03

Диэлектрические потери и перенос заряда в легированном сурьмой монокристалле TIGaS₂

© С.М. Асадов¹, С.Н. Мустафаева^{2,¶}

¹ Институт катализа и неорганической химии НАН Азербайджана, Баку, Азербайджан ² Институт физики НАН Азербайджана, Баку, Азербайджан [¶] E-mail: solmust@gmail.com

(Поступила в Редакцию 19 сентября 2017 г. В окончательной редакции 25 сентября 2017 г.)

> Изучено влияние полуметаллической сурьмы (0.5 mol.% Sb) на диэлектрические свойства и ас-проводимость выращенных методом Бриджмена—Стокбаргера монокристаллов на основе TlGaS₂. Экспериментальные результаты по изучению частотной дисперсии диэлектрических коэффициентов и проводимости монокристаллов TlGa_{0.995}Sb_{0.005}S₂ позволили установить природу диэлектрических потерь, механизм переноса заряда и оценить параметры локализованных в запрещенной зоне состояний. Легирование монокристалла TlGaS₂ сурьмой приводило к увеличению плотности состояний вблизи уровня Ферми и уменьшению среднего времени и расстояния прыжков.

> Настоящая работа выполнена при финансовой поддержке Фонда развития науки при Президенте Азербайджанской Республики (проект 5.EIF-BGM-3-BRFTF-2+/2017).

DOI: 10.21883/FTT.2018.03.45551.266

1. Введение

Кристаллы TlGaS2 относятся к тройным халькогенидным соединениям типа TlGa X_2 (где X — S, Se, Те) со слоистой структурой. Квазидвумерность, широкозонность, структурная анизотропия, фазовые переходы, оптические и фотопроводящие свойства и другие особенности привлекают исследователей для лучшего понимания физики TlGaS₂. Оптическая активность, высокая фоточувствительность в широком спектральном диапазоне [1,2] отличают TlGaS₂ от других полупроводников и делают его перспективным с практической точки зрения [3-6]. На основе TlGaS₂ были предложены видимые и инфракрасные датчики света [7], а также высокочувствительные детекторы лазерного излучения [8-11]. На основе TlGaS₂ можно получать материалы с непрерывно изменяющимися свойствами в зависимости от состава. Поэтому, а также ввиду возможных применений TlGaS₂ в оптоэлектронных устройствах в видимом диапазоне в последнее время было уделено большое внимание изучению электрических, диэлектрических, фотовольтаических и фотоэлектрических [12,13] свойств как чистого [14], так и легированного переходными и редкоземельными металлами соединения TlGaS₂ [15-19]. Было показано, что легирование кристаллов TlGaS₂ приводит к существенному изменению диэлектрических коэффициентов монокристаллов и изменяет в них природу диэлектрических потерь.

Полуметаллическая сурьма (Sb), как известно, является одной из основных примесей в полупроводниках. Однако при решении задачи, связанной с селективным легированием полупроводников сурьмой, сильная сегрегация Sb осложняет получение материалов с воспроизводимыми характеристиками. Коэффициент сегрегации Sb например в кремнии, в интервале температур роста 573–823 К меняется почти на пять порядков.

Влияние легирования кристаллов $TlGaS_2$ полуметаллическими примесями на их физические свойства мало изучено. Фотопроводимость монокристалла твердого раствора $TlGa_{0.8}Sb_{0.2}S_2$, выращенного методом Бриджмена—Стокбаргера, изучена в [20]. Спектр фотопроводимости монокристалла был измерен при 20 К. В спектре наблюдались четыре пика при 504 nm (2.460 eV), 525 nm (2.361 eV), 571 nm (2.171 eV) и 584 nm (2.123 eV). Указано, что пик при 504 nm соответствует запрещенной зоне. Пики при 571 и 584 nm могут быть отнесены к переходу электронов из валентной зоны на донорные уровни. В работе отсутствуют сравнительные данные с нелегированным $TlGaS_2$ и не рассмотрено влияние сурьмы на физические свойства.

