06,13

Определение стационарного тока утечки в структурах с пленками сегнетоэлектрической керамики

© Ю.В. Подгорный, К.А. Воротилов, А.С. Сигов

Московский технологический университет (МИРЭА), Москва, Россия

E-mail: podgsom_2004@mail.ru

Исследованы стационарные токи утечки конденсаторных структур с сегнетоэлектрическими золь-гель пленками цирконата-титаната свинца (PZT), сформированными на кремниевых подложках с нижним Pt электродом. Установлено, что независимо от толщины пленки PZT структуры Pt/PZT/Hg характеризуются наличием выпрямляющего контакта, подобного p-n-переходу. Стационарный ток утечки в проводящем направлении увеличивается с уменьшением толщины пленки и определяется проводимостью объема сегнетоэлектрика.

Работа выполнена при финансовой поддержке Минобрнауки России в рамках базовой части государственного задания в сфере научной деятельности, проект № 3.5726.2017/БЧ.

DOI: 10.21883/FTT.2018.03.45539.02D

1. Введение

Интеграция сегнетоэлектрических тонких пленок с полупроводниковыми технологиями позволяет создать новые классы устройств приема, обработки и хранения информации, например [1,2]. Корректное определение стационарного тока утечки необходимо как для объективного контроля качества сегнетоэлектрических структур, так и для идентификации механизмов переноса носителей заряда. Обычно используют два метода измерения зависимостей ток-напряжение: динамический (voltage-ramp) и статический (voltage-step) [3]. Результаты определения тока утечки динамическим методом зависят от скорости развертки напряжения, кроме того не исключена существенная погрешность, обусловленная током восстановления поляризации, несмотря на предварительную поляризацию пленки [4,5].

Суть статического метода состоит в наблюдении тока релаксации (заряда) при заданном уровне постоянного напряжения до полной его стабилизации, значение которого обычно и принимают за стационарный ток утечки. Зачастую данное состояние оказывается недостижимым из-за деградации пленки при длительном воздействии постоянного напряжения — ток, не достигнув стационарного состояния, начинает расти. Минимизировать недостатки статического метода, то есть сократить время наблюдения и повысить точность измерения, позволяет использование адекватной модели тока релаксации [6]. Однако вопросы корректного описания зависимостей ток – электрическое поле для различных полярностей напряжения смещения остаются невыясненными.

Целью настоящей работы был анализ зависимостей стационарного тока утечки от напряжения и поиск адекватных моделей, описывающих данные зависимости в типичных структурах, используемых в полупроводниковой технологии: Si-SiO₂-TiO₂-Pt-PZT с использованием стандартной методики контроля с Hg зондом.

2. Методика эксперимента

Пленки Pb(Zr_{0.48}Ti_{0.52})O₃ формировали на подложках Si-SiO₂-TiO₂-Pt методом послойного химического осаждения из растворов в соответствии с методикой [7]. Электрические измерения проводили с помощью зонда (MDC 802-150) с диаметром ртутного контакта 760 μ m. Измерение характеристик петель сегнетоэлектрического гистерезиса осуществляли на установке TF Analyzer 2000Е на частоте 100 Hz при амплитуде напряженности электрического поля $E_m \sim 180-235$ kV/cm. Зависимости тока утечки J(E, t) от напряженности электрического поля E и времени t измеряли пикоамперметром Hewlett Packard (Agilent) 4140В.

3. Результаты

В таблице приведены основные параметры петель гистерезиса структур с пленками РZT: d — толщина пленки; E_{cr} — коэрцитивное поле; P_r^+ и P_r^- — положительная и отрицательная динамическая остаточная поляризация; $P_{rrel}^{+(-)}$ — значения заряда остаточной поляризации после релаксации за 1 s; P_t — поляризация на вершинах петли гистерезиса.

