03

Диэлектрические потери и перенос заряда в легированном сурьмой монокристалле TIGaS₂

© С.М. Асадов¹, С.Н. Мустафаева^{2,¶}

¹ Институт катализа и неорганической химии НАН Азербайджана, Баку, Азербайджан

раку, изероаиджан ² Институт физики НАН Азербайджана,

Баку, Азербайджан

¶ E-mail: solmust@gmail.com

(Поступила в Редакцию 19 сентября 2017 г. В окончательной редакции 25 сентября 2017 г.)

Изучено влияние полуметаллической сурьмы $(0.5 \, \mathrm{mol.\%} \, \mathrm{Sb})$ на диэлектрические свойства и ас-проводимость выращенных методом Бриджмена—Стокбаргера монокристаллов на основе $\mathrm{TIGaS_2}$. Экспериментальные результаты по изучению частотной дисперсии диэлектрических коэффициентов и проводимости монокристаллов $\mathrm{TIGa_{0.995}Sb_{0.005}S_2}$ позволили установить природу диэлектрических потерь, механизм переноса заряда и оценить параметры локализованных в запрещенной зоне состояний. Легирование монокристалла $\mathrm{TIGaS_2}$ сурьмой приводило к увеличению плотности состояний вблизи уровня Ферми и уменьшению среднего времени и расстояния прыжков.

Настоящая работа выполнена при финансовой поддержке Фонда развития науки при Президенте Азербайджанской Республики (проект 5.EIF-BGM-3-BRFTF-2+/2017).

DOI: 10.21883/FTT.2018.03.45551.266

1. Введение

Кристаллы TlGaS2 относятся к тройным халькогенидным соединениям типа $TIGaX_2$ (где X — S, Se, Те) со слоистой структурой. Квазидвумерность, широкозонность, структурная анизотропия, фазовые переходы, оптические и фотопроводящие свойства и другие особенности привлекают исследователей для лучшего понимания физики TlGaS2. Оптическая активность, высокая фоточувствительность в широком спектральном диапазоне [1,2] отличают TlGaS₂ от других полупроводников и делают его перспективным с практической точки зрения [3-6]. На основе TlGaS₂ были предложены видимые и инфракрасные датчики света [7], а также высокочувствительные детекторы лазерного излучения [8–11]. Ha основе TlGaS₂ можно получать материалы с непрерывно изменяющимися свойствами в зависимости от состава. Поэтому, а также ввиду возможных применений TlGaS2 в оптоэлектронных устройствах в видимом диапазоне в последнее время было уделено большое внимание изучению электрических, диэлектрических, фотовольтаических и фотоэлектрических [12,13] свойств как чистого [14], так и легированного переходными и редкоземельными металлами соединения TlGaS₂ [15–19]. Было показано, что легирование кристаллов TlGaS₂ приводит к существенному изменению диэлектрических коэффициентов монокристаллов и изменяет в них природу диэлектрических потерь.

Полуметаллическая сурьма (Sb), как известно, является одной из основных примесей в полупроводниках. Однако при решении задачи, связанной с селективным легированием полупроводников сурьмой, сильная сегре-

гация Sb осложняет получение материалов с воспроизводимыми характеристиками. Коэффициент сегрегации Sb например в кремнии, в интервале температур роста 573—823 K меняется почти на пять порядков.

Влияние легирования кристаллов $TIGaS_2$ полуметаллическими примесями на их физические свойства мало изучено. Фотопроводимость монокристалла твердого раствора $TIGa_{0.8}Sb_{0.2}S_2$, выращенного методом Бриджмена—Стокбаргера, изучена в [20]. Спектр фотопроводимости монокристалла был измерен при $20~\rm K$. В спектре наблюдались четыре пика при $504~\rm nm$ ($2.460~\rm eV$), $525~\rm nm$ ($2.361~\rm eV$), $571~\rm nm$ ($2.171~\rm eV$) и $584~\rm nm$ ($2.123~\rm eV$). Указано, что пик при $504~\rm nm$ соответствует запрещенной зоне. Пики при $571~\rm u$ $584~\rm nm$ могут быть отнесены к переходу электронов из валентной зоны на донорные уровни. В работе отсутствуют сравнительные данные с нелегированным $TIGaS_2$ и не рассмотрено влияние сурьмы на физические свойства.