Учитывая вышеуказанное, в настоящей работе приведены результаты изучения влияния полуметаллической сурьмы (0.5 mol.% Sb) на диэлектрические свойства и электропроводность монокристаллов на основе TlGaS₂, измеренные на переменном токе. Цель исследования состояла в том, чтобы выяснить природу диэлектрических потерь в TlGa_{0.995}Sb_{0.005}S₂ и механизм переноса заряда.

2. Методика эксперимента

Для решения вышеуказанной задачи использовали монокристаллические образцы TIGaS₂ и TIGa_{0.995}Sb_{0.005}S₂. Оценка растворимости сурьмы в кристаллической решетке TIGaS₂ с учетом эффективных ионных радиусов элементов указывает на то, что радиус Sb³⁺ (0.76 Å) ближе к ионному радиусу Ga³⁺ (0.62 Å), чем к радиусу Tl⁺ (1.5 Å) [21]. Таким образом частичное замещение галлия сурьмой в кристаллах TlGaS₂ соответствует условию образования твердого раствора замещения.

Исходными компонентами для получения образцов служили особо чистые химические элементы: Tl (Tл00), Ga (Ga 5N), S (ос.ч. 165) и Sb (CV0). Образцы синтезировали из взятых в стехиометрических соотношениях элементов путем непосредственного их сплавления в вакуумированных до 10^{-3} Ра кварцевых ампулах при 1000 ± 3 K в течение 5-7 h. Образцы гомогенизировали при 750 K в течение 120 h и ампулы охлаждали до комнатной температуры в режиме выключенной печи. Завершенность синтеза кристаллов на основе TlGaS₂ и их индивидуальность контролировали методом рентгеновского фазового анализа (РФА). РФА проводился на дифрактометре Bruker D8 ADVANCE с использованием CuK_α-излучения при комнатной температуре.

Из синтезированных поликристаллов TlGaS₂ и TlGa_{0.995}Sb_{0.005}S₂ методом Бриджмена-Стокбаргера выращивали их монокристаллы [14,16]. Для этого поликристаллы измельчали и помещали в кварцевую ампулу длиной 8–10 cm с заостренным концом и внутренним диаметром 1 cm. Вакуумированную до давления 10^{-3} Ра ампулу с поликристаллами помещали в двухтемпературную печь для выращивания монокристалла. В верхней зоне печи поддерживалась температура 1170 ± 3 K (т.е. выше температуры плавления TlGaS₂, которая составляет 1165 K), а в нижней зоне — 1110 ± 3 K. Оптимальная скорость перемещения ампулы в печи равнялась 0.3-0.5 cm/h, а градиент температуры у фронта кристаллизации составлял 25 ± 3 K.

Монокристаллы TIGaS₂, как известно, обладают сильной анизотропией физических характеристик и склонны к политипизму. Поэтому физические параметры этих кристаллов измеряли на образцах, взятых из одной технологической партии. Диэлектрические коэффициенты монокристаллов TIGaS₂ и TIGa_{0.995}Sb_{0.005}S₂ измерены резонансным методом [22,23]. Диапазон частот переменного электрического поля составлял $5 \cdot 10^4 - 3.5 \cdot 10^7$ Hz. Монокристаллические образцы из TIGaS₂ и TIGa_{0.995}Sb_{0.005}S₂ для электрических измерений были изготовлены в виде плоских конденсаторов, плоскость которых была перпендикулярна кристаллографической *C*-оси образцов. В качестве электродов использована серебряная паста. Толщина образцов составляла $80-100 \,\mu$ m, а площадь обкладок — $5 \cdot 10^{-2}$ cm².