На рис. 1 и 2 показаны экспериментальные значения (символы) и моделирующие зависимости J(t) тока релаксации (заряда) металл—сегнетоэлектрик—металл (МСМ) структуры с пленкой РZT толщиной 1067 nm при различных значениях напряженности электрического поля отрицательной и положительной полярности (на верхнем Hg электроде) соответственно. Аналогичный вид имеют зависимости J(t) для МСМ-структур с пленками другой толщины. Моделирование во временной области зависимостей J(t) суммой двух и/или трех экспоненциальных (низкочастотных) функций [6] позволяет с приемлемой точностью определять стационарный ток

d	E_m	E_{cr}^+	E_{cr}^{-}	P_t	P_r^+	P_r^-	P^+_{rrel}	P_{rrel}^{-}
nm	kV/cm			μ C/cm ²				
213	235	73	-69	40	25.3	-27.1	18.4	-13.4
552	181 226	48 50	-52 -53	38 40	24.0 25.1	$-23.8 \\ -24.7$	21.1 21.9	-20.7 -21.4
1067	187 234	51 53	-43 -45	40 43	25.0 26.1	$-26.4 \\ -27.2$	21.1 22.0	$-23.8 \\ -24.3$
1165	172 214	41 44	-43 -45	35 37	22.1 23.4	-20.7 -21.8	18.9 20.1	-15.1 -16.2

Характеристики сегнетоэлектрического гистерезиса

утечки при ограниченной продолжительности наблюдений

$$J(t) = \sum_{i=1}^{\kappa} J_{mi} \cdot \exp(-t/\tau_i) + J_{ss}, \qquad (1)$$

где τ_i — время релаксации; J_{mi} — амплитуда *i*-ой экспоненциальной составляющей тока релаксации; J_{ss} — стационарный ток; k — число экспоненциальных функций (2 или 3) определяется началом по времени t_{st} диапазона моделирования. С целью повышения точности за счет уменьшения случайной погрешности измерений (особенно в начале диапазона наблюдений) стартовые значения t_{st} использовались с дискретностью ~ 5 s в пределах от 11 до 28 s и от 33 до 60 s при моделировании суммой трех и двух экспоненциальных функций соответственно. Средние для всех образцов значения времени релаксации составили 360, 60 и 11 s при отрицательной полярности — 264 и 54 s.

Особенность полученных зависимостей состоит в том, что стационарный ток J_{ss} с ростом напряжения отрицательной полярности увеличивается (см. рис. 1), в то время как с увеличением положительного смещения ($\geq 50 \, \text{kV/cm}$) ток J_{ss} остается практически неизменным (см. вставку на рис. 2).

Измерения каждой следующей J(t) зависимости при положительной полярности выполняли на новой структуре Pt/PZT/Hg для исключения эффекта памяти, который может оказать влияние в случае определения зависимостей J(t, E) на одной структуре при постепенном ступенчатом повышении напряжения. На рис. 2 для пленки 1067 nm показаны четыре зависимости тока релаксации для трех значений поля положительной полярности, иллюстрирующие отсутствие закономерности в зависимости стационарного тока от действующего поля. Кривые J(t) для полей 70 и 140 kV/cm расположены между кривыми J(t), полученными при напряженности 234 kV/cm на двух различных структурах, что связано с дисперсией измерений и свойств образцов.

Таким образом, вид полученных зависимостей аналогичен вольт-амперной характеристике (ВАХ) полупроводникового диода с *p*-*n*-переходом, включенного в проводящем или запирающем направлении, что и определило выбор моделирующей функции

$$E(J) = \eta \Phi_T \cdot \ln\left(\frac{J}{J_0} + 1\right) + k_b \cdot J_{ss}^n.$$
(2)

При n = 1 уравнение (2) представляет ВАХ полупроводникового диода с p-n-переходом, включенным в

Рис. 1. Зависимости тока релаксации от времени J(t) при постоянном напряжении отрицательной полярности (в проводящем направлении) для МСМ-структуры с пленкой РZT 1067 nm.

Рис. 2. Зависимости тока релаксации от времени J(t) при постоянном напряжении положительной полярности (в запирающем направлении) для MCM-структуры с пленкой PZT 1067 nm. На вставке показаны значения стационарного тока при электрическом поле $\geq 50 \text{ kV/cm}$.

Рис. 3. Характеристики стационарного тока (экспериментальные и моделируемые с помощью уравнения (2) в проводящем направлении) для MCM-структур с пленками PZT толщиной 213, 512, 1067 и 1165 nm.

Рис. 4. Влияние коэффициента *n* на моделирование ВАХ в проводящем направлении для МСМ-структуры с пленкой толщиной 1165 nm.