Учитывая вышеуказанное, в настоящей работе приведены результаты изучения влияния полуметаллической сурьмы (0.5 mol.% Sb) на диэлектрические свойства и электропроводность монокристаллов на основе $TIGaS_2$, измеренные на переменном токе. Цель исследования состояла в том, чтобы выяснить природу диэлектрических потерь в $TIGa_{0.995}Sb_{0.005}S_2$ и механизм переноса заряда.

2. Методика эксперимента

Для решения вышеуказанной задачи использовали монокристаллические образцы $TIGaS_2$ и $TIGa_{0.995}Sb_{0.005}S_2$. Оценка растворимости сурьмы в кристаллической решетке $TIGaS_2$ с учетом эффективных ионных радиусов

элементов указывает на то, что радиус Sb^{3+} (0.76 Å) ближе к ионному радиусу Ga^{3+} (0.62 Å), чем к радиусу Tl^+ (1.5 Å) [21]. Таким образом частичное замещение галлия сурьмой в кристаллах $TlGaS_2$ соответствует условию образования твердого раствора замещения.

Исходными компонентами для получения образцов служили особо чистые химические элементы: T1 (Тл00), Ga (Ga 5N), S (ос.ч. 165) и Sb (СУ0). Образцы синтезировали из взятых в стехиометрических соотношениях элементов путем непосредственного их сплавления в вакуумированных до 10^{-3} Ра кварцевых ампулах при 1000 ± 3 К в течение 5-7 h. Образцы гомогенизировали при 750 К в течение 120 h и ампулы охлаждали до комнатной температуры в режиме выключенной печи. Завершенность синтеза кристаллов на основе $TIGaS_2$ и их индивидуальность контролировали методом рентгеновского фазового анализа (РФА). РФА проводился на дифрактометре Bruker D8 ADVANCE с использованием CuK_α -излучения при комнатной температуре.

Из синтезированных поликристаллов $TIGaS_2$ и $TIGa_{0.995}Sb_{0.005}S_2$ методом Бриджмена—Стокбаргера выращивали их монокристаллы [14,16]. Для этого поликристаллы измельчали и помещали в кварцевую ампулу длиной $8-10\,\mathrm{cm}$ с заостренным концом и внутренним диаметром 1 cm. Вакуумированную до давления $10^{-3}\,\mathrm{Pa}$ ампулу с поликристаллами помещали в двухтемпературную печь для выращивания монокристалла. В верхней зоне печи поддерживалась температура $1170\pm3\,\mathrm{K}$ (т. е. выше температуры плавления $TIGaS_2$, которая составляет $1165\,\mathrm{K}$), а в нижней зоне — $1110\pm3\,\mathrm{K}$. Оптимальная скорость перемещения ампулы в печи равнялась $0.3-0.5\,\mathrm{cm/h}$, а градиент температуры у фронта кристаллизации составлял $25\pm3\,\mathrm{K}$.

Монокристаллы TIGaS2, как известно, обладают сильной анизотропией физических характеристик и склонны к политипизму. Поэтому физические параметры этих кристаллов измеряли на образцах, взятых из одной технологической партии. Диэлектрические коэффициенты монокристаллов TIGaS2 и TIGa0.995Sb0.005S2 измерены резонансным методом [22,23]. Диапазон частот переменного электрического поля составлял $5 \cdot 10^4 - 3.5 \cdot 10^7$ Hz. Монокристаллические образцы из TIGaS2 и TIGa0.995Sb0.005S2 для электрических измерений были изготовлены в виде плоских конденсаторов, плоскость которых была перпендикулярна кристаллографической C-оси образцов. В качестве электродов использована серебряная паста. Толщина образцов составляла $80-100\,\mu\text{m}$, а площадь обкладок — $5 \cdot 10^{-2}\,\text{cm}^2$.

