13

Рост, структурные, магнитные и магнитооптические свойства пленок ZnO, легированных 3*d*-примесью Fe⁵⁷

© М.М. Мездрогина¹, А.С. Агликов¹, В.Г. Семенов², Ю.В. Кожанова², С.Г. Нефедов¹, Л.А. Шелухин¹, В.В. Павлов¹

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия ² Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия

E-mail: Margaret.m@mail.ioffe.ru

(Поступила в Редакцию 24 мая 2017 г. В окончательной редакции 18 сентября 2017 г.)

> Исследованы пленки ZnO, полученные методом высокочастотного магнетронного распыления и легированные металлической 3*d*-примесью Fe⁵⁷ методом диффузии. Определен тип локального окружения примесных атомов Fe⁵⁷ при варьировании параметров осаждения пленок ZnO с помощью метода мессбауэровской спектроскопии. Установлено, что основное состояние примесных атомов Fe⁵⁷ соответствует металлическому железу в магнитоупорядоченном состоянии, есть небольшая доля атомов Fe⁵⁷ с локальным окружением, соответствующем сложному оксиду Fe₃O₄, обладающему магнитоупорядоченным состоянием, также присутствует небольшая доля атомов железа в парамагнитном состоянии. Магнитные и магнитооптические параметры исследуемых пленок измерялись с помощью магнитооптического эффекта Керра. В пленках ZnO : Fe⁵⁷ измерены спектральные зависимости полярного магнитооптического эффекта Керра в диапазоне энергий фотонов 1.5–4.5 eV и проведено моделирование по методу эффективной среды. Установлено, что пленки ZnO : Fe⁵⁷ обладают магнитной анизотропией типа легкая плоскость с намагниченностью, лежащей в плоскости пленки.

Работа выполнена при поддержке Российского научного фонда, проект № 17-12-01314.

DOI: 10.21883/FTT.2018.03.45567.168

1. Введение

В настоящее время интенсивно исследуются магнитные свойства тонких пленок на основе широкозонного полупроводника ZnO, легированных различными 3d-примесями, с целью достижения максимальной температуры Кюри, а также создания на их основе новых устройств спинтроники. В различных работах проводятся исследования влияния концентрации дефектов кристаллической структуры, металлических фоновых и легирующих примесей металлов 3*d*-группы (Fe, Mn, Co) и 4*f*-группы (Sm, Eu) на магнитные параметры пленок ZnO [1-4]. Систематические исследования структурных и магнитных свойств (Zn,Fe)О проведены в работе [5], выявлено повышение температуры ферромагнитного перехода с 39 до 44 К при изменении объемной доли Fe с 2 до 8%. Основной проблемой для практического использования данных материалов является достижение температуры Кюри для магнитного перехода парамагнетик-ферромагнетик выше комнатной температуры. Другой проблемой, возникающей при легировании пленок ZnO, является проблема встраивания 3d и 4f металлических примесей в кристаллическую решетку ZnO в качестве примесей замещения, занимающих позицию точечного дефекта V_{Zn} или V_O. Также актуальным является исследование возможностей бифункционального использования пленок ZnO одновременно в качестве как светоизлучающей среды, так и магнитного материала [2,6]. Согласно теоретическим и экспериментальным исследованиям, тонкие пленки ZnO обладают так называемым d^0 ферромагнетизмом при комнатной температуре [7,8]. Показано, что природа d^0 ферромагнетизма определяется параметрами пленок ZnO — скоростью и температурой роста, толщиной пленки, размерами зерна и неоднородностями структуры [8]. Существуют теоретические предположения о реализации d^0 ферромагнетизма за счет поверхностных магнитных моментов при частичном заполнении электронных оболочек вследствие нарушения стехиометрии или наличия дефектов в кристаллической структуре ZnO. С использованием первопринципных расчетов для полупроводников со структурой вюрцита показано, что делокализованные дефектные орбитали могут индуцировать локальные магнитные моменты и формировать коллективный магнитный порядок [9].