Все диэлектрические измерения проведены при 300 К. Воспроизводимость положения резонанса составляла по емкости ± 0.2 pF, а по добротности $(Q = 1/\text{ tg }\delta) \pm 1.0 - 1.5$ деления шкалы. При этом наибольшие отклонения от средних значений составляли 3-4% для ε' и 7% для tg δ [22,23]. Экспериментальное исследование образцов на основе TIGaS₂ показало, что сегрегационное перераспределение Sb в выращенном монокристалле TIGa_{0.995}Sb_{0.005}S₂ не влияет на воспроизводимость физических свойств.

Рис. 1. Дисперсионные кривые $\varepsilon'(f)$ для монокристаллов TlGaS₂ (1) и TlGa_{0.995}Sb_{0.005}S₂ (2) при 300 К.

3. Результаты и их обсуждение

Результаты РФА образцов на основе TlGaS₂ показали, что параметры кристаллической решетки элементарной ячейки моноклинной сингонии (пр. гр. $C_{2h}^6(C2/m)$) имели следующие значения: a = 10.299, b = 10.284, c = 15.175 Å, $\beta = 99.603^{\circ}$. Эти характеристики согласуются с данными [24]. Образцы, в которых концентрация сурьмы x = 0.005, также являются однофазными и при этом параметры решетки практически не меняются. На дифрактограмме легированного сурьмой образца TlGa_{0.995}Sb_{0.005}S₂ помимо дифракционных пиков фазы TlGaS₂ не обнаружены дополнительные рентгеновские максимумы. Это указывает на то, что Sb изоморфно растворяется в TlGaS₂.

На рис. 1 приведены частотные зависимости действительной составляющей комплексной диэлектрической проницаемости (ε') образцов TlGaS₂ и TlGa_{0.995}Sb_{0.005}S₂. Видно, что в TlGaS₂ (кривая 1) во всем изученном диапазоне частот существенной дисперсии ε' не наблюдается. В TlGa_{0.995}Sb_{0.005}S₂ (кривая 2) с изменением частоты от $5 \cdot 10^4$ до $3.5 \cdot 10^7$ Hz значение ε' уменьшалось от 14.4 до 11.6. Наблюдаемое в экспериментах монотонное уменьшение диэлектрической проницаемости монокристалла TlGa_{0.995}Sb_{0.005}S₂ с ростом частоты от $5 \cdot 10^4$ до $3.5 \cdot 10^7$ Hz свидетельствует о релаксационной дисперсии [25]. Легирование кристаллов TlGaS₂ сурьмой приводило к заметному уменьшению ε' . Так, при $f = 5 \cdot 10^4$ Hz значение ε' TlGa_{0.995}Sb_{0.005}S₂ в 1.6 раза было меньше значения ε' в TlGaS₂, а при $f = 3.5 \cdot 10^7$ Hz — в 2 раза.

Частотные зависимости мнимой части комплексной диэлектрической проницаемости ε'' монокристаллов TlGaS₂ (кривая *1*) и TlGa_{0.995}Sb_{0.005}S₂ (кривая *2*) приведены на рис. 2.

Значения тангенса угла диэлектрических потерь (tg δ) в монокристаллах TlGa_{0.995}Sb_{0.005}S₂ существенно превышали значения tg δ в TlGaS₂ (рис. 3). Гиперболи-

Рис. 2. Частотные зависимости мнимой составляющей комплексной диэлектрической проницаемости монокристаллов $TIGaS_2(1)$ и $TIGa_{0.995}Sb_{0.005}S_2(2)$.

Рис. 3. Зависимости тангенса угла диэлектрических потерь $(tg \delta)$ в монокристаллах TIGaS₂ (1) и TIGa_{0.995}Sb_{0.005}S₂ (2) от частоты приложенного электрического поля.

Рис. 4. Частотно-зависимая проводимость монокристаллов $TIGaS_2(1)$ и $TIGa_{0.995}Sb_{0.005}S_2(2)$ при T = 300 K.

