4 = \frac{1}{d} \left(-\alpha_2 q_x^2 + \alpha_3 q_z^2 \right) s = -\mathcal{A}_1 s$ и $\eta_8 = \eta_5 - \eta_6 - \eta_4 + \alpha_4$. Подставляя уравнение (12) в (11), получим дисперсионное соотношение

$$s\left(q_{x},q_{z}\right) = -\frac{\mathscr{B} + K_{31}q_{x}^{2} + q_{z}^{2}}{\gamma_{\text{eff}}}\left(\frac{K_{1}}{d^{2}}\right),\qquad(13)$$

где

$$\gamma_{\text{eff}} = \gamma_1 \left[1 - \frac{\left(\overline{\alpha}_3 q_z^2 - \overline{\alpha}_2 q_x^2\right)^2}{\overline{\eta}_1 q_z^4 + \overline{\eta}_2 q_x^4 + \overline{\eta}_8 q_z^2 q_x^2} \right]$$
(14)

есть эффективная вращательная вязкость, а $K_{31} = K_3/K_1$, $\overline{\eta}_1 = \eta_1/\gamma_1, \ldots, \overline{\eta}_8 = \eta_8/\gamma_1, \ \overline{\alpha}_2 = \alpha_2/\gamma_1$ и $\overline{\alpha}_3 = \alpha_2/\gamma_1$ — безразмерные коэффициенты упругости и вязкости соответственно.

В случае мягкого сцепления ЖК-молекул с ограничивающими поверхностями (случай *B*) граничное условие (7) принимает вид

$$\kappa q_z = \tan\left(q_z z\right)_{z=0,1},\tag{15}$$

где $\kappa = K_1/\mathcal{W}d$ — еще один безразмерный параметр ЖК-системы. Таким образом, при z = 0 минимальное значение $q_z^{\min} = 0$, в то время как при z = 1, q_z^{\min} удовлетворяет уравнению

$$\kappa q_z^{\min} = \tan\left(q_z^{\min}\right). \tag{16}$$

Отметим, что в случае однородного искажения $q_x = 0$ дисперсионное выражение принимает вид

$$s(0) = -\frac{\mathscr{B}}{\overline{\mathcal{V}}_{\text{eff}}} \left(\frac{K_1}{d^2}\right)$$
$$= -\frac{1}{\overline{\mathcal{V}}_{\text{eff}}} \left[\left(\frac{U}{U_{\text{th}}}\right)^2 \lambda_1 \cos 2\alpha + \lambda_2 \right] \left(\frac{K_1}{d^2}\right), \quad (17)$$

где

$$\overline{\gamma}_{\rm eff} = \gamma_1 - \frac{\alpha_3^2}{\eta_1},\tag{18}$$

что совпадает с результатом работы [9].

Таким образом, принимая во внимание тот факт, что величина $\eta_1 > 0$, мы можем сделать заключение, что при формировании периодической структуры в ЖК-образце под действием скрещенных электрического и магнитно-го полей появляется сдвиговая вязкость, уменьшающая эффективную вращательную вязкость $\gamma_{\rm eff}$, связанную с переориентацией поля директора.