В работах [10,11] исследовалось влияние легирования редкоземельными ионами (Eu, Tm, Sm) и ионами переходных 3*d*-металлов (Fe, Mn) на возможность наблюдения магнитного упорядочения в пленках ZnO при световом воздействии, что является важным при использовании данных материалов в оптоэлектронных устройствах для управления интенсивностью излучения за счет внешнего магнитного поля. Изучение влияния концентрации ионов Sm^{3+} на величину намагниченности и характер петель гистерезиса в пленках ZnO, полученных методом жидкофазного роста из ацетата цинка и нитрита самария [2], позволило сделать вывод о том, что ион Sm³⁺ с концентрацией 5% $< C_{\rm Sm} < 15\%$ в кристаллической решетке ZnO является примесью замещения $V_{\rm Zn}$. По данным работы [5] в пленках ZnO *п*-типа не обнаружена корреляция между связанными примесными состояниями и магнитными параметрами.

В данной работе пленки ZnO получены методом высокочастотного магнетронного распыления при варьировании параметров осаждения, что позволяет реализовать различные концентрации введенных примесей атомов Fe⁵⁷ и дефектов в кристаллической матрице ZnO, влияющих на магнитные параметры легированных пленок. Проведено исследование типа локального окружения атомов Fe⁵⁷, влияния концентрации дефектов на магнитные параметры пленок ZnO. При определении локального окружения примесных атомов Fe⁵⁷ использовался метод мессбауэровской спектроскопии. Примеси вводились с помощью метода диффузии. Для определения магнитных и магнитооптических параметров пленок ZnO использовался метод магнитооптического эффекта Керра.

2. Эксперимент

Пленки ZnO были получены методом высокочастотного магнетронного распыления [12,13] при варьировании параметров осаждения — высокочастотной мощности, скорости роста и температуры подложки для реализации различных концентраций введенных легирующих примесей и дефектов в пленках. В табл. 1 приведены основные параметры приготовления пленок ZnO : Fe⁵⁷.

Метод высокочастотного магнетронного распыления является одним из широко используемых методов, позволяющих выращивать пленки ZnO заданной толщины с достаточно высокой скоростью роста при относительно малой интенсивности бомбардировки поверхности, достаточно простом конструктивном исполнении и небольших энергетических затратах. Достоинством данного метода является возможность легирования различными твердыми металлическими или газовыми примесями в процессе роста. В данном методе могут быть использованы различные материалы подложки, например, кристаллический кремний, сапфир, кварц, стекло и т.д.

Легирующая примесь Fe⁵⁷ является мессбауэровским изотопом железа, что позволяет оценить корреляцию локального окружения примесного атома с магнитными

Таблица 1. Параметры нанесения пленок ZnO

Номер подложки	Температура подложки, °С	Мощность, W	Время осаждения, min
1	520	50	90
2	667	50	90
3	630	7.2	50

Рис. 1. Мессбауэровский спектр образцов (точки) и результат аппроксимации (линии) $a - N \circ 1, b - N \circ 2.$

параметрами пленок ZnO(: Fe⁵⁷). Изменение локального окружения примесных атомов Fe⁵⁷ в пленках ZnO: (Fe⁵⁷) регистрировалось с помощью мессбауэровской спектроскопии при T = 300 К. В исследованных пленках ZnO(: Fe⁵⁷) установлено различное локальное окружение примеси Fe⁵⁷ вследствие различной концентрации дефектов в исходной матрице ZnO. Также исследовалось влияние температуры осаждения на изменения локального окружения атомов Fe⁵⁷ в пленках $ZnO\langle: Fe^{57}\rangle$, нанесенных при больших скоростях осаждения в диапазоне 0.2 < s < 0.9 nm/s. Пленки ZnO, приготовленные при больших скоростях осаждения при различных температурах 520 и 667°С, одинаковом времени осаждения отличались как по концентрации центров излучательной рекомбинации, так и по концентрации дефектов [12,13]. Также было показано, что в пленках, осажденных при меньшей температуре $T = 520^{\circ}$ С, концентрация дефектов больше, чем в пленках, осажденных при $T = 667^{\circ}$ С.