Все диэлектрические измерения проведены при $300\,\mathrm{K}$. Воспроизводимость положения резонанса составляла по емкости $\pm 0.2\,\mathrm{pF}$, а по добротности $(Q=1/\,\mathrm{tg}\,\delta)\pm 1.0-1.5$ деления шкалы. При этом наибольшие отклонения от средних значений составляли 3-4% для ε' и 7% для $\mathrm{tg}\,\delta$ [22,23]. Экспериментальное исследование образцов на основе TlGaS_2 показало, что сегрегационное перераспределение Sb в выращенном монокристалле $\mathrm{TlGa}_{0.995}\mathrm{Sb}_{0.005}\mathrm{S}_2$ не влияет на воспроизводимость физических свойств.

Рис. 1. Дисперсионные кривые $\varepsilon'(f)$ для монокристаллов TIGaS $_2$ (1) и TIGa $_{0.995}$ Sb $_{0.005}$ S $_2$ (2) при 300 K.

3. Результаты и их обсуждение

Результаты РФА образцов на основе $TIGaS_2$ показали, что параметры кристаллической решетки элементарной ячейки моноклинной сингонии (пр. гр. $C_{2h}^6(C2/m)$) имели следующие значения: $a=10.299,\ b=10.284,\ c=15.175\ {\rm Å},\ \beta=99.603^\circ$. Эти характеристики согласуются с данными [24]. Образцы, в которых концентрация сурьмы x=0.005, также являются однофазными и при этом параметры решетки практически не меняются. На дифрактограмме легированного сурьмой образца $TIGa_{0.995}Sb_{0.005}S_2$ помимо дифракционных пиков фазы $TIGaS_2$ не обнаружены дополнительные рентгеновские максимумы. Это указывает на то, что Sb изоморфно растворяется в $TIGaS_2$.

На рис. 1 приведены частотные зависимости действительной составляющей комплексной диэлектрической проницаемости (ε') образцов TlGaS₂ и TlGa_{0.995}Sb_{0.005}S₂. Видно, что в $TIGaS_2$ (кривая I) во всем изученном диапазоне частот существенной дисперсии ε' не наблюдается. В $TIGa_{0.995}Sb_{0.005}S_2$ (кривая 2) с изменением частоты от $5 \cdot 10^4$ до $3.5 \cdot 10^7$ Hz значение ε' уменьшалось от 14.4 до 11.6. Наблюдаемое в экспериментах монотонное уменьшение диэлектрической проницаемости монокристалла $TlGa_{0.995}Sb_{0.005}S_2$ с ростом частоты от $5 \cdot 10^4$ до $3.5 \cdot 10^7$ Hz свидетельствует о релаксационной дисперсии [25]. Легирование кристаллов $TIGaS_2$ сурьмой приводило к заметному уменьшению ε' . Так, при $f = 5 \cdot 10^4 \,\mathrm{Hz}$ значение ε' TlGa_{0.995}Sb_{0.005}S₂ в 1.6 раза было меньше значения ε' в TlGaS2, а при $f = 3.5 \cdot 10^7 \, \mathrm{Hz}$ — в 2 раза.

Частотные зависимости мнимой части комплексной диэлектрической проницаемости ε'' монокристаллов $TIGaS_2$ (кривая I) и $TIGa_{0.995}Sb_{0.005}S_2$ (кривая 2) приведены на рис. 2.

Значения тангенса угла диэлектрических потерь (tg δ) в монокристаллах $TIGa_{0.995}Sb_{0.005}S_2$ существенно превышали значения $tg \delta$ в $TIGaS_2$ (рис. 3). Гиперболи-

Рис. 2. Частотные зависимости мнимой составляющей комплексной диэлектрической проницаемости монокристаллов $TIGaS_2$ (1) и $TIGa_{0.995}Sb_{0.005}S_2$ (2).

Рис. 3. Зависимости тангенса угла диэлектрических потерь $(\operatorname{tg}\delta)$ в монокристаллах $\operatorname{TIGaS}_2(I)$ и $\operatorname{TIGa}_{0.995}\operatorname{Sb}_{0.005}\operatorname{S}_2(2)$ от частоты приложенного электрического поля.