Дальнейший анализ был проведен для случая ЖК-системы, образованной цианобифинилом 5ЦБ, при температуре 300 К и плотности $\rho = 10^3 \text{ kg/m}^3$. При температуре 300 К значения коэффициентов Франка K_1 и K₃ были выбраны равными 8.7 pN и 10 pN, значения диэлектрической проницаемости вдоль ϵ_{\parallel} и поперек ϵ_{\perp} направления директора были выбраны равными 19.5 и 8, в то время как значения КВВ у1 и γ_2 — равными 0.136 Ра · s и -0.151 Ра · s соответственно. Значение напряжения прилагаемого поперек ЖК-ячейки толщиной $d = 194.7\,\mu\text{m}$ варьировалось в пределах [60-200] V, а значение плотности энергии сцепления ЖК-молекул со стеклянными подложками, на внутреннюю поверхность которых были нанесены прозрачные проводящие электроды на основе окислов индия и олова, — в пределах $10^{-5} - 10^{-6} \text{ J/m}^2$. Это позволило нам вычислить корни уравнения (16). Так, для случая $\mathcal{W} = 10^{-6} \text{ J/m}^2$ (случай I) $\kappa = 0.044$, в то время как для случая $\mathcal{W} = 10^{-5} \, \mathrm{J/m^2}$ (случай II) $\kappa = 0.0044.$ Для этих значений к минимальные значения волнового числа $q_z^{\min} \equiv q_{\min} = \pi + \delta$, где $\delta = 0.1434$, для случая (I), и $\delta = 0.01434$, для случая (II). Отметим, что в предельном случае $\lim_{A\to\infty} q_z^{\min} = \pi$. Принимая во внимание, что измерения ЯМР-спектров для случая дейтерированного 5ЦБ-d₂ были проведены с использованием JEOL Lambda 300 [1], в котором величина магнитного поля $B = 7.05 \,\mathrm{T}$ [1], значения безразмерных параметров λ_1 и λ_2 были расчитаны равными 47418 и 5486 соответственно. Теперь, располагая значением $q_z^{\min} \equiv q_{\min}$ и используя уравнение (13), мы можем расчитать функцию

0 0 0 0 2 4 0 $q_x d/\pi$ **Рис. 1.** Зависимость безразмерной дисперсионной функции $s(q_x d/\pi)/s(0)$ от величины безразмерного волнового числа $q_x d/\pi$, для ряда значений угла α : ~ 9° (кривая 1), ~ 30° (кривая 2), ~ 50° (кривая 3), ~ 70° (кривая 4) и ~ 90° (кривая 5) соответственно. Расчеты выполнены для случая сильного сцепления ЖК-молекул с ограничивающими поверхностями

(случай A), U = 50 V и B = 7.05 Т.

 $s(q_x)$ vs q_x . На рис. 1 представлены результаты расчета безразмерной дисперсии $s(q_x d/\pi)/s(0)$ vs $q_x d/\pi$, для нескольких значений угла α : 0.157 (~9°) (кривая 1), $0.609~(\sim 30^{\circ})$ (кривая 2), $0.864~(\sim 50^{\circ})$ (кривая 3), 1.22 (~ 70°) (кривая 4) и 1.57 (~ 90°) (кривая 5). Расчеты представлены для случая U = 50 V, B = 7.05 Tи жесткого сцепления (случай А) ЖК-молекул с ограничивающими поверхностями. Главный результат этих расчетов заключается в том, что в процессе переориентации поля директора n, под действием скрещенных электрического U = 50 V и магнитного B = 7.05 T полей, направленных только под углом $\alpha > 70^{\circ}$ друг к другу, в ЖК-ячейке толщиной ~ 200 μ m любые малые флуктуации поля директора $\hat{\mathbf{n}} = \hat{\mathbf{n}}_0 + \delta \hat{\mathbf{n}}$ начинают экспоненциально расти со своими коэффициентами роста s, которые обратно пропорциональны некоторой эффективной вязкости $\gamma_{\rm eff}(\alpha)$. В случае мягкого сцепления ЖК-молекул с ограничивающими поверхностями (случай *B*) ($\mathcal{W} = 10^{-6} \text{ J/m}^2$) и U = 200 V, существует оптимальное волновое число $q_{\max} \equiv q_x^{\max}$, при котором соответствующая мода искажения обладает наибыстрейшим откликом. Это достигается только при значениях угла $\alpha \ge 70^{\circ}$ (см. рис. 2). На рис. 3 представлены пять кривых $s(q_x d/\pi)$ vs $q_x d/\pi$, причем величина угла α изменялась начиная со значения $\sim 70^{\circ}$ (кривая 1) и до $\sim 86^{\circ}$ (кривая 5), с шагом в $\sim 4^{\circ}$. Результаты расчетов показали, что положения экстремума $s(q_{\max}, \alpha)$, при $\alpha > 70^{\circ}$, слабо зависит от величины угла α (см. таблицу).