На рис. 1, a для примера показан мессбауэровский спектр образца № 1, а в табл. 2 показан результат численной обработки мессбауэровского спектра для дан-

Дублеты										
N₂	A (i	mp)	Γ (mm/s)		$I_S \text{ (mm/s)}$		$Q_S ({ m mm/s})$		%	
1	2626 :	2626 ± 217		± 0.085	0.835 ± 0.036		0.713 ± 0.071		4.07	
Секстеты										
N₂	A1 (imp)	A2 (imp)	A3 (imp)	$\Gamma1 \ (mm/s)$	$\Gamma 2 ~(mm/s)$	$\Gamma 3 \ (mm/s)$	$I_S \text{ (mm/s)}$	$Q_S \ (mm/s)$	H_{eff} (T)	%
2	58985 ±257	70212 ±271	23206 ±346	$0.263 \\ \pm 0.002$	0.256 ± 0.002	0.239 ±0.006	$0.001 \\ \pm 0.000$	$^{-0.000}_{\pm 0.001}$	33.003 ± 0.003	88.66
3	2147 ±212	$\begin{array}{c} 1431 \\ \pm 202 \end{array}$	629 ±338	0.453 ± 0.084	0.473 ± 0.109	0.157 ± 0.146	0.656 ± 0.019	$\begin{array}{c}-0.064\\\pm0.036\end{array}$	$\begin{array}{c} 45.908 \\ \pm 0.158 \end{array}$	3.97
4	749 ±172	1979 ±496	738 ±304	0.705 ± 0.332	$\begin{array}{c} 0.162 \\ \pm 0.026 \end{array}$	$\begin{array}{c} 0.818 \\ \pm 0.374 \end{array}$	$0.223 \\ \pm 0.052$	0.055 ± 0.102	$\begin{array}{c} 48.792 \\ \pm 0.149 \end{array}$	3.30

Таблица 2. Результаты численной обработки мессбауэровского спектра образца № 1

Таблица 3. Результаты численной обработки мессбауэровского спектра образца № 2

Дублеты										
N₂	A (imp)		$\Gamma (mm/s)$		$I_S \text{ (mm/s)}$		$Q_S ({ m mm/s})$		%	
1	16 066	± 146	0.580 ± 0.08		0.910 ± 0.003		0.644 ± 0.006		6.42	
Секстеты										
N₂	A1 (imp)	A2 (imp)	A3 (imp)	$\Gamma 1 \ (mm/s)$	$\Gamma 2 ~(mm/s)$	$\Gamma 3 \ (mm/s)$	$I_S (mm/s)$	$Q_S \ (mm/s)$	H_{eff} (T)	%
2	168138 ±155	196567 ±157	64966 ±199	$0.263 \\ \pm 0.000$	$0.260 \\ \pm 0.000$	$0.250 \\ \pm 0.001$	$0.001 \\ \pm 0.000$	$0.001 \\ \pm 0.000$	33.025 0.001	76.87
3	11634 ±161	9372 ±248	2743 ±216	$\begin{array}{c} 0.282 \\ \pm 0.006 \end{array}$	0.254 ±0.009	$\begin{array}{c} 0.227 \\ \pm 0.026 \end{array}$	0.264 ± 0.002	$\begin{array}{c} 0.038 \\ \pm 0.003 \end{array}$	$\begin{array}{c} 48.779 \\ \pm 0.011 \end{array}$	4.33
4	$\begin{array}{c} 11772 \\ \pm 105 \end{array}$	$\begin{array}{c} 11846 \\ \pm 197 \end{array}$	6724 ±144	0.717 ± 0.011	$\begin{array}{c} 0.540 \\ \pm 0.011 \end{array}$	$\begin{array}{c} 0.464 \\ \pm 0.016 \end{array}$	$0.620 \\ \pm 0.002$	$\begin{array}{c} -0.008 \\ \pm 0.004 \end{array}$	45.281 ± 0.017	12.38