ческий спад tg δ с увеличением частоты в изученных монокристаллах свидетельствует о потерях сквозной проводимости [25].

На рис. 4 представлены результаты изучения частотно-зависимой ас-проводимости монокристаллов TlGaS₂ (кривая *1*) и TlGa_{0.995}Sb_{0.005}S₂ (кривая *2*) при 300 К. В частотной области $5 \cdot 10^4 - 2 \cdot 10^5$ Hz аспроводимость монокристалла TlGaS₂ изменялась по закону $\sigma_{\rm ac} \sim f^{0.6}$, а при $f = 2 \cdot 10^5 - 2 \cdot 10^7$ Hz $\sigma_{\rm ac} \sim f^{0.8}$. При $f > 2 \cdot 10^7$ Hz имела место квадратичная зависимость $\sigma_{\rm ac} \sim f^2$. Дисперсионная кривая $\sigma_{\rm ac}(f)$ образца TlGa_{0.995}Sb_{0.005}S₂ во всей изученной области частот подчинялась закону $\sigma_{\rm ac} \sim f^{0.8}$.

Ас-проводимость зонного типа, как известно, является в основном частотно-независимой вплоть до 10¹⁰-10¹¹ Hz. Наблюдаемая нами экспериментальная зависимость $\sigma_{\rm ac} \sim f^{0.8}$ в кристаллах на основе TlGaS₂ свидетельствует о том, что она обусловлена прыжками носителей заряда между локализованными в запрещенной зоне состояниями. Это могут быть локализованные вблизи краев разрешенных зон состояния или локализованные вблизи уровня Ферми состояния [26]. Но так как в экспериментальных условиях проводимость по состояниям вблизи уровня Ферми всегда доминирует над проводимостью по состояниям вблизи краев разрешенных зон, полученный нами закон $\sigma_{\rm ac} \sim f^{0.8}$ свидетельствует о прыжковом механизме переноса заряда по состояниям, локализованным в окрестности уровня Ферми. Предложенная в [27] формула для такой проводимости имеет вид

$$\sigma_{\rm ac}(f) = \frac{\pi^3}{96} e^2 k T N_{\rm F}^2 a_l^5 f \left[\ln \left(\frac{\nu_{\rm ph}}{f} \right) \right]^4, \qquad (1)$$

где e — заряд электрона; k — постоянная Больцмана; $N_{\rm F}$ — плотность состояний вблизи уровня Ферми; $a_l = 1/\alpha$ — радиус локализации; α — постоянная спада волновой функции локализованного носителя заряда $\psi \sim e^{-\alpha r}$; $v_{\rm ph}$ — фононная частота.

Согласно формуле (1) ас-проводимость зависит от частоты как $f[\ln(\nu_{\rm ph}/f)]^4$, т.е. при $f \ll \nu_{\rm ph} \sigma_{\rm ac}$ пропорциональна $f^{0.8}$. С помощью формулы (1) по экспериментально найденным значениям $\sigma_{\rm ac}(f)$ образцов TIGaS₂ и TIGa_{0.995}Sb_{0.005}S₂ вычислили плотность состояний на уровне Ферми. Вычисленные значения $N_{\rm F}$ для TIGa₂ и TIGa_{0.995}Sb_{0.005}S₂ составляли $5.9 \cdot 10^{18}$ и $6.8 \cdot 10^{18}$ eV⁻¹ · cm⁻³ соответственно. Таким образом, легирование монокристалла TIGaS₂ сурьмой приводило к увеличению плотности состояний вблизи уровня Ферми. При вычислениях $N_{\rm F}$ для радиуса локализации взято значение $a_1 = 14$ Å [14]. Значение $\nu_{\rm ph}$ для TIGaS₂ порядка 10^{12} Hz [28].

