04 Оптические постоянные монокристалла апатита в ИК области 6–28 μm

© В.М. Золотарев

Университет ИТМО, 197101 Санкт-Петербург, Россия e-mail: VM-Zolotarev@mail.ru

Поступила в редакцию 25.09.2017 г.

На основе измеренных поляризованных ИК спектров отражения в области 5000–350 сm⁻¹, полученных от естественной грани оптически прозрачного монокристалла фторапатита, методом Крамерса-Кронига вычислены составляющие комплексного показателя преломления (оптические постоянные) для ориентаций вектора излучения $\mathbf{E} \parallel \mathbf{c}$ и $\mathbf{E} \perp \mathbf{c}$. Монокристалл фторапатита был отобран из нескольких образцов, содержал минимальное количество примесей и обладал высокой степенью кристалличности в соответствии с критериями инфракрасной (ИК) спектроскопии и спектроскопии комбинационного рассеяния. Табличные данные оптических постоянных для обыкновенного и необыкновенного лучей приведены для ИК области 6–28 μ m. Проведено сравнение полученных спектров абсорбции с результатами квантово-химических расчетов, выполненных методом *ab initio* в рамках B3LYP-моделирования.

DOI: 10.21883/OS.2018.02.45534.213-17

Физико-химические свойства апатитов, имеющих формулу вида Са₅(PO₄)₃ (F, OH, Cl), активно исследуются с использованием всего арсенала физических методов [1-4]. Этот интерес к данному минералу обусловлен вариабельностью свойств апатитов, что находит применение в разных отраслях науки и техники. Следует также отметить, что интерес к изучению апатита обусловлен и тем обстоятельством, что он является минералом, входящим в состав костей и зубов всех животных [5-7]. Вариабельность свойств апатитов зависит от содержания в нем конкретных примесей, изоморфно замещающих катионы Ca^{2+} и анионы PO_4^{3-} , которые являются основными элементами, формирующими кристаллическую решетку апатита. Методы инфракрасной (ИК) спектроскопии наиболее часто используются при изучении природных апатитов минерального происхождения [8-12]. Преобладающее большинство исследований, проводимых с помощью ИК спектроскопии, выполнено на качественном уровне [10-16]. Вместе с тем для сопоставления результатов расчетов спектров апатитов с разными заместителями катионов и анионов, выполненных в режиме ab initio, полезно знать для средней ИК области абсолютные значения величин поглощения и преломления апатитов [17,18]. Такая информация имеется для эмали дентина зуба в терагерцовой [19] и для апатита в микроволновой [20] области спектра, для которой отмечается необычный характер зависимости диэлектрической постоянной апатита от частоты по сравнению с другими минералами. Эта особенность касается частотной зависимости диэлектрической постоянной (є) и ее высокого значения для образца исследованного апатита, а также сильной анизотропии ε . Так, согласно [20], для $\varepsilon_{\parallel}=$ 7.4, $\varepsilon_{\perp}=$ 9.5, где индексы 🛛 и 🔟 означают ориентацию электрического вектора Е внешнего электромагнитного поля по отношению к

оси с кристалла, которая совпадает с направлением оптической оси этого кристалла. Для средней ИК области информация по оптическим постоянным апатита практически отсутствует, за исключением работы [21], в которой данные, полученные методом классического дисперсионного анализа, представлены в виде параметров осцилляторов, с помощью которых описывалась спектральная кривая коэффициента отражения R(v). Однако имеются числовые данные, касающиеся измерений на эмали дентина зуба, применительно к длинам волн 9.6, 10.3 и 10.6 µm CO₂-лазера [22,23]. Поскольку эмаль дентина состоит на 98% из апатита [14], эти данные можно сопоставить с измерениями для апатита. Отсутствие в справочной литературе данных по оптическим постоянным апатита можно объяснить нестабильностью его свойств, зависящих от месторождения минерала и соответственно от примесей, сопутствующих данному месторождению. Вместе с тем сведения по отражению кристаллического апатита достаточно широко представлены в средней ИК областии обычно получены для ориентированных кристаллов фторапатита (FAp) с использованием поляризованного [21] и неполяризованного [24,25] излучений. Эти данные по значению величины коэффициента отражения R сильно отличаются между собой (табл. 1). Соответствующие различия величины *R* для разных источников [21,24,25] зависят не только от месторождения минерала, что обусловлено рядом факторов: дефектами кристаллической структуры апатита, вкраплениями другой кристаллической фазы, особенностями рельефа и формы отражающей поверхности образца. Дополнительный фактор связан с различиями в качестве полировки образцов и в ориентации кристалла по отношению к электрическому вектору падающего излучения. Влияние перечисленных факторов на результаты измерений R имеют место как для обработанных

	Название		ИК спектр R			Происхождение	
Образцы		Измеренный химический состав	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Габитус и цвет		
S1	CFAp	$Ca_5(PO_4, CO_3)_3F$	0.0153	0.692	Призматическая призма, темно-серый	Россия, Прибайкалье, Слюдянка	
S2	FAp	$Ca_{5.00}(P_{1.00}O_4)_3(F_{0.98}OH_{0.01}Cl_{0.01})$	0.00035	$\frac{0.808}{0.755}$	Призматическая призма, двойниковый, прозрачный	Россия, Хибины, Кольский полуостров	
S3	FAp	$Ca_{5.00}(P_{1.00}O_4, CO_3)_3(F_{0.90}OH_{0.1})$	0.00034	0.755	Таблитчатый, облитерированный, прозрачный	Россия, Апатиты, Кольский полуостров	
S4	FAp	$\begin{array}{c} (Ca_{4.4}Sm_{0.30}Mn_{0.10}Na_{0.15}Cs_{0.05})_{\Sigma=5} \\ \times ((P_{0.96}Si_{0.04})_{\Sigma=1}O_4)_3F_{1.00} \end{array}$	0.0462	0.528	Призматическая призма, синезеленый, непрозрачный	Россия, Хибины, Кольский полуостров	
S5	FAp	$Ca_{5.00}((P_{0.98}Si_{0.01}S_{0.01})O_4)_3F_{1.00}$	-0.0141	1.0002	Призматическая призма	Durango, Mexico [24]	
S6	Ap	Ca ₅ (PO ₄) ₃ (OH, F, Cl)	< 0.01	~ 0.23	Призматическая призма, непрозрачный	Россия, Прибайкалье, Слюдянка [25]	
S7	FAp	$Ca_{5.00}((P_{0.98}Si_{0.01}S_{0.01})O_4)_3F_{1.00}$	$\sim \frac{0.02}{0.03}$	$\sim \frac{0.73}{0.60}$	Светло-желтый, короткая гексагональная призма	Durango, Mexico [21]	
S8	FAp	$\begin{array}{c} (Ca_{4.68\ 0.32})_{\Sigma=5} \\ \times ((PO_4)_{2.36}(CO_3)_{0.64})_{\Sigma=3}F_{1.00} \end{array}$			Светло-коричневый, кистевидный агрегированный	Limburg de an Lahn, Germany [28]	
S9	FAp	$Ca_{5.00}(P_{1.00}O_4)3(F_{0.86}Cl_{0.13})$			Светло-зеленый, гексагональная призма	Fulford, Eagle County, Colorado, USA [28]	