ного образца. В результате обработки мессбауэровских спектров (табл. 2) пленок ZnO : $\langle Fe^{57} \rangle$, осажденных при $T = 520^{\circ}$ С, установлено, что примесные атомы Fe⁵⁷ находятся в различных состояниях. По данным табл. 2, № 1 — основное состояние примесных атомов Fe^{57} магнитоупорядоченное состояние, соответствующее металлическому железу Fe. Доля атомов железа в этом состоянии 88.66%. № 2 — атомы железа в парамагнитном состоянии, доля которых составляет 4.07%. Химический сдвиг (IS) указывает на то, что это ионы железа Fe³⁺, величина квадрупольного расщепления (QS) связана с тем, что есть большой градиент электрического поля на ядре железа, т.е. наблюдается большая асимметрия окружения. (3) и (4) — атомы железа в фазе магнетита Fe₃O₄. Доля атомов железа в данной фазе составляет 7.27%. С магнитной точки зрения два секстета соответствуют атомам железа в двух неэквивалентных магнитных подрешетках с долей 3.97 и 3.30%, что соответствует распределению атомов железа по двум различным магнитным подрешеткам в магнетите Fe₃O₄ — тетраэдрической и октаэдрической.

Увеличение температуры подложки до 667°C при росте пленок ZnO(: Fe⁵⁷) привело к уменьшению доли железа в магнитоупорядоченном состоянии, соответствующем металлическому железу Fe. Доля атомов железа в этом состоянии 76.87%, что меньше на 12% по сравнению с предыдущими пленками. Рассмотрим другие состояния примесных атомов в пленке ZnO : Fe⁵⁷ при температуре подложки 667°С: (1) доля атомов железа в немагнитном состоянии составляет 6.427%., т.е. больше, чем в пленке, полученной при $T = 520^{\circ}$ С; (2) доля атомов железа в фазе магнетита Fe₃O₄ составляет 16.71%, концентрация которого больше, чем в пленке, полученной при T = 520°C. С магнитной точки зрения два секстета соответствуют атомам железа в двух неэквивалентных магнитных подрешетках с долей 4.33% и 12.38%, что превышает значения концентрации железа в том же состоянии в пленке, полученной при $T = 520^{\circ}$ С.

На основании вышеприведенных данных показано, что при большой скорости осаждения и при увеличении температуры подложки уменьшается концентрация же-

леза в магнитоупорядоченном состоянии, концентрация остальных состояний примесного атома Fe⁵⁷ также меняется, особенно существенны изменения примеси Fe⁵⁷ в виде магнетита Fe₃O₄. Можно предположить, что легирующая примесь Fe⁵⁷ в виде металлического железа находится на границах зерен или неоднородностей пленок ZnO, занимая положение V_{Zn} как примесь замещения, или V_O (Fe в фазе магнетита Fe₃O₄ как примесь внедрения), внутри неоднородностей или зерен, т. е. увеличение температуры осаждения приводит к увеличению концентрации примеси атомов Fe⁵⁷ внутри зерен.

Для определения типа магнитной анизотропии пленок $ZnO:Fe^{57}$ при комнатной температуре использовался

Рис. 2. Полевая зависимость поворота плоскости поляризации пленок ZnO : Fe⁵⁷ (образцы № 1–3) для (*a*) полярного и (*b*) меридионального магнитооптических эффектов Керра при T = 293 К для энергии фотона E = 1.96 eV.

Рис. 3. Спектральные зависимости угла поворота плоскости поляризации и эллиптичности для полярного магнитооптического эффекта Керра пленки ZnO : Fe⁵⁷ (образцы № 1–3). Небольшие колебания эллиптичности связаны с интерференцией света в широкодиапазонной четвертьволновой пластинке при измерении по методике, описанной в работе [14].

магнитооптический эффект Керра. На рис. 2 показаны зависимости намагничивания пленок $ZnO\langle:Fe^{57}\rangle$, измеренные с использованием полярного и меридионального эффектов Керра.