проводящем направлении, в котором Φ_T — температурный потенциал kV/cm; η — фактор неидеальности (~2-3) [8]; J_0 — тепловой ток; k_b — калибровочный коэффициент. Показатель степени *n* учитывает нелинейную зависимость от действующего поля проводимости в объеме сегнетоэлектрической пленки с низкой концентрацией носителей, что обусловлено совокупностью различных действующих механизмов переноса [4,9]. При n = 1 (линейная база) имеем $k_b = r_b$ — омическое со-

Физика твердого тела, 2018, том 60, вып. 3

2

противление объема сегнетоэлектрической пленки ("базы"). Определение параметров модели с использованием экспериментальных данных выполнялось как в I-U, так и в J-E координатах в различных диапазонах действующего поля.

На рис. 3 показаны экспериментальные результаты и соответствующие моделирующие $J_{ss}(E)$ зависимости стационарного тока при отрицательной полярности. Моделирование в различных диапазонах электрического поля показывает, что сопротивление объема пленки при напряженности поля ниже $\sim 70 - 80 \, \mathrm{kV/cm}$ имеет омический характер (n = 1), а нелинейность проявляется при более высоких полях. Рис. 4 на примере пленки с *d* = 1165 nm иллюстрирует эффективность параметра *п* в модели стационарного тока. По экспериментальным данным в диапазоне поля \leq 77 kV/cm методом нелинейной регрессии определялись только параметры ηΦ_T, J₀ и k_b, при этом коэффициент нелинейности n искусственно изменяли от 1 до 3.1. Соответствующая кривая аппроксимации при n = 3.1 практически полностью совпадает с аппроксимирующей кривой, полученной при моделировании во всем диапазоне данных (до $\sim 180\,\mathrm{kV/cm})$ и определении всех параметров методом нелинейной регрессии.

Значения плотности теплового тока J_0 и температурного потенциала $\eta \Phi_T$ ($3\eta \Phi_T$ — поле, при котором происходит отпирание p-n-перехода), практически не зависят от толщины пленки в пределах погрешности измерения, т.е. определяют электрические характеристики интерфейсных слоев МСМ-структур. Введение в моделирующую функцию степенной зависимости падения напряжения на объеме пленки ("базе") от протекающего тока позволяет получить идентичные значения моделирующих параметров во всем диапазоне действующего поля.

4. Заключение

Экспериментальные исследования стационарного тока утечки при внешнем поле различной полярности показали, что структуры Pt/PZT/Hg обладают выпрямляющим контактом. Исходя из того, что объем пленки РZT имеет проводимость *p*-типа [1,3], можно полагать, что на границе с Нд электродом существует область с проводимостью *п*-типа. Значения плотности теплового тока J_0 и температурного потенциала $\eta \Phi_T$ в пределах погрешности измерений не зависят от толщины пленки, свидетельствуя о том, что они в действительности определяют электрические характеристики интерфейсных слоев МСМ-структур. В то же время, стационарный ток имеет сильную зависимость от толщины пленки, что предполагает увеличение концентрации носителей в объеме пленки РZT с уменьшением её толщины.

Список литературы

- [1] J.F. Scott. Science **315**, 954 (2007).
- [2] K.A. Vorotilov, A.S. Sigov. Physics of the Solid State 54, 5, 894 (2012).
- [3] G.W. Dietz, M. Schumacher, R. Waser, S.K. Streiffer, C. Basceri, A.I. Kingon. J. Appl. Phys. 82, 5, 2359 (1997).
- [4] A. Sigov, Yu. Podgorny, K. Vorotilov, A. Vishnevskiy. Phase Trans. 86, 1141 (2013).
- [5] Yu. Podgorny, K. Vorotilov, A. Sigov. J. Appl. Phys. Lett. 105, 182904 (2014).
- [6] Yu. Podgorny, K. Vorotilov, A. Sigov. AIP Advances 6, 095025 (2016).
- [7] N.M. Kotova, K.A. Vorotilov, D.S. Seregin, A.S. Sigov. Inorganic Materials. 50, 6, 612 (2014).
- [8] S.M. Sze, K.Ng Kwok. Physics of Semiconductor Devices, John Wiley & Sons, Hoboken, New Jersey (2007). 119 p.
- [9] M. Dawber, K.M. Rabe, J.F. Scott. Rev. Mod. Phys. 77, 1083 (2005).