Таблица 1. Характеристики монокристаллов апатита

Примечание. Значения *R* образцов S1—S4 даны для ориентации **E** \parallel **c**. В колонках "ИК спектр *R*" числитель дроби соответствует значения *R*_{max} для ориентации **E** \parallel **c**, а знаменатель — для **E** \perp **c**. Значения *R* образцов S5, S6 даны для неполяризованного излучения. Значения *R* образца S5 получены для грани кристалла (0001), образцы S5—S7 полировались.

поверхностей (полировка), так и для необработанных (естественные грани кристалла). В связи с вышесказанным поиск образца апатита с бездефектной кристаллической решеткой, обладающего совершенной огранкой, которая характеризуется гладкими и плоскими гранями, представляется непростой задачей.

Цель настоящей работы состоит в измерении оптических постоянных монокристалла апатита в средней ИК области методом отражения для образца, обладающего высокой кристалличностью и содержащего минимальное количество примесей.

Образцы и аппаратура

Исследуемые образцы S1-S4 (табл. 1) представляли кристаллы фторапатита (FAp) и карбонат-фторапатита (CFAp) и имели четко выраженную гексагональную огранку. Ориентировка образцов проводилась под микроскопом относительно ребер кристалла. Отражение измерялось от естественной необработанной грани [0101]. Излучение направлялось вблизи нормали относительно грани образца [0101].

Спектры комбинационного рассеяния (КР) в диапазоне $1400-45 \, {\rm cm}^{-1}$ с разрешением $3 \, {\rm cm}^{-1}$ измерялись

Оптика и спектроскопия, 2018, том 124, вып. 2

с помощью дисперсионного КР-микроскопа SENTERRA фирмы Bruker, снабженного конфокальным оптическим микроскопом Olympus BX-51 и объективами с увеличением $50 \times$ и $100 \times$. Возбуждение спектра КР осуществлялось на длине волны 532 nm с помощью неодимового лазера (вторая гармоника YAG: Nd-лазера).

Спектры ИК отражения образцов апатитов в диапазоне 5000–350 сm⁻¹ были получены на ИК Фурьеспектрометре TENSOR 27 фирмы Bruker с разрешением 2 сm⁻¹ для диафрагмы 2 mm при 500 сканах в поляризованном излучении. Использовались дифракционные поляризаторы 1200 и 600 lines/mm на подложках: стекло ИКС-35 и пленка из полиэтилена — PE.

Для оценки качества исследованных кристаллов апатита использовались методы КР и ИК спектроскопии отражения. В спектре КР спектроскопические параметры полосы 965 сm⁻¹ симметричных колебаний v_1 чувствительны к дефектности [26] кристаллической решетки апатита и степени ее кристалличности [27]. Увеличение дефектности кристалла и уменьшение кристалличности приводит к увеличению в 2–3 раза полуширины Δv_1 полосы v_1 и смещению ее в низкочастотную сторону на величину до ~ 5 сm⁻¹ по мере уменьшения величины кристалличности. На рис. 1 приведены спектры КР полосы v_1 исследованных образцов S1, S2, S4 (вставка вверху справа) и в центральной части рис. 1 спектры 2–4 апатитов из базы данных RRUFF [28] в сопоставлении со спектром I (образец S2, табл. 1) Из приведенных данных видно, что полоса v_1 в спектре КР у образца S2 наиболее узкая из всех сопоставляемых образцов и имеет наиболее высокое значение частоты $v_1 = 965$ сm⁻¹. Полосы деформационных колебаний v_2 и v_4 и фононный спектр апатита еще более чувствительны к деформации тетраэдра PO₄ и кристаллической решетки в целом, что наглядно проявляется в диапазонах 650–400 и 400–45 сm⁻¹ соответственно (рис. 2). Следует отметить, что частоты v_1 , v_2 , v_3 и v_4 в поляризационных

Рис. 1. Спектры КР монокристаллов апатита в области полосы 965 сm⁻¹ симметричных колебаний ν_1 аниона PO₄³⁻. Спектр *1* — образец S2 (табл. 1). Спектры *2*–*4* — из базы данных RRUFF [28], *2* — R050274, *3* — R050617, *4* — R050529. В верхней части рисунка слева показано фото образца S2. Вверху справа показана полоса ν_1 трех исследованных образцов. Спектры *1, 5, 6* соответствуют образцам S2-S1-S4 соответственно (табл. 1).

Рис. 2. Спектры КР монокристаллов апатита в области $1200-45 \text{ cm}^{-1}$. Спектры I-4 получены для ориентаций $(1a-4) - \mathbf{E} \perp \mathbf{c}, 1b - \mathbf{E} \parallel \mathbf{c}, 5$ — спектр для неполяризованного излучения. Спектры I-5 соответствуют образцам S2, S3, S1, S4 и S5 соответственно (табл. 1).

Рис. 3. Спектры ИК отражения R монокристаллов апатита в области полосы 1095 cm^{-1} антисимметричных колебаний v_3 аниона PO_4^{3-} . Нумерация спектров соответствует нумерации образцов в табл. 1: $I - \mathrm{S1}$, $2 - \mathrm{S2}$, $3 - \mathrm{S3}$, $4 - \mathrm{S4}$, $5 - \mathrm{S5}$. Спектры 1-4 получены отражением от грани [0101] для вектора E || c, спектр 5 -излучение неполяризовано. В левой части показан с растяжкой по шкале ординат участок спектра в окрестности минимума R. В правой части показан с растяжкой по шкале максимума R.