В полярной геометрии, когда магнитное поле приложено перпендикулярно плоскости образца и при нормальном падении света, кривые намагничивания пленок ZnO(: Fe⁵⁷) имеют вид линейных зависимостей от внешнего поля. В меридиональной геометрии, когда магнитное поле приложено в плоскости образца и плоскости падения света (угол падения 45°), наблюдаются прямоугольные петли гистерезиса. На основании этих данных можно сделать вывод, что все исследованные пленки ZnO(: Fe⁵⁷) обладают магнитной анизотропией типа легкая плоскость с намагниченностью, лежащей в плоскости пленки.

На рис. 3 приведены спектральные зависимости магнитооптического эффекта Керра для образцов № 1-3 $ZnO\langle: Fe^{57}\rangle$ в полярной геометрии в магнитном поле величиной 2 kOe. Измерения были проведены по методике, описанной в работе [14].

На рис. 3 приведены спектральные зависимости угла поворота плоскости поляризации и эллиптичности для полярного магнитооптического эффекта Керра пленки ZnO: Fe⁵⁷ (образцы № 1–3). Небольшие колебания эллиптичности связаны с интерференцией света в широкодиапазонной четвертьволновой пластинке при измерении по методике, описанной в работе [14].

Максимальные величины угла поворота плоскости поляризации наблюдается в области энергий фотона порядка 1.5 eV, а абсолютные минимальные значения в области энергий фотона порядка 3 eV (образцы № 1 и 3). Максимальные величины угла эллиптичности наблюдаются в области энергий фотона порядка 2 V, а абсолютные минимальные значения — в области энергий фотона порядка 1.5 eV. Увеличение температуры подложки с 520°С (образец № 1) до 630°С (образец № 3) привело к смещению положения минимума угла поворота плоскости поляризации примерно на 0.2 eV в область более высоких энергий, а также его исчезновению для образца, приготовленного при температуре подложки 667°С (образец № 2). Из сопоставления результатов измерений, приведенных на рис. 2 и 3 следует, что имеет место корреляция между изменением локального окружения примесных атомов Fe⁵⁷ и величиной угла поворота плоскости поляризации. В пленках ZnO: Fe⁵⁷ с большей концентрацией примесных атомов Fe⁵⁷ в магнитоупорядоченном состоянии наблюдаются большие значения угла поворота плоскости поляризации. Также имеет место корреляция между изменениями локального окружения Fe⁵⁷ и величинами наведенной эллиптичности при изменении энергии фотона.

3. Обсуждение результатов

При легировании пленок ZnO с помощью метода диффузии примесью железа Fe⁵⁷ существенную роль в организации магнитного упорядочения играют изменения локального окружения введенных атомов Fe⁵⁷, изменения концентрации и типа дефектов исходной полупроводниковой матрицы при варьировании параметров нанесения пленок — температуры подложки, скорости осаждения, концентрации дефектов и введенных примесей. Такое изменение параметров нанесения пленок ZnO, как увеличение температуры подложки при большой скорости осаждения приводит к увеличению концентрации атомов Fe⁵⁷ в двух неэквивалентных магнитных подрешетках. Концентрация Fe⁵⁷ в магнитоупорядоченном состоянии больше в пленках, полученных при меньшей температуре осаждения, что может быть отнесено к увеличению концентрации введенной примеси. Часть атомов примеси Fe⁵⁷, по всей вероятности, располагается на границах неоднородностей и зерен как примесь замещения V_{Zn}, либо в виде магнетита, как

примесь внедрения $V_{\rm O}$ — внутри зерен. Уменьшение скорости осаждения при высокой температуре подложки, изменение материала подложки ведут к изменению локального окружения атомов Fe⁵ в пленках ZnO : Fe⁵⁷ и реализации данной примеси в виде магнетита Fe₃O₄, а не в виде металлического железа.