Согласно теории прыжковой проводимости на переменном токе среднее расстояние прыжков (R) определяется по формуле [26]

$$R = \frac{1}{2\alpha} \ln\left(\frac{\nu_{\rm ph}}{f}\right). \tag{2}$$

В формуле (2) значение f соответствует средней частоте, при которой наблюдается $f^{0.8}$ -закон. Для монокристаллов TIGaS₂ и TIGa_{0.995}Sb_{0.005}S₂ вычисленные по формуле (2) значения R составляли 81 и 77 Å соответственно. Эти значения R примерно в 6 раз превышают среднее расстояние между центрами локализации носителей заряда в изученных монокристаллах. Значение R позволило по формуле

$$\tau^{-1} = \nu_{\rm ph} \exp(-2\alpha R) \tag{3}$$

определить среднее время прыжков в монокристаллах TlGaS₂ и TlGa_{0.995}Sb_{0.005}S₂: $\tau = 9.9 \cdot 10^{-8}$ и $4.4 \cdot 10^{-8}$ s соответственно.

По формуле

$$\Delta E = \frac{3}{2\pi R^3 \cdot N_{\rm F}} \tag{4}$$

в TlGaS₂ и TlGa_{0.995}Sb_{0.005}S₂ оценен энергетический разброс локализованных вблизи уровня Ферми состояний: $\Delta E = 150$ и 154 meV соответственно. А по формуле

$$N_t = N_{\rm F} \cdot \Delta E \tag{5}$$

определена концентрация глубоких ловушек, ответственных за ас-проводимость в этих образцах: $N_t = 8.8 \cdot 10^{17}$ и 10^{18} cm⁻³.

4. Заключение

В монокристаллах TlGaS₂ и TlGa_{0.995}Sb_{0.005}S₂ со слоистой структурой получены воспроизводимые частотные зависимости тангенса угла диэлектрических потерь (tg δ), действительной (ε') и мнимой (ε'') составляющих комплексной диэлектрической проницаемости и ас-проводимости (σ_{ac}) поперек слоев кристаллов в области частот $f = 5 \cdot 10^4 - 3.5 \cdot 10^7$ Hz. Легирование монокристаллов TlGaS2 сурьмой приводит к модифицированию дисперсионных кривых $\varepsilon'(f)$ и $\varepsilon''(f)$. Во всей изученной области частот в TlGaS₂ и TlGa_{0.995}Sb_{0.005}S₂ имеют место потери на электропроводность. При высоких частотах ас-проводимость монокристаллов TlGaS₂ и TlGa_{0.995}Sb_{0.005}S₂ подчинялась закономерности $\sigma_{\rm ac} \sim f^{0.8}$, характерной для прыжкового механизма переноса заряда по локализованным вблизи уровня Ферми состояниям. Оценены плотность и энергетический разброс состояний, лежащих в окрестности уровня Ферми, среднее время и расстояние прыжков в образцах TlGaS₂ и TlGa_{0.995}Sb_{0.005}S₂. Сравнение показывает, что легирование монокристалла TlGaS₂ сурьмой приводило к существенному изменению диэлектрических характеристик монокристаллов TlGa0.995Sb0.005S2, увеличению плотности состояний вблизи уровня Ферми (от $5.9 \cdot 10^{18}$ до $6.8 \cdot 10^{18} \text{ eV}^{-1} \cdot \text{cm}^{-3}$), уменьшению среднего времени (от $9.9 \cdot 10^{-8}$ до $4.4 \cdot 10^{-8}$ s) и расстояния прыжков (от 81 до 77 Å). При этом концентрация глубоких ловушек, ответственных за аспроводимость в этих образцах, повышается от 8.8 · 10¹⁷

до 10^{18} cm⁻³. Таким образом, установлено, что за счет легирования слоистого монокристалла TlGaS₂ сурьмой можно управлять диэлектрическими коэффициентами и ас-проводимостью.