спектрах КР образцов S2 и S7 (аналог S5) (табл. 1) для ориентаций электрического вектора возбуждающего излучения \mathbf{E}_{\parallel} и \mathbf{E}_{\perp} полностью совпали по частоте (погрешность в среднем не превышала $1 \, \text{cm}^{-1}$). Данные для частот v_1 , v_2 , v_3 и v_4 образца S7 (месторождение Durango, Mexico) приведены в [21]. С учетом малой ширины полос в спектре КР сравниваемых образцов это указывает на совершенство кристаллической решетки обеих образцов S2 и S5, что проявляется также и в сходстве их фононных спектров (рис. 2, спектры 1 и 5). В спектре ИК абсорбции параметры дублета 1029 и $\sim 1095\,\mathrm{cm}^{-1}$, относящегося к антисимметричным колебаниям v_3 , подобным колебанию v_1 в спектре КР, реагируют на дефектность кристаллической решетки апатита и ее кристалличность [18]. Рост дефектности кристалла и уменьшение кристалличности приводит к уширению полосы v₃ и уменьшению ее интенсивности. Эти особенности наиболее заметно проявляются в окрестности минимума отражения, где на порядки меняется величина коэффициента отражения *R* (рис. 3, табл. 1). Увеличение полуширины Δv_3 полосы 1029 сm⁻¹ уменьшает крутизну ее высокочастотного крыла, что приводит к снижению контраста коэффициента $R (\Delta R = R_{\text{max}} - R_{\text{min}})$ в окрестности полосы v₃. Значения параметра R_{min} сильно влияют на величины n и k комплексного показателя преломления $(\hat{n} = n - ik)$ в окрестности R_{\min} при их определении методом Крамерса-Кронига, поскольку в интегральном выражении величина *R* стоит под знаком логарифма.

Совокупность данных КР и ИК спектроскопии для образцов S1-S4 и S5, S7, а также их характеристики (табл. 1) позволяют с учетом данных [21] сделать заключение о высоком качестве кристаллической решетки образца S2, который на этом основании был выбран в качестве основного объекта для работ, связанных с определением оптических постоянных n и k монокристалла FAp.

Методика исследований

Большое значение величины коэффициента отражения R апатитов в средней ИК области 4000–400 сm⁻¹ благоприятствует применению метод Крамерса–Кронига (КК) для определения оптических постоянных n и k. Однако вблизи края низкочастотного диапазона, т. е. в длинноволновой ИК области 400–2 сm⁻¹, имеется очень сильное поглощение кристаллической решетки апатита. Учет области 400–2 сm⁻¹ необходим для корректных вычислений значений n и k из спектра R методом КК [29,30] в диапазоне 4000–400 сm⁻¹. Значения R для области 400–2 сm⁻¹ находились путем предварительного расчета n на основе значений k для этого диапазона частот с помощью уравнения

$$n(v_0) = C(v_0) + \frac{2}{\pi} \int_{v_{\pi}}^{v_{\kappa}} \frac{k(v)vdv}{v^2 - v_0^2},$$
(1)

 $n(v_0)$ — показатель преломления для фиксированной частоты v_0 ; v — текущая частота внутри измеряемого спектрального интервала $v_{\rm H} - v_{\rm K}$; $v_{\rm H}$ и $v_{\rm K}$ — начальная и конечная частоты измеряемого спектрального интервала; $C(v_0)$ — поправка, учитывающая конечность интервала интегрирования.

Необходимые для расчета *n* величины *k* находились путем нормировки величин абсорбции (оптической плотности), полученных в работе [17], к абсолютным значениям *k* в области $400-2 \text{ cm}^{-1}$, что осуществлялось путем привязки основного максимума 293 cm⁻¹ в спектре абсорбции, полученного в работе методом *ab initio* для гидроксилапатита в области $1300-0 \text{ cm}^{-1}$ [17], к полосе 601 cm^{-1} , для которой была измерена величина *k* в максимуме. Значения *k* для полосы 601 cm^{-1} были предварительно найдены в первом приближении без учета диапазона $400-2 \text{ cm}^{-1}$ из экспериментального спектра *R* для области $5000-400 \text{ cm}^{-1}$ с помощью уравнения

$$\varphi(\nu_0) = -\frac{\nu_0}{\pi} \int_{\nu_{\rm H}}^{\nu_{\rm K}} \frac{\ln R(\nu) d\nu}{\nu^2 - \nu_0^2} + C'(\nu_0) + C''(\nu_0), \qquad (2)$$

 $\varphi(v_0)$ — фазовый сдвиг отраженной волны для фиксированной частоты v_0 ; $R = |\hat{r}|^2$ — измеряемый коэффициент отражения; $\hat{r}(v_0)$ — амплитудный коэффициент отражения; $C'(v_0)$, $C''(v_0)$ — поправки, учитывающие конечность интервала интегрирования.

Первая поправка учитывает вклад от участков спектра, находящихся за пределами интервала измерений $\nu_{\rm H} - \nu_{\rm k}$. При этом исходят из допущения, что значения $R(\nu)$ в этих участках постоянны и равны значениям

Рис. 4. Спектры ИК отражения R монокристалла фторапатита (образец S2): спектр I получен для вектора $\mathbf{E} \perp \mathbf{c}$ $(R_o - обыкновенный луч)$, спектр $2 - для вектора <math>\mathbf{E} \parallel \mathbf{c}$ $(R_e - необыкновенный луч)$. В левой части вверху показан участок спектра поглощения апатита в длинноволновой области спектра, полученный теоретическим расчетом [17] в рамках метода *ab initio*.

 $R(v_{\rm H})$ и $R(v_{\rm K})$. Отступление от этого допущения учитывается вторым поправочным слагаемым $C''(v_0)$, которое находится на основе независимых измерений оптических постоянных *n* и *k* в двух "привязочных" точках v'_0 и v''_0 слева и справа от интервала $v_{\rm H} - v_{\rm K}$.