Для описания типа магнитной анизотропии в пленках ZnO : Fe⁵⁷ следует учесть угловую зависимость энергии E для намагниченности тонкой пленки M_s во внешнем магнитном поле H [15]

$$E = \left(-K_i + \frac{1}{2}\mu_0 M_S^2\right)\cos^2\theta - \mu_0 M_S H\cos(\varphi - \theta), \quad (1)$$

где K_i — константы магнитокристаллической анизотропии первого порядка, член учитывает энергию размагничивания, последний член описывает зеемановское взаимодействие между приложенным полем и намагниченностью; θ и ϕ обозначают углы для намагниченности и магнитного поля по отношению к нормали к поверхности пленки соответственно. Процедура минимизации энергии Е для данного магнитного поля Н позволяет получить полевые зависимости равновесного угла $\theta_{ea}(H)$ и компоненты намагниченности $M = M_S \cos(\theta_{eq} - \varphi)$. Используя данную процедуру и проводя сравнение полярного и меридионального магнитооптических эффектов Керра (см. рис. 2), можно сделать вывод, что пленки ZnO: Fe⁵⁷ обладают магнитной анизотропией типа легкая плоскость с эффективной магнитной анизотропией $K_{eff} = K_i - \frac{1}{2} \mu_0 M_S^2 < 0$, а значение эффективного поля анизотропии $H_{eff} = -2K_{K_{eff}}M_S > 15$ kOe.

Моделирование спектральных зависимостей магнитооптического эффекта Керра в пленках ZnO: Fe⁵⁷ было проведено с использованием метода эффективной среды, Для анализа оптического отклика композитной среды, состоящей из матрицы и включений определенной формы, можно использовать теорию Максвелл– Гарнетта [16]. Эта теория хорошо зарекомендовала себя при описании двух и многокомпонентных сред для широкого диапазона концентраций. Тензор диэлектрической проницаемости эффективной среды, намагниченной вдоль *z*-направления, может быть записан в следующем виде [17]:

$$\stackrel{\leftrightarrow}{\varepsilon} = \begin{pmatrix} \varepsilon_{xx} & i\varepsilon_{xy} & 0\\ -i\varepsilon_{xy} & \varepsilon_{xx} & 0\\ 0 & 0 & \varepsilon_{zz} \end{pmatrix}.$$
 (2)

Компоненты тензора $\overleftarrow{\epsilon}$ зависят как от свойств немагнитной матрицы, в данном случае ZnO, так и от свойств магнитных включений. Диагональная часть ε_{xx} в теории Максвелл–Гарнетта записывается таким образом [18]

$$\varepsilon_{xx} = \varepsilon_{xx}^0 + \frac{3f\gamma}{1 - f\gamma} \varepsilon_{xx}^0, \quad \gamma = \frac{\varepsilon_{xx}^1 - \varepsilon_{xx}^0}{\varepsilon_{xx}^1 + 2\varepsilon_{xx}^0}, \quad (3)$$

где ε_{xx}^0 — диэлектрическая проницаемость матрицы ZnO, ε_{xx}^1 — диэлектрическая проницаемость магнитных включений, f — объемная доля таких включений.

Недиагональная часть ε_{xy} может быть записана в следующем виде [19]:

$$\varepsilon_{xy} = \frac{f\varepsilon_{xy}^1}{A^2}, \quad A = 1 + L(1-f) \bigg[\frac{\varepsilon_{xx}^1}{\varepsilon_{xx}^0} - 1 \bigg], \qquad (4)$$

где ε_{xy}^1 — недиагональная часть диэлектрической проницаемости магнитных включений, L — фактор формы $(L = \frac{1}{3})$ — для сферических включений). Поворот плоскости поляризации ϑ и эллиптичность ϵ могут быть рассчитаны по формуле [20,21–24]:

$$\vartheta + i\epsilon = \frac{i\varepsilon_{xy}}{\sqrt{\varepsilon_{xx}(1 - \varepsilon_{xx})}}.$$
(5)