Рис. 4. Частотно-зависимая проводимость монокристаллов $TIGaS_2(I)$ и $TIGa_{0.995}Sb_{0.005}S_2(2)$ при T=300 K.

ческий спад $\operatorname{tg} \delta$ с увеличением частоты в изученных монокристаллах свидетельствует о потерях сквозной проводимости [25].

На рис. 4 представлены результаты изучения частотно-зависимой ас-проводимости монокристаллов TIGaS $_2$ (кривая I) и TIGa $_{0.995}$ Sb $_{0.005}$ S $_2$ (кривая 2) при 300 К. В частотной области $5\cdot 10^4-2\cdot 10^5$ Hz аспроводимость монокристалла TIGaS $_2$ изменялась по закону $\sigma_{\rm ac}\sim f^{0.6}$, а при $f=2\cdot 10^5-2\cdot 10^7$ Hz $\sigma_{\rm ac}\sim f^{0.8}$. При $f>2\cdot 10^7$ Hz имела место квадратичная зависимость $\sigma_{\rm ac}\sim f^2$. Дисперсионная кривая $\sigma_{\rm ac}(f)$ образца TIGa $_{0.995}$ Sb $_{0.005}$ S $_2$ во всей изученной области частот подчинялась закону $\sigma_{\rm ac}\sim f^{0.8}$.

Ас-проводимость зонного типа, как известно, является в основном частотно-независимой вплоть до $10^{10} - 10^{11} \, \mathrm{Hz}$. Наблюдаемая нами экспериментальная зависимость $\sigma_{\rm ac} \sim f^{0.8}$ в кристаллах на основе TlGaS $_2$ свидетельствует о том, что она обусловлена прыжками носителей заряда между локализованными в запрещенной зоне состояниями. Это могут быть локализованные вблизи краев разрешенных зон состояния или локализованные вблизи уровня Ферми состояния [26]. Но так как в экспериментальных условиях проводимость по состояниям вблизи уровня Ферми всегда доминирует над проводимостью по состояниям вблизи краев разрешенных зон, полученный нами закон $\sigma_{\rm ac} \sim f^{0.8}$ свидетельствует о прыжковом механизме переноса заряда по состояниям, локализованным в окрестности уровня Ферми. Предложенная в [27] формула для такой проводимости имеет вид

$$\sigma_{\rm ac}(f) = \frac{\pi^3}{96} e^2 k T N_{\rm F}^2 a_l^5 f \left[\ln \left(\frac{\nu_{\rm ph}}{f} \right) \right]^4, \tag{1}$$

где e — заряд электрона; k — постоянная Больцмана; $N_{\rm F}$ — плотность состояний вблизи уровня Ферми; $a_l=1/\alpha$ — радиус локализации; α — постоянная спада волновой функции локализованного носителя заряда $\psi\sim e^{-\alpha r}$; $\nu_{\rm ph}$ — фононная частота.

Согласно формуле (1) ас-проводимость зависит от частоты как $f[\ln(\nu_{\rm ph}/f)]^4$, т.е. при $f\ll\nu_{\rm ph}$ $\sigma_{\rm ac}$ пропорциональна $f^{0.8}$. С помощью формулы (1) по экспериментально найденным значениям $\sigma_{\rm ac}(f)$ образцов TIGaS2 и TIGa0.995Sb0.005S2 вычислили плотность состояний на уровне Ферми. Вычисленные значения $N_{\rm F}$ для TIGaS2 и TIGa0.995Sb0.005S2 составляли $5.9\cdot10^{18}$ и $6.8\cdot10^{18}\,{\rm eV}^{-1}\cdot{\rm cm}^{-3}$ соответственно. Таким образом, легирование монокристалла TIGaS2 сурьмой приводило к увеличению плотности состояний вблизи уровня Ферми. При вычислениях $N_{\rm F}$ для радиуса локализации взято значение $a_I=14\,{\rm \AA}$ [14]. Значение $\nu_{\rm ph}$ для TIGaS2 порядка $10^{12}\,{\rm Hz}$ [28].