После определения n по уравнению (1) значения R для диапазона $400-2 \text{ cm}^{-1}$ находились расчетом по формуле Френеля для нормального падения на основе полученных оптических постоянных n и k:

$$R = |r|^2 = \frac{(n-1)^2 + \kappa^2}{(n+1)^2 + \kappa^2},$$
(3)

где *г* — амплитудный коэффициент отражения, определяемый из уравнения (3):

$$r = \frac{1 - n - ik}{1 + n + ik} = |r|e^{i\varphi}.$$
 (4)

Полученные с помощью уравнения (3) значения R для диапазона 400–2 сm⁻¹ сшивались с экспериментальными величинами R_e и R_o , измеренными в диапазоне 5000–350 сm⁻¹ соответственно для двух ориентаций (||, \perp) вектора Е относительно оси с кристалла (рис. 4). После этого с помощью уравнения (2) проводились по стандартной программе OPUS 7.5 вычисления фазового сдвига $\varphi(v)$ последовательно для обеих величин R_e и R_o в диапазоне 5000–2 сm⁻¹. В качестве величины n'_0 использовалось значение n_D для области прозрачности FAp ($n_{D\parallel} = 1.633, n_{D\perp} = 1.630$, индексы || и \perp относятся к необыкновенному и обыкновенному лучам соответственно), $k'_0 = 0$. Для низкочастотного интервала принималось значение $n''_0 = \sqrt{\varepsilon}$ [20], где ε — диэлектрическая проницаемость ($\varepsilon_{\parallel} = 7.4, \varepsilon_{\perp} = 9.5$), $k''_0 \approx 0$. Вычислив с

ν , cm ⁻¹	n_o	k_o	ν , cm ⁻¹	n_o	k_o	ν , cm ⁻¹	n_o	k_o
350	0.938	1.747	720	1.630	0.096	1076	0.335	1.610
360	0.575	1.523	740	1.677	0.169	1078	0.347	1.458
380	0.398	0.797	750	1.579	0.162	1080	0.399	1.281
400	0.781	0.229	760	1.622	0.078	1082	0.525	1.107
420	1.175	0.164	780	1.702	0.067	1084	0.749	0.971
440	1.296	0.176	800	1.744	0.070	1086	1.080	0.972
460	1.458	0.176	820	1.784	0.069	1088	1.413	1.250
480	1.565	0.164	840	1.828	0.075	1090	1.397	1.761
500	1.654	0.177	860	1.865	0.074	1092	1.011	2.039
540	1.915	0.220	900	1.971	0.072	1094	0.658	1.978
550	2.008	0.275	940	2.147	0.080	1096	0.472	1.834
560	2.074	0.374	950	2.216	0.086	1098	0.374	1.693
570	2.385	0.571	960	2.348	0.137	1100	0.320	1.580
572	2.453	0.739	970	2.193	0.145	1110	0.207	1.173
574	2.432	0.997	980	2.386	0.089	1120	0.176	0.857
576	2.185	1.233	990	2.544	0.102	1130	0.192	0.545
578	1.844	1.221	1000	2.736	0.122	1140	0.354	0.214
580	1.631	1.008	1010	3.031	0.156	1150	0.611	0.100
582	1.612	0.761	1020	3.557	0.260	1160	0.767	0.074
584	1.720	0.581	1022	3.710	0.300	1180	0.953	0.058
586	1.894	0.493	1024	3.893	0.352	1200	1.067	0.047
588	2.081	0.489	1026	4.126	0.415	1220	1.152	0.047
590	2.281	0.542	1028	4.426	0.529	1260	1.264	0.040
592	2.504	0.676	1030	4.815	0.717	1300	1.333	0.037
594	2.752	0.939	1032	5.320	1.073	1340	1.382	0.034
596	2.930	2.211	1034	5.931	1.803	1380	1.421	0.034
600	1.920	2.615	1036	6.197	3.229	1420	1.451	0.036
602	1.222	2.464	1038	5.317	4.778	1460	1.471	0.034
604	0.825	2.137	1040	3.779	5.284	1500	1.488	0.034
606	0.615	1.834	1042	2.662	5.024	1540	1.502	0.030
608	0.492	1.571	1044	1.993	4.602	1580	1.523	0.017
610	0.418	1.341	1046	1.584	4.226	1620	1.551	0.037
612	0.374	1.130	1048	1.300	3.898	1660	1.552	0.032
614	0.355	0.931	1050	1.099	3.622	1700	1.553	0.044
616	0.364	0.738	1052	0.945	3.376	1740	1.562	0.040
618	0.406	0.557	1054	0.829	3.166	1750	1.564	0.039
620	0.482	0.395	1056	0.733	2.973			
630	0.969	0.104	1058	0.659	2.805			L
640	1.192	0.087	1060	0.595	2.647			
650	1.307	0.092	1070	0.387	2.000			
660	1.384	0.089	1072	0.362	1.874			
700	1.567	0.078	1074	0.344	1.750		I	

Таблица 2. Оптические постоянные фторапатита (Е \perp с, обыкновенный луч)

1

1

помощью (2) фазовый сдвиг $\varphi(v_0)$ и определив таким образом величину $\hat{r}(v_0)$ можно из формулы Френеля, уравнение (4), определить комплексный показатель преломления и, следовательно, *n* и *k* объекта:

$$n = \frac{1 - R}{1 + R - 2\sqrt{R}\cos\varphi},\tag{5}$$

$$k = \frac{-2\sqrt{R}\sin\varphi}{1 + R - 2\sqrt{R}\cos\varphi}.$$
 (6)

На основе полученных n и k можно вычислить оптическую плотность (D) из соотношения $D = -\lg T = Kd$, где T — пропускание, K — коэффициент поглощения,

 $K = 4\pi k \nu \text{ [cm}^{-1}\text{]}, d$ — толщина образца [cm], ν — волновое число [cm⁻¹].

Результаты расчетов оптических постоянных *n* и *k* монокристалла FAp (образец S2) для двух ориентаций вектора **E** относительно оси кристалла **c** представлены на рис. 5, 6 и даны в табл. 2, 3 для ориентаций **E** \perp **c** (обыкновенный луч) и **E** \parallel **c** (необыкновенный луч).