Используя уравнение (14) и значения оптимальных волновых чисел $q_{\min} \equiv \Delta = \pi + \delta$ и q_{\max} , мы можем

Расчетные значения q_{\max} и $\gamma_{\text{eff}}(\alpha)/\gamma_1$ в зависимости от величины угла α и плотности \mathcal{W} энергии сцепления ЖК-молекул с ограничивающими поверхностями.

$lpha^\circ$	$\mathscr{W} ightarrow\infty$		$\mathscr{W} = 10^{-5} \mathrm{J/m^2}$		$\mathscr{W} = 10^{-6} \mathrm{J/m^2}$	
	q_{\max}	$\gamma_{\rm eff}/\gamma_1$	q_{\max}	$\gamma_{ m eff}/\gamma_1$	$q_{ m max}$	$\gamma_{ m eff}/\gamma_1$
74	20.5	0.183	20.6	0.183	21.3	0.183
78	20.96	0.183	21.3	0.183	21.7	0.182
82	21.8	0.182	22.0	0.182	22.6	0.182
86	22.1	0.182	22.2	0.182	22.9	0.182
90	23.0	0.182	23.2	0.182	23.6	0.182

Рис. 2. Зависимость размерной дисперсионной функции $s(q_x d/\pi)$, s⁻¹ от величины безразмерного волнового числа $q_x d/\pi$, для ряда значений угла α : ~ 9° (кривая I), ~ 30° (кривая 2), ~ 50° (кривая 3), ~ 70° (кривая 4) и ~ 90° (кривая 5) соответственно. Расчеты выполнены для случая слабого сцепления ЖК-молекул с ограничивающими поверхностями (случай B), с $\mathcal{W} = 10^{-6}$ J/m², U = 200 V и B = 7.05 T.

Puc. 3. To же, что на рис. 2, но значения угла *α* равны: $\sim 70^{\circ}$ (кривая 1), $\sim 74^{\circ}$ (кривая 2), $\sim 78^{\circ}$ (кривая 3), $\sim 82^{\circ}$ (кривая 4) и $\sim 86^{\circ}$ (кривая 5).

Физика твердого тела, 2018, том 60, вып. 3

расчитать величину эффективной вращательной вязкости (ЭВВ)

$$\gamma_{\rm eff}(\alpha) = \gamma_1 \left(1 - \frac{\left(\Delta^2 \overline{\alpha}_3 - \overline{\alpha}_2 q_{\rm max}^2\right)^2}{\Delta^4 \overline{\eta}_1 + \overline{\eta}_2 q_{\rm max}^4 + \Delta^2 \overline{\eta}_8 q_{\rm max}^2} \right), \quad (19)$$

в зависимости от величины угла α и плотности \mathcal{W} энергии сцепления ЖК-молекул с ограничивающими поверхностями. Здесь $\Delta = \pi + \delta$, где $\delta = 0.1434$ для случая сильного сцепления ЖК-молекул с ограничивающими поверхностями (случай *A*), и 0.01434 для случая слабого сцепления ЖК-молекул с ограничивающими поверхностями (случай *B*).

Результаты расчетов показали, что под влиянием скрещенных электрического (U = 200 V) и магнитного (*B* ~ 7 T) полей ЭВВ ЖК-системы, толщиной $\sim 200\,\mu{
m m}$ и образованной молекулами 5ЦБ, резко убывает (см. таблицу). Начиная со значений $\alpha > 74^{\circ}$, ЭВВ $\gamma_{\rm eff}(\alpha, \mathcal{W})$ приблизительно в 5 раз меньше, чем соответствующее значение у1 невозмущенной ЖК-системы. Такое поведение $\gamma_{\text{eff}}(\alpha, \mathcal{W})$ можно объяснить возникновением переходной периодической структуры в процессе переориентации поля директора n под действием скрещенных полей. Принимая во внимание тот факт, что полная энергия $\mathcal F$ консервативной ЖК-системы не меняется, дополнительный вклад, обусловленный упругими силами, приводит к тому, что уменьшается вклад вязких сил в величину Э. Таким образом, возникающие вращающиеся домены способствуют уменьшению эффективной вращательной вязкости $\gamma_{\text{eff}}(\alpha, \mathcal{W})$, характеризующей скорость диссипации энергии. Все это, в конечном счете, ведет к уменьшению времени переориентации поля директора $\tau_{on}(\alpha)$.