Согласно теории прыжковой проводимости на переменном токе среднее расстояние прыжков (R) определяется по формуле [26]

$$R = \frac{1}{2\alpha} \ln \left(\frac{\nu_{\rm ph}}{f} \right). \tag{2}$$

В формуле (2) значение f соответствует средней частоте, при которой наблюдается $f^{0.8}$ -закон. Для монокристаллов TIGaS₂ и TIGa_{0.995}Sb_{0.005}S₂ вычисленные по формуле (2) значения R составляли 81 и 77 Å соответственно. Эти значения R примерно в 6 раз превышают среднее расстояние между центрами локализации носителей заряда в изученных монокристаллах. Значение R позволило по формуле

$$\tau^{-1} = \nu_{\rm ph} \exp(-2\alpha R) \tag{3}$$

определить среднее время прыжков в монокристаллах $TlGaS_2$ и $TlGa_{0.995}Sb_{0.005}S_2$: $\tau=9.9\cdot 10^{-8}$ и $4.4\cdot 10^{-8}$ s соответственно.

По формуле

$$\Delta E = \frac{3}{2\pi R^3 \cdot N_{\rm F}} \tag{4}$$

в TlGaS $_2$ и TlGa $_{0.995}$ Sb $_{0.005}$ S $_2$ оценен энергетический разброс локализованных вблизи уровня Ферми состояний: $\Delta E=150$ и 154 meV соответственно. А по формуле

$$N_t = N_{\rm F} \cdot \Delta E \tag{5}$$

определена концентрация глубоких ловушек, ответственных за ас-проводимость в этих образцах: $N_t=8.8\cdot 10^{17}$ и 10^{18} cm $^{-3}$.

4. Заключение

В монокристаллах $TlGaS_2$ и $TlGa_{0.995}Sb_{0.005}S_2$ со слоистой структурой получены воспроизводимые частотные зависимости тангенса угла диэлектрических потерь $(\operatorname{tg}\delta)$, действительной (ε') и мнимой (ε'') составляющих комплексной диэлектрической проницаемости и ас-проводимости (σ_{ac}) поперек слоев кристаллов в области частот $f = 5 \cdot 10^4 - 3.5 \cdot 10^7$ Hz. Легирование монокристаллов TlGaS2 сурьмой приводит к модифицированию дисперсионных кривых $\varepsilon'(f)$ и $\varepsilon''(f)$. Во всей изученной области частот в TlGaS₂ и $TlGa_{0.995}Sb_{0.005}S_2$ имеют место потери на электропроводность. При высоких частотах ас-проводимость монокристаллов $TlGaS_2$ и $TlGa_{0.995}Sb_{0.005}S_2$ подчинялась закономерности $\sigma_{\rm ac} \sim f^{0.8}$, характерной для прыжкового механизма переноса заряда по локализованным вблизи уровня Ферми состояниям. Оценены плотность и энергетический разброс состояний, лежащих в окрестности уровня Ферми, среднее время и расстояние прыжков в образцах $TlGaS_2$ и $TlGa_{0.995}Sb_{0.005}S_2$. Сравнение показывает, что легирование монокристалла TlGaS2 сурьмой приводило к существенному изменению диэлектрических характеристик монокристаллов TlGa_{0.995}Sb_{0.005}S₂, увеличению плотности состояний вблизи уровня Ферми (от $5.9 \cdot 10^{18}$ до $6.8 \cdot 10^{18} \,\mathrm{eV^{-1} \cdot cm^{-3}}$), уменьшению среднего времени (от $9.9 \cdot 10^{-8}$ до $4.4 \cdot 10^{-8}$ s) и расстояния прыжков (от 81 до 77 Å). При этом концентрация глубоких ловушек, ответственных за аспроводимость в этих образцах, повышается от $8.8 \cdot 10^{17}$

до $10^{18}\,\mathrm{cm^{-3}}$. Таким образом, установлено, что за счет легирования слоистого монокристалла $TIGaS_2$ сурьмой можно управлять диэлектрическими коэффициентами и ас-проводимостью.