Обсуждение результатов

Сравнение полученных значений k в области полосы $1032\,{\rm cm}^{-1}$ антисимметричных колебаний ν_3 для

ν , cm ⁻¹	n _e	k _e	ν , cm ⁻¹	n _e	k_e	ν , cm ⁻¹	n _e	k_e
350	0.469	0.936	524	2.173	0.248	958	2.324	0.0459
360	0.590	0.540	526	2.205	0.253	960	2.342	0.047
380	0.992	0.252	528	2.240	0.260	962	2.361	0.049
400	1.280	0.136	530	2.279	0.271	964	2.3781	0.051
420	1.469	0.125	532	2.323	0.287	966	2.395	0.050
440	1.639	0.131	534	2.370	0.311	968	2.416	0.048
442	1.650	0.133	536	2.416	0.341	970	2.439	0.046
444	1.661	0.133	538	2.463	0.376	972	2.463	0.045
446	1.675	0.131	540	2.511	0.431	974	2.489	0.043
448	1.692	0.130	542	2.513	0.485	976	2.517	0.042
450	1.708	0.132	544	2.533	0.459	978	2.547	0.042
452	1.723	0.134	546	2.643	0.459	980	2.579	0.042
454	1.740	0.135	548	2.760	0.512	1000	3.053	0.066
456	1.759	0.138	550	2.897	0.591	1020	4.699	0.322
458	1.779	0.143	552	3.0436	0.7243	1028	6.986	3.430
460	1.801	0.150	554	3.199	0.917	1030	5.910	5.228
462	1.825	0.164	556	3.337	1.211	1032	4.140	5.769
464	1.846	0.186	558	3.395	1.616	1034	2.897	5.439
466	1.858	0.216	560	3.273	2.107	1040	1.451	4.209
468	1.858	0.248	566	1.924	2.795	1050	0.755	3.107
470	1.844	0.276	570	1.225	2.501	1060	0.481	2.462
472	1.820	0.291	580	0.583	1.659	1070	0.337	1.648
474	1.793	0.289	590	0.381	1.001	1090	0.204	1.354
476	1.773	0.274	600	0.529	0.374	1100	0.168	1.085
478	1.766	0.249	610	0.901	0.146	1110	0.147	0.820
480	1.773	0.223	620	1.099	0.110	1120	0.149	0.524
482	1.792	0.205	640	1.310	0.088	1130	0.326	0.162
484	1.814	0.198	660	1.422	0.075	1140	0.615	0.072
486	1.831	0.198	700	1.559	0.055	1160	0.877	0.058
488	1.843	0.197	760	1.706	0.047	1180	1.018	0.051
490	1.856	0.193	800	1.785	0.045	1200	1.110	0.046
492	1.874	0.191	860	1.910	0.055	1220	1.181	0.047
494	1.889	0.194	900	2.017	0.056	1240	1.234	0.046
496	1.900	0.195	930	2.134	0.051	1280	1.308	0.039
498	1.912	0.191	932	2.143	0.051	1320	1.363	0.034
500	1.930	0.187	934	2.153	0.049	1360	1.404	0.030
502	1.950	0.187	936	2.164	0.047	1400	1.436	0.029
504	1.970	0.189	938	2.176	0.046	1440	1.462	0.029
506	1.989	0.191	940	2.189	0.045	1480	1.478	0.030
508	2.010	0.193	942	2.203	0.044	1520	1.491	0.025
510	2.035	0.196	944	2.218	0.044	1560	1.507	0.020
512	2.061	0.206	946	2.233	0.045	1600	1.526	0.020
514	2.082	0.222	948	2.247	0.0475	1640	1.536	0.021
516	2.096	0.235	950	2.259	0.049	1680	1.550	0.016
518	2.109	0.242	952	2.273	0.048	1720	1.559	0.022
520	2.126	0.245	954	2.288	0.046	1750	1.565	0.023
522	2.147	0.247	956	2.306	0.0457			

Таблица 3. Оптические постоянные фторапатита (Е || с, необыкновенный луч)

кристалла FAp показало хорошее совпадение (рис. 5) с данными, полученными для эмали дентина методом импульсной фототермальной радиометрии [22]. Численные значения k, полученные в [23] для эмали дентина методом Френеля с помощью измерений R при двух углах для ряда длин волн CO₂-лазера, показали близкие значения для высокочастотного края полосы ν_3 , но заметно отличались в окрестности низкочастотного

крыла полосы v_3 . Величина k, полученная в [23] для эмали дентина методом экстраполяции в предположении контура Лорентца для полосы v_3 , в максимуме дала значение $k \approx 3.6$, тогда как наш эксперимент для кристалла FAp показал значения k = 5.284 - 5.769 для ориентаций $\mathbf{E} \perp \mathbf{c}$ и $\mathbf{E} \parallel \mathbf{c}$ соответственно. Вместе с тем следует отметить, что для наших измерений R, а также в работах [10,21] для максимума v_3 всех исследованных кристаллов FAp выполняется неравенство $R_e > R_o$. Из этого вытекает необходимость выполнения соотношения $k_e > k_o$, что согласуется с нашим экспериментом, для которого $k_e = 5.769$ и $k_o = 5.284$. Можно отметить, что полученные значения k_e и k_o для полосы v_3 FAp близки к соответствующим значениям величин для полосы v_3 кристаллического кварца [31,32]. Это сходство касается и формы сравниваемых полос v_3 для величин k_e и k_o в случае FAp и α -SiO₂ (рис. 7, вставка вверху слева), что указывает на подобие ориентации тетраэдров PO₄ и SiO_{4/2} относительно оптической оси в соответствующих кристаллах. Поскольку частоты основных максимумов

Рис. 5. Оптические постоянные (n, k) монокристалла фторапатита (образец S2) для вектора $\mathbf{E} \perp \mathbf{c}$ (обыкновенный луч). Три точки на спектре k в виде ромбов получены для эмали дентина [22].

Рис. 6. Оптические постоянные (n, k) монокристалла фторапатита (образец S2) для вектора **Е** || **с** (необыкновенный луч).

Рис. 7. Сравнение ИК спектров фторапатита (образец S2), полученных методом КК (спектры *1, 2,* шкала показателя поглощения *k* справа) и с помощью техники КВг [28] (спектры *3, 4,* шкала абсорбции (arb. units)). Спектр *1* получен для вектора $\mathbf{E} \parallel \mathbf{c}$ (k_e — необыкновенный луч), спектр *2* для вектора $\mathbf{E} \perp \mathbf{c}$ (k_o — обыкновенный луч). Спектры *3, 4* соответствуют образцам S7, S8 (табл. 1) и смещены по оси ординат для удобства сравнения. В центре представлен участок 950–400 сm⁻¹ (спектры *1, 2*) с 10× растяжкой по ординате. Слева вверху представлен участок 1250–900 сm⁻¹ (спектры 5 — k_e , 6 — k_o относятся к кварцу α -SiO₂ [32]).

 $k_e(v)$ и $k_o(v)$ валентной антисимметричной полосы v_3 в отличие от деформационной полосы v_2 не сильно отличаются для PO₄ и SiO_{4/2}, то с учетом одинаковой массы колеблющихся атомов О это свидетельствует о близости величины сил валентных связей P–O и Si–O, образующих эти тетраэдры.