Таким образом, теоретическая модель, допускающая формирование периодических структур в изначально однородно ориентированном ЖК-образце, под действием скрещенных электрического и магнитного полей, объясняет возможный сценарий быстрого убывания $\tau_{on}(\alpha)$ на несколько милисекунд по мере роста угла $\alpha \to \pi/2$.

4. Заключение

Анализ ЯМР-спектров показал, что величина времени переориентации поля директора $\tau_{on}(\alpha)$ нематика, об-

разованного молекулами дейтерированного 4-п-пентил-4'-цианобифенила, помещенного в ЖК-ячейку толщиной $\sim 200\,\mu{
m m}$, под действием скрещенных электрического $(\sim 200\,\mathrm{V})$ и магнитного $(\sim 7\,\mathrm{T})$ полей монотонно возрастает с ростом угла α и достигает максимального значения $au_{on}(\max)$ при $\alpha \ge 70^{\circ}$ [1]. Дальнейшее увеличение угла α , вплоть до значений $\alpha \sim 90^{\circ}$, приводит к тому, что величина $au_{
m on}(lpha \sim 90^\circ)$ быстро убывает на несколько милисекунд [1]. Предложенные в статье, в рамках линейного обобщения классической теории Эриксена-Лесли, расчеты режимов переориентации поля директора n̂ показали, что для каждой конкретной ЖК-системы и выбранных режимов внешних полей существует пороговое значение угла $\alpha_{\rm th}$, при котором формирующаяся периодическая структура, в изначально однородно ориентированном ЖК-образце, способствует значительному уменьшению эффективной вращательной вязкости. Это обусловлено тем, что энергетические затраты, связанные с дополнительной деформацией ЖК-образца, приводят к уменьшению вклада вязких сил в полную энергию консервативной ЖК-системы. А принимая во внимание тот факт, что в диссипационную функцию такой консервативной ЖК-системы основной вклад осуществляется за счет $\sim \gamma_{\rm eff} \left(\frac{d\hat{\mathbf{n}}}{dt} \right)^2$, уменьшение вклада вязких сил способствует уменьшению эффективной вращательной вязкости $\gamma_{\rm eff}$, что ведет к уменьшению величины времени переориентации поля директора $\tau_{\rm on}(\alpha < \alpha_{\rm th})$. С другой стороны, до тех пор пока ЖК-фаза переориентируется под действием скрещенных полей как единое целое (как монодомен), мы наблюдаем монотонный рост $\tau_{\rm on}(\alpha < \alpha_{\rm th})$ [10].

Мы полагаем, что настоящая работа проливает свет на неизученные аспекты динамики переориентации поля директора в микроскопических ЖК-ячейках под действием сильных скрещенных электрического и магнитного полей.

Список литературы

- A. Sugimura, G.R. Luckhurst. Prog. Nucl. Mag. Res. Spectr. 94–95, 37 (2016).
- [2] D.K. Yang, S.T. Wu. Fundamentals of Liquid Crystal Devices. Wiley, N.Y. (2006).
- [3] T.M. Squires, S.R. Quake. Rev. Mod. Phys. 77, 977 (2005).
- [4] J.L. Ericksen. Arch. Ration. Mech. Anal. 4, 231 (1960).
- [5] F.M. Leslie. Arch. Ration. Mech. Anal. 28, 265 (1968).
- [6] А.В. Захаров. ФТТ 58, 1851 (2016).
- [7] A.A. Vakulenko, A.V. Zakharov. Phys. Rev. E 88, 022505 (2013).
- [8] P.G. de Gennes, J. Prost. The physics of liquid crystals. Oxford Univ. Press. Oxford (1995). 400 p.
- [9] E. Guyon, R.B. Meyer, J. Salon. Mol. Cryst. Liq. Cryst. 54, 261 (1979).
- [10] A. Sugimura, A.A. Vakulenko, A.V. Zakharov. Phys. Procedia 14, 102 (2011).