Список литературы

- I.G. Stamov, N.N. Syrbu, V.V. Ursaki, V.V. Zalamai. Optics. Commun. 298–299, 145 (2013).
- [2] L. Nemerenco, N.N. Syrbu, V. Dorogan, N.P. Bejan, V.V. Zalamai. J. Luminesc. 172, 111 (2016).
- [3] T. Kawabata, Y. Shim, K. Wakita, N. Mamedov. Thin Solid Films, 571, 589 (2014).
- [4] B. Abay, H.S. Güder, H. Efeoğlu, Y.K. Yoğurtçu. Phys. Status Solidi B 227, 469 (2001).
- [5] B. Gürbulak, S. Duman, A. Ateş. Czechoslov. J. Phys. 55, 93 (2005).
- [6] Y. Shim, W. Okada, K. Wakita, N. Mamedov. J. Appl. Phys. 102, 083537 (2007).
- [7] A.F. Qasrawi, N.M. Gasanly. Cryst. Res. Technol. 39, 439 (2004).
- [8] A.F. Qasrawi, N.M. Gasanly. Phys. Status Solidi A 202, 13, 2501 (2005).
- [9] I.M. Ashraf. J. Phys. Chem. B 108, 10765 (2004).
- [10] A. Kato, M. Nishigaki, N. Mamedov, M. Yamazaki, S. Abdullayeva, E. Kerimova, H. Uchiki, S. Iida. J. Phys. Chem. Solids 64, 1713 (2003).
- [11] A.A. Al Ghamdi, A.T. Nagat, F.S. Bahabri, R.H. Al Orainy, S.E. Al Garni. Appl. Surf. Sci. 257, 3205 (2011).
- [12] C.-D. Kim, M.-S. Jin. New Physics: Sae Mulli 65, 11, 1068 (2015).
- [13] M. Açıkgöz, P. Gnutek, C. Rudowicz. Solid State Commun. 150, 1077 (2010).
- [14] С.Н. Мустафаева. ФТТ 46, 6, 979 (2004).
- [15] С.Н. Мустафаева. Журн. радиоэлектроники 8, 1 (2008).
- [16] С.Н. Мустафаева. Изв. РАН. Неорган. материалы 42, 5, 530 (2006).
- [17] С.Н. Мустафаева. Журн. радиоэлектроники 4, 1 (2009).
- [18] С.Н. Мустафаева, М.М. Асадов, Э.М. Керимова, Н.З. Гасанов. Неорган. материалы 49, 12, 1271 (2013).
- [19] В.Г. Гуртовой, А.У. Шелег, С.Н. Мустафаева, Э.М. Керимова, С.Г. Джафарова. ФТТ 59, 8, 1479 (2017).
- [20] M.-S. Jin, H.-J. Song. Current Applied Physics 3, 409 (2003).
- [21] Дж. Хьюи. Неорганическая химия. Строение вещества и реакционная способность. / Под ред. Б.Д. Степина и Р.А. Лидина. Пер. с англ. Химия, М. (1987). 696 с.
- [22] С.Н. Мустафаева, Д.М. Бабанлы, М.М. Асадов, Д.Б. Тагиев. ФТТ 57, 10, 1913 (2015).
- [23] С.Н. Мустафаева. Все материалы. Энциклопедический справочник 10, 74 (2016).
- [24] G.E. Delgado, A.J. Mora, F.V. Perezb, J. Gonzalez. Physica B 391, 385 (2007).
- [25] В.В. Пасынков, В.С. Сорокин. Материалы электронной техники. 6-е изд. Лань, СПб.-М.-Краснодар. (2004). 368 с.
- [26] Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах. Пер. с англ. Мир, М. (1974). 472 с.
- [27] M. Pollak. Phil. Mag. 23, 519 (1971).
- [28] К.Р. Аллахвердиев, Е.А. Виноградов, Р.Х. Нани. В кн.: Физические свойства сложных полупроводников. Элм, Баку (1982). С. 55.