Полученные методом КК спектры для показателей поглощения k_o и k_e полезно сравнить с экспериментальными спектрами абсорбции, которые для образцов апатита в виде порошков обычно получают с помощью техники KBr [8,11,14,28]. Этот способ измерений ИК спектров порошков вносит определенные нелинейные искажения в форму контура наиболее интенсивных полос [33]. Для сравнения на рис. 7 приведены спектры абсорбции (оптическая плотность) FAp, полученные на основе измеренных k_o, k_e в сопоставлении со спектрами, полученными для FAp в виде порошков с помощью техники КВг [28]. Спектры образцов S7, S9 (табл. 1) почти не отличаются между собой (спектр 9 на рис. 7 не приводится), тогда как в спектре образца S8 резко уменьшилась интенсивность полосы v_3 1093 cm⁻¹ антисимметричных колебаний тетраэдра РО4 и увеличилась относительно полосы v3 интенсивность деформационной полосы v_2 566–601 сm⁻¹. Эти спектроскопические особенности обусловлены сильным понижением симметрии иона PO₄ у образца S8 вследствие внедрения в решетку кристалла FAp иона CO₃ путем изоморфного замещения иона РО₄ ионом СО₃ (табл. 1). Это проявляется в появлении полос 1454-1424 и $866 \,\mathrm{cm}^{-1}$, отвечающих колебаниям v1 и v2 иона CO3 [17] соответственно. Сходство спектров образцов S7 и S9,

Симметрия

Колебательные

молы

Активность

b initio в гармоническом приближении путем B3LYP-моделиро-								
Расчет		Эксперимент						
иплитуда (IR)	B3LYP [41]	IR [36]	Наши дан v, ст [−]	ные -1				
[17]	v, cm	<i>v</i> , cm ²	IR	R				
0.2	506			454				

Таблица 4. Частоты полос группы PO_4^{3-} апатита, вычисленные *ab initio* в гармоническом приближении путем B3LYP-моделирования и определенные экспериментально

A

B3LYP

[17] v, cm⁻

				[1/]				
ν ₂ (PO ₄)	IR, R IR, R IR, R IR, R R R	A E_1 E_1 E_2 E_2	459 489 437 475 440 457	0.2 40.4 2.4 34.6 0 0	506 527 476 515 482 515	462	542 - (473)	454 432
v4(PO4)	IR, R IR, R IR, R IR, R IR, R IR, R R R R	A A E_1 E_1 E_1 E_2 E_2 E_2	566 599 621 573 600 609 566 588 633	$ \begin{array}{c} 1095.5\\ 0.1\\ 4.2\\ 691.2\\ 166.7\\ 735.2\\ 0\\ 0\\ 0\\ 0 \end{array} $	599 630 656 602 632 639 591 622 663	566 660-520 632 602	566 (558) 586 (577) 612 601	592 608 582 608 617
$v_1(PO_4)$	IR, R IR, R R	$\begin{matrix} A \\ E_1 \\ E_2 \end{matrix}$	972 972 974	2.62 360.2 0	991 990 993	962	966(-)	965.4
ν ₃ (PO ₄)	IR, R IR, R IR, R IR, R IR, R IR, R R R R	A A E_1 E_1 E_1 E_2 E_2 E_2 E_2	1054 1064 1096 1045 1068 1110 1041 1077 1081	4686.4 136.6 1.0 8207.8 97.6 755.8 0 0 0	1088 1111 1127 1080 1107 1146 1081 1109 1126	1190–976 1042 1091	$\begin{array}{c} 1032(-)\\(1093)\\1064\\(1042)\\(1075)\\1106(1118)\end{array}$	1034 1042.6 1060.3 1053.4 1081.6 1090 1104 1112

Примечание. Обозначения: *IR* (ИК), *R* (Раман-КР). Частота в скобках (ν) дана для вектора **E** \parallel **c**, без скобок — для **E** \perp **c**. Черта (-) означает отсутствие полосы в спектре **E** \parallel **c**, черта без скобок — для **E** \perp **c**.

отмеченное выше, указывает на слабую зависимость симметрии тетраэдра PO_4 от замещения иона фтора на ион хлора (табл. 1).

При рассмотрении рис. 7 обращает на себя внимание смещение (относительно спектров 1, 2) наиболее интенсивной полосы $v_3(PO_4)$ в низкочастотную область и ее уширение для спектров, полученных с помощью техники KBr, тогда как соответствующие параметры менее интенсивной полосы v_2 меняются менее значительно. Частоты еще более слабых полос v_4 и v_1 для сопоставляемых образцов практически не изменяются. На формирование контура полосы v_3 при использовании техники KBr влияет ряд факторов: коэффициент поглощения, коэффициент рассеяния и параметр, учитывающий влияние внутреннего поля световой волны на поглощательную способность вещества [34]. Второй и третий факторы определяются величиной показателя преломления, который в окрестности полосы v3 меняется в широких пределах n = 0.14 - 7.0, причем эти оба фактора приводят в спектрах, полученных с помощью техники KBr, к смещению центра полосы v_3 (спектры 3-4, рис. 7) в низкочастотную область. Это указывает на важную роль аномальной дисперсии, которая вносит свой дополнительный вклад в формирование контура интенсивных полос поглощения при исследовании порошков с помощью техники KBr. В качестве альтернативы технике КВr для исследования порошков часто используются методы диффузного отражения [35] и фотоакустической спектроскопии [36], однако аномальная дисперсия в обоих случаях определенным образом [33,35,37] реагирует на измеряемую этими методами абсорбционную способность вещества в окрестности интенсивных полос поглощения. В ИК спектре (рис. 7) образца S2 (табл. 1) можно обнаружить слабую полосу $745 \, \mathrm{cm}^{-1}$, что указывает на присутствие гидроксильной группы [38,39]. Группа ОН... F присутствует в спектре КР образца S2 и имеет полосу валентных колебаний $\sim 3540\,{
m cm^{-1}}$ [38]. Полоса 745 ${
m cm^{-1}}$ либрационных колебаний, относящаяся к группе ОН, также присутствует в спектрах абсорбции образцов S5 и S9, которые исследовались в виде порошков [28]. Полоса 745 ст⁻¹ обладает, как видно из поляризационных спектров k_o и k_e (рис. 7, вставка в центре), сильным дихроизмом. Ее интенсивность у образца S2 наибольшая для вектора Е || с (рис. 7), тогда как для вектора **E** || **с** интенсивность полосы 745 сm⁻¹ равна нулю. Следовательно, дипольный момент перехода этого колебания ориентирован перпендикулярно оси с кристалла, тогда как ион ОН- расположен параллельно оси с [10,11]. В спектре образца S8 присутствуют полоса 866 сm⁻¹ (рис. 7) и дублет 1424-1454 сm⁻¹, которые относятся к колебаниям v₂(CO₃) и v₃(CO₃)₃. Присутствие группы CO₃ в спектре образца S8 подтверждается данными анализа химического состава этого образца (табл. 1).