Список литературы

- I.G. Stamov, N.N. Syrbu, V.V. Ursaki, V.V. Zalamai. Optics. Commun. 298–299, 145 (2013).
- [2] L. Nemerenco, N.N. Syrbu, V. Dorogan, N.P. Bejan, V.V. Zalamai. J. Luminesc. 172, 111 (2016).
- [3] T. Kawabata, Y. Shim, K. Wakita, N. Mamedov. Thin Solid Films, 571, 589 (2014).
- [4] B. Abay, H.S. Güder, H. Efeoğlu, Y.K. Yoğurtçu. Phys. Status Solidi B 227, 469 (2001).
- [5] B. Gürbulak, S. Duman, A. Ateş. Czechoslov. J. Phys. 55, 93 (2005).
- [6] Y. Shim, W. Okada, K. Wakita, N. Mamedov. J. Appl. Phys. 102, 083537 (2007).
- [7] A.F. Qasrawi, N.M. Gasanly. Cryst. Res. Technol. 39, 439 (2004).
- [8] A.F. Qasrawi, N.M. Gasanly. Phys. Status Solidi A 202, 13, 2501 (2005).
- [9] I.M. Ashraf, J. Phys. Chem. B 108, 10765 (2004).
- [10] A. Kato, M. Nishigaki, N. Mamedov, M. Yamazaki, S. Abdullayeva, E. Kerimova, H. Uchiki, S. Iida. J. Phys. Chem. Solids 64, 1713 (2003).
- [11] A.A. Al Ghamdi, A.T. Nagat, F.S. Bahabri, R.H. Al Orainy, S.E. Al Garni. Appl. Surf. Sci. 257, 3205 (2011).
- [12] C.-D. Kim, M.-S. Jin. New Physics: Sae Mulli 65, 11, 1068 (2015).
- [13] M. Açıkgöz, P. Gnutek, C. Rudowicz. Solid State Commun. 150, 1077 (2010).
- [14] С.Н. Мустафаева. ФТТ 46, 6, 979 (2004).
- [15] С.Н. Мустафаева. Журн. радиоэлектроники 8, 1 (2008).
- [16] С.Н. Мустафаева. Изв. РАН. Неорган. материалы 42, 5, 530 (2006).
- [17] С.Н. Мустафаева. Журн. радиоэлектроники 4, 1 (2009).
- [18] С.Н. Мустафаева, М.М. Асадов, Э.М. Керимова, Н.З. Гасанов. Неорган. материалы **49**, *12*, 1271 (2013).
- [19] В.Г. Гуртовой, А.У. Шелег, С.Н. Мустафаева, Э.М. Керимова, С.Г. Джафарова. ФТТ **59**, *8*, 1479 (2017).
- [20] M.-S. Jin, H.-J. Song. Current Applied Physics 3, 409 (2003).
- [21] Дж. Хьюи. Неорганическая химия. Строение вещества и реакционная способность. / Под ред. Б.Д. Степина и Р.А. Лидина. Пер. с англ. Химия, М. (1987). 696 с.
- [22] С.Н. Мустафаева, Д.М. Бабанлы, М.М. Асадов, Д.Б. Тагиев. ФТТ **57**, *10*, 1913 (2015).
- [23] С.Н. Мустафаева. Все материалы. Энциклопедический справочник 10, 74 (2016).
- [24] G.E. Delgado, A.J. Mora, F.V. Perezb, J. Gonzalez. Physica B 391, 385 (2007).
- [25] В.В. Пасынков, В.С. Сорокин. Материалы электронной техники. 6-е изд. Лань, СПб.—М.—Краснодар. (2004). 368 с.
- [26] Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах. Пер. с англ. Мир, М. (1974). 472 с.
- [27] M. Pollak. Phil. Mag. 23, 519 (1971).
- [28] К.Р. Аллахвердиев, Е.А. Виноградов, Р.Х. Нани. В кн.: Физические свойства сложных полупроводников. Элм, Баку (1982). С. 55.