Для расчета магнитооптического эффекта Керра по методу эффективной среды были использованы данные для диэлектрической проницаемости матрицы ZnO [22], а также диэлектрическая проницаемость и магнитооптические параметры для объемного железа Fe [23-25], поскольку по данным метода мессбауэровской спектроскопии основное состояние примесных атомов соответствует металлическому железу. На рис. 4 показаны рассчитанные спектральные зависимости угла поворота плоскости поляризации и эллиптичности для полярного магнитооптического эффекта Керра пленок ZnO: Fe⁵⁷. Наилучшее соответствие формы и величины для данных зависимостей было получено для следующих параметров f = 0.007 и L = 0.015. Для данных параметров было получено удовлетворительное соответствие расчета и экспериментальных данных. Поворот плоскости поляризации света имеет положительные величины в диапазоне энергий фотона 1.5-4.5 eV с характерным минимумом в области ~ 3.3 eV, а эллиптичность света дважды меняет знак — в области 1.75 eV и 3.3 eV и имеет максимум в области ~ 2.4 eV. Объемная доля включений f определяет, в основном, величину эффекта Керра, а фактор L является ответственным за форму спектральных зависимостей эффекта Керра. Существенное отличие L от величины $\frac{1}{3}$ говорит о несферическом типе ферромагнитных включений.

На рис. 4 рассчитанные спектральные зависимости угла поворота плоскости поляризации и эллиптичности для полярного магнитооптического эффекта Керра пленок ZnO: Fe⁵⁷ по методу эффективной среды с использованием теории Максвелла–Гарнетта.

В данной работе исследовалось влияние уменьшения концентрации дефектов за счет уменьшения скорости осаждения при высокой температуре подложки, а также выбора материала подложки. Напряжения несоответствия вследствие различия параметров кристаллических решеток подложки были сведены к минимуму путем использования в качестве подложек монокристаллического c-ZnO. Проверялось влияние на магнитные параметры пленок ZnO $\langle: Fe^{57} \rangle$ изменение концентрации введенной примеси и типа локального окружения атомов Fe⁵⁷. Проведено сравнение параметров пленок ZnO, осажденных

Рис. 4. Рассчитанные спектральные зависимости угла поворота плоскости поляризации и эллиптичности для полярного магнитооптического эффекта Керра пленок ZnO : Fe⁵⁷ по методу эффективной среды с использованием теории Максвелл-Гарнетта.

при практически равных температурах (630, 646°C) и одинаковой малой величине высокочастотной мощности, малой скорости роста, но с разным временем нанесения, т.е. с различной толщиной пленок. Пленки с малой толщиной исследованы с целью определения влияния d^0 магнетизма на параметры пленок ZnO(: Fe⁵⁷). В пленках ZnO с большой толщиной, с малой концентрацией введенной примеси по результатам обработки Мессбауэровских спектров оказалось, что примесные атомы Fe⁵⁷ находятся в двух различных магнитоупорядоченных состояниях — это атомы Fe в фазе магнетита (Fe₃O₄), доля которой — 100%. С магнитной точки зрения два секстета соответствуют атомам Fe⁵⁷ в двух неэквивалентных магнитных подрешетках и распределение их по различным магнитным подрешеткам составляет 31.84 и 68.16%.

В заключение, проведено комплексное исследование пленок ZnO, полученных методом высокочастотного магнетронного распыления и легированных металлической 3*d*-примесью Fe⁵⁷ методом диффузии. Использование метода мессбауэровской спектроскопии позволило определить тип локального окружения примесных атомов Fe⁵⁷ при варьировании параметров осаждения пленок, определить корреляцию типа локального окружения с магнитными параметрами пленок, идентифицировать положение примеси Fe⁵⁷ на поверхности или внутри зерен. Магнитные и магнитооптические параметры пленок определены с помощью магнитооптического эффекта Керра. Показано, что в зависимости от изменения локального окружения примесного атома Fe⁵⁷, меняются магнитные параметры исследуемых пленок. Установлено, что пленки ZnO(: Fe⁵⁷) обладают магнитной анизотропией типа легкая плоскость с намагниченностью, лежащей в плоскости пленки. Измерены спектральные зависимости полярного магнитооптического эффекта Керра в пленках ZnO: Fe⁵⁷ в диапазоне энергий фотонов 1.5-4.5 eV. Проведен расчет спектральных зависимостей эффекта Керра по методу эффективной среды с использованием теории Максвелл– Гарнетта. Пленки ZnO, легированные с помощью метода диффузии металлической примесью Fe⁵⁷, имеют магнитное упорядочение и, следовательно, могут быть использованы при изготовлении устройств спинтроники, работающих при комнатной температуре.