Максимумы основных частот аниона РО₄³⁻, относящихся к колебаниям $\nu_2(PO_4)$, $\nu_4(PO_4)$, $\nu_1(PO_4)$ и $\nu_3(PO_4)$ тетраэдра PO₄ в поляризационных спектрах $k_o(v)$ и $k_e(v)$ (табл. 4, рис. 5–7), были интерпретированы в соответствии с данными расчета частот, интенсивностей [17], а также дихроизма полос, измеренного в нашем эксперименте. Из рис. 7 видно, что полосы 965 и $473 \,\mathrm{cm}^{-1}$, отвечающие симметричному колебанию $v_1(PO_4)$ и деформационному $v_2(PO_4)$ соответственно, сильно дихроичны. Дипольные моменты перехода колебания v_1 и v_2 (исходя из симметрии тетраэдра PO₄) ориентированы перпендикулярно и параллельно оси с кристалла соответственно. Следовательно, ось симметрии тетраэдра РО₄, проходящая через его вершину (атом Р) направлена перпендикулярно к оси с. Моду $v_1(PO_4)$ следует отнести к параллельному колебанию, поскольку дипольный момент этой моды в процессе колебания изменяется параллельно оси симметрии тетраэдра РО₄ [40].

Полоса антисимметричного колебания v3(PO4) в ИК спектре образца S2 расщепляется на две основные компоненты (рис. 7) с максимумами $k_{e1032 \text{ cm}^{-1}}$ и $k_{o1042 \text{ cm}^{-1}}$. Мода с частотой 1032 cm⁻¹ может быть отнесена к параллельному колебанию и с учетом ее сильного дихроизма по симметрии принадлежит к А-типу. Моду с частотой 1042 cm⁻¹ с учетом ее слабо выраженного дихроизма следует отнести к перпендикулярному колебанию Е1-типа. При сравнении эксперимента с расчетом (рис. 8) заметно, что полоса v₃, вычисленная для неориентированного образца S2 из поляризационных ИК спектров $k_o(v)$ и $k_e(v)$, несимметрична и заметно шире, чем полученная расчетом методом ab initio в рамках модели B3LYP [17,41]. Причем при нормировке основной полосы 1042 cm^{-1} для спектров рис. 8, *a*, *b* интенсивность колебания v_3 с частотой $\sim 1093\,{
m cm}^{-1}$ существенно больше для образца S2 по сравнению с

Рис. 8. Спектры абсорбции апатита в ИК области: *a*— расчет, метод *ab initio* [17], *b*— эксперимент, спектр представлен для неориентированного образца S2 (табл. 1), вычислен на основе значений *k* для двух ориентаций вектора **E** || **c** и **E** \perp **c**.

расчетом. Исходя из этого наблюдения можно предположить, что электронная плотность на определенном атоме кислорода тетраэдра РО4, задаваемая моделью B3LYP, несколько занижена, что приводит к уменьшению ионности связи Р-О и, как следствие, к уменьшению ее дипольного момента перехода. Большая полуширина полосы ν_3 в спектре образца S2 (рис. 8, *b*) по сравнению с расчетной кривой (рис. 8, а) связана с расщеплением колебательных мод v₃, которые ориентированы вдоль и поперек оси с. Дополнительным фактором уширения полосы v₃ является взаимодействие колебательных мод тетраэдров РО4 с кристаллической решеткой природного кристалла FAp. На основании анализа полуширины полос колебательных мод v1, v2 и ν_3 (рис. 7) можно предположить, что такое взаимодействие в большей мере затрагивает перпендикулярные колебания, имеющие симметрию Е, чем параллельные с симметрией А. Для колебательных мод с симметрией Е дипольный момент перехода в отличие от мод А имеет две составляющие вектора дипольного момента, направленные вдоль и поперек оси симметрии тетраэдра РО₄, что увеличивает вероятность колебательного взаимодействия этого типа колебаний с кристаллической решеткой кристалла.

В целом можно отметить, что частоты в поляризационных спектрах монокристалла FAp (образец S2), полученные из спектров ИК отражения с помощью метода КК, вполне хорошо согласуются с расчетом [17,39], в меньшей мере это можно отнести к интенсивностям полос, если сопоставлять относительные интенсивности полос, полученных в эксперименте, с расчетом. Таким образом, для лучшего согласия теории с экспериментом теоретические методы расчета должны позволять учитывать зависимость колебательных мод тетраэдров PO₄ от анизотропии апатита и взаимодействие этих мод с кристаллической решеткой апатитов.

Образец S2 получен из ГЕОХИ РАН при содействии д.ф.-м.н. Г.В. Юхневича, образец S1 предоставлен Иркутским государственным университетом, образцы S3, S4 получены из коллекции проф. Р.С. Ханукоева. Исследования спектров КР проведены с использованием оборудования ресурсного центра Научного парка СПбГУ "Оптические и лазерные методы исследования вещества". Приношу благодарность специалисту по рамановской спектроскопии Д.В. Панькину за измерения спектров КР.

Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации (проект 16.1651.2017/4.6).

Список литературы

- Steinbruegge K.B., Henningsen T., Hopkins R.H., Mazelsky R., Melamed N.T., Riedel E.P., Roland G.W. // Appl. Optics. 1972. V. 11. P. 999–1012.
- [2] *Qi S., Huang Y., Tsuboi T., Huang W., Seo H.J. //* Opt. Mater. Express. 2014. V. 4. P. 397–402.
- [3] Ткаченко Н.В., Ольховик Л.П., Камзин А.С. // ФТТ. 2011. Т. 53. № 8. С. 1512–1517.
- [4] Thakre P.S., Gedam S.C., Dhobl S.J., Atram R.G. // J. Luminesc. 2011. V. 131. P. 2683–2689.
- [5] Hughes J.M., Rakova J. // Phosphates: Geochemical, Geobiological and Material Importance. Reviews in Mineralogy and Geochemistry. V. 48. / Ed. by Kohn M.J., Rakovan J., Hughes J.M. Washington, DC: Mineralogical Society of America, 2002. P. 1–12.
- [6] Wopenka B.T., Pasteris J.D. // Mater. Sci. and Engin. 2005.
 V. 25. P. 131. doi: 10.1016/j.msec.2005.01.008
- [7] Jiangling Li. Structural Characterization of a Patite-like Materials. A thesis submitted to the School of Metallurgy and Materials for the degree of MRes in Biomaterials. UK, University of Birmingham, 2009.
- [8] Плюснина И.И. Инфракрасные спектры минералов. М.: Изд-во Моск. ун-та. 1976. 175 с.
- [9] Adler H. // American Mineralogist. 1964. V. 49. P. 1002–1015.
- [10] Кнубовец Р.Г., Кисловский Л.Д. // Физика апатита (Исследование апатита методами спектроскопии) / Под ред. Соболева В.С. Новосибирск: Наука, 1975. С. 63.
- [11] Veiderma M., Knubovets R., Tonsuaadu K. // Bulletin of the Geological Society of Finland. 2007. V. 70. Parts 1-2. P. 69–75.
- [12] Infrared Spectroscopy Materials Science, Engineering, and Technology / Ed. by Theophanides Theophile. Publisher InTech, 2012. 510 p.
- [13] Yamagishi K., Onuma K., Suzuki T., Okada F., Tagami J., Otsuki M., Senawangse P. // Nature. 2005. V. 433. P. 819.
- [14] Dorozhkin S. // Materials. 2009. V. 2. P. 1975–2045. doi: 10.3390/ma2041975

- [15] Xiaofeng Pang, Hongjuan Zeng, Jialie Liu, Shicheng Wei, Yufeng Zheng // Mater. Sci. and Appl. 2010. V. 1. P. 81–90. doi: 10.4236/msa.2010.12015
- [16] Schuetz R., Fix D., Schade U., Aziz E.F., Timofeeva N., Weinkamer R., Masic A. // Molecules. 2015. V. 20. P. 5835– 5850. doi: 10.3390/molecules20045835
- [17] Ulian G., Valgre G., Corno M., Ugliengo P. // American Mineralogist. 2017 (in press). dx.doi.org/10.2138/am.2013.4315
- [18] Ulian G. Dottorato di ricerca in Scienzedella Terra "Ab Initio Quantum Mechanical Investigation of Structural and Chemical-physical Properties of Selected Minerals for Minero-petrological, Structural Ceramic and Biomaterial Applications". Universita di Bologna, 2014.
- Beery E., Fitzgerald A.J., Zinov'ev N.N. et al. // Proceed. SPIE: Medical Imaging 2003: Physics of Medical Imaging. 2003.
 V. 5030. P. 459–470. doi.org/10.1117/12.479993
- [20] Howell B.F., JR., Licastro P.E. // American Mineralogist. 1961. V. 46. P. 269–288
- [21] Kravitz L.C., Kingsley J.D., Elkin E.L. // J. Chem. Phys. 1968.
 V. 19. P. 4600.
- [22] Zuerlein M.J., Fried D, Featherstone J.D.B., Seka W. // IEEE J. Selected Topics in Quantum Electronics. 1999. V. 5. № 4. P. 1083–1089.
- [23] Duplain G., Boulay R., Belanger P.A. // Appl. Opt. 1987.
 V. 26. № 20. P. 4447–4451. doi: 10.1364/AO.26.004447
- [24] Clark R.N., Swayze G.A., Wise R., Livo K.E., Hoefen T.M., Kokaly R.F., Sutley S.J. // USGS Digital Spectral Library splib06a. U.S. Geological Survey. Data Series 231. 2007. Электронный ресурс. Режим доступа: https://crustal.usgs.gov/speclab
- [25] Ostrooumov M., Lasnier B., Lefrant S. Database: Infrared Reflection Spectrometry of Minerals and Gems. Catalogue of the Spectrum Nantes 1993–2009. Электронный ресурс. Режим доступа: http://www.mineralog.net/?page_id=10
- [26] De Mul F.F.M., Hottenhuis M.H.J., Bouter P., Greve J., Arends J., Bosch J.J.T. // J. Dent. Res. 1986. V. 65. P. 437–440.
- [27] De Aza P.N., Santos C., Pazo A., De Aza S., Cusco R., Artus L. // Chem. Materials. 1997. V. 9. P. 912–915.
- [28] RRUFF Database Raman, X-ray, Infrared, and Chemistry Files. Электронный ресурс. Режим доступа: http://www.rruff.info
- [29] Альперович Л.И. Метод дисперсионных соотношений и его применение для определения оптических характеристик. Душанбе: Ирфон, 1973.
- [30] Kitamura R., Pilon L., Jonasz M. // Appl. Optics. 2007. V. 46. № 33. P. 8118–8133.
- [31] Smith D.Y. Dispersion Theory, Sum Rules, and Their Application to the Analysis of Optical Data // Handbook of Optical Constants of Solids. V. 1 / Ed. by Palik E.D. San Diego: Acad. Press, 1985. P. 35.
- [32] Золотарев В.М., Морозов В.Н., Смирнова Е.В. Оптические постоянные природных и технических сред. Л.: Химия, 1984. 218 с.
- [33] *Золотарев В.М.* // Опт. и спектр. 2017. Т. 122. № 5. С. 772– 779.

- [34] Поль Р.В. Оптика и атомная физика. М.: Наука, 1966. 552 с.
- [35] Dahm D.J., Dahm K.D. Interpreting Diffuse Reflectance and Transmittance: A Theoretical Introduction to Absorption Spectroscopy of Scattering Materials. Chichester, UK: NIR Publications, 2007.
- [36] Rehman I., Bonfield W. // J. Materials Sciences-Materials in Medicine. 1997. № 8(1). P. 1–4.
- [37] Борен К., Хафен Д. Поглощение и рассеяние света малыми частицами. М.: Мир, 1986. 660 с.
- [38] *Золотарев В.М.* // Опт. и спектр. 2017. Т. 123. № 1. С. 37-47.
- [39] *Freund F., Knobel R.M.* // J. Chem. Soc., Dalton Transactions. 1977. V. 11. P. 1136–1140.
- [40] Бенуэлл К. Основы молекулярной спектроскопии. М.: Мир, 1985.
- [41] Corno M., Busco C., Civalleri B., Ugliengo P. // Phys. Chem. Chem. Phys. 2006. V. 8. P. 2464–2472.