Список литературы

- [1] P. Zhan, W. Wang, Z. Xie, Z. Zhang, P. Zhang, B. Wang. Appl. Phys. Lett. **101**, 031913 (2012).
- [2] S. Chawla, M. Saroha, R.K. Kotnala. Electron Mater. Lett. 10, 73 (2014).
- [3] G.M. Rai, M.A. Iqbal, Y.B. Xu, I.G. Will, Z.C. Huang. J. Mag. Mag. Mater. 323, 3239 (2011).
- [4] X.S. Wang, Z.C. Wu, J.F. Webb, Z.G. Liu. Appl. Phys. A 77, 561 (2003).
- [5] T.A. Abdel-Baset, Y.-W. Fang, B. Anis, Ch.-G. Duan, M. Abdel-Hafiez. Nanoscale Res. Lett. 11:115 (2016).
- [6] Bo Gu, N. Bulut, S. Mackawa. J. Appl. Phys. 104, 103906 (2008).
- [7] X. Xue, L. Liu, Zh. Wang, Y. Wu. J. Appl. Phys. 115, 033902 (2014).
- [8] P. Zhan, W. Wang, Z. Xie, Z. Zhang, B. Wang. Appl. Phys. Lett. 101, 031913 (2012).
- [9] E.J. Kan, F. Wu, H. Wu, Ch. Xiao, H. Xiang, K. Deng. Appl. Phys. Lett. **102**, 022422 (2013).
- [10] G.M.D. Coye, M. Vencatesan, C.B. Fitzgerald. Nature Mater.4, 173 (2005).
- [11] K. Jayanthi, S. Chawla, A. Jjshi, Z.H. Khan, R.K. Kotnala.
 J. Phys. Chem. C 114, 18429 (2010).
- [12] М.М. Мездрогина, А.Я. Виноградов, М.В. Еременко, В.С. Левицкий, Е.И. Теруков, Ю.В. Кожанова. Оптика и спектроскопия 121, 62 (2016).
- [13] М.М. Мездрогина, А.Я. Виноградов, Р.В. Кузьмин, В.С. Левицкий, Ю.В. Кожанова, Н.В. Лянгузов, М.В. Чукичев. ФТП 50, 1327 (2016).
- [14] G.X. Du, S. Saito, M. Takahashi. Rev. Sci. Instrum. 83, 013103 (2012).
- [15] M.T. Johnson, P.J.H. Bloemen, F.J.A. den Broeder, J.J. de Vries. Rep. Prog. Phys. 59 1409 (1996).
- [16] Maxwell-Garnett. Phil. Trans. Roy. Soc. 203A, 385 (1904);
 205A, 237 (1906).
- [17] G.S. Krinchik. J. Appl. Phys. 35, 1089 (1964).
- [18] T.C. Choy. Effective medium theory, principles and applications. Clarendon Press, Oxford (1999).
- [19] D.S. Score, M. Alshammari, Q. Feng. J. Phys. Conf. Ser. 200, 062024 (2010).
- [20] F.J. Kahn, P.S. Pershan, J.P. Remeika. Phys. Rev. 186, 891 (1969).
- [21] A.K. Zvezdin, V.A. Kotov. Modern magnetooptics and magnetooptical materials. IOP Publishing Ltd., Bristol, Philadelphia (1997).
- [22] H. Yoshikawa, S. Adachi. Jpn. J. Appl. Phys. 36 6237 (1997).
- [23] P.B. Johnson, R.W. Christy. Phys. Rev. 9, 5056 (1974).
- [24] Г.С. Кринчик, В.А. Артемьев. ЖЭТФ 53, 1901 (1967).