Изменение характера биаксиальных напряжений при возрастании x от 0 до 0.7 в слоях Al_xGa_{1-x}N : Si, полученных методом аммиачной молекулярно-лучевой эпитаксии

© В.В. Ратников¹, М.П. Щеглов¹, Б.Я. Бер¹, Д.Ю. Казанцев¹, И.В. Осинных^{2,3}, Т.В. Малин², К.С. Журавлев^{2,3}

¹ Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

² Институт физики полупроводников им. А.В. Ржанова

Сибирского отделения Российской академии наук,

³ Новосибирский государственный университет,

630090 Новосибирск, Россия

E-mail: ratnikov@mail.ioffe.ru

(Получена 9 августа 2017 г. Принята к печати 21 августа 2017 г.)

Методами рентгеновской дифрактометрии исследованы деформационное состояние и дефектная структура эпитаксиальных слоев Al_xGa_{1-x}N : Si (x = 0-0.7), выращенных методом молекулярно-лучевой эпитаксии и легированных кремнием при постоянном потоке силана. Концентрация атомов Si в слоях, измеренная методом вторично-ионной масс-спектрометрии, составила (4.0-8.0) $\cdot 10^{19}$ см⁻³. Найдено, что для x < 0.4 латеральные остаточные напряжения имеют компрессионный характер, в то время как для x > 0.4 они становятся растягивающими. Проведена оценка напряжений после окончания роста и обсуждается вклад в деформационное состояние слоев как коалесценции зародышей растущего слоя, так и напряжений несоответствия в системе слой-буфер. Найдено, что для x = 0.7 плотности вертикальных винтовых и краевых дислокаций максимальны и равны $1.5 \cdot 10^{10}$ и $8.2 \cdot 10^{10}$ см⁻² соответственно.

DOI: 10.21883/FTP.2018.02.45448.8699

1. Введение

Нитриды металлов III группы и их твердые растворы являются прямозонными полупроводниками, перспективными для изготовления светоизлучающих приборов для видимой и ультрафиолетовой областей спектра. Изменяя содержание алюминия в твердых растворах AlGaN, можно получать материал с шириной запрещенной зоны от 3.43 до 6.2 эВ, покрывая, таким образом, спектральный диапазон 200-365 нм. Дальнейшие перспективы нитридной оптоэлектроники связаны с продвижением в фиолетовую и зеленую области спектра, повышением эффективности светодиодов и лазеров и созданием источников одиночных фотонов, работающих при комнатной температуре. Недавно была обнаружена сверхлюминесценция в слоях $Al_xGa_{1-x}N$: Si (x = 0 - 0.7), легированных с использованием потока силана [1]. Интенсивное "зеленое" излучение появлялось в слоях с содержанием алюминия x = 0.6 - 0.7 при концентрации атомов кремния порядка 5 · 10¹⁹ см⁻³. В работе [2] было показано, что излучение имеет донорноакцепторный и зона-акцепторный механизмы рекомбинации, где донором является кремний на месте катиона, акцептором предположительно является трехкратно заряженная катионная вакансия. Концентрация атомов кремния может быть управляемо повышена до 10^{20} см⁻³ [3], что влияет на величину упругих напряжений и концентрацию дефектов кристаллической решетки.

В работе [4] нами было показано, что увеличение концентрации кремния приводит к снижению уровня

остаточных латеральных напряжений, увеличению растягивающих ростовых напряжений и росту плотности вертикальных как винтовых, так и краевых дислокаций в слоях $Al_xGa_{1-x}N$: Si (x = 0 и 0.3).

Проведенное недавно изучение полученных методом молекулярно-пучковой эпитаксии (МПЭ) слоев GaN/AlN/Si (111) с помощью in situ контроля кривизны образцов [5] показало сильную зависимость поведения напряжений от температуры роста и оптимизации нуклеационного слоя. Совместное использование in situ контроля и сканирующей трансмиссионной электронной микроскопии подтвердило важность механизмов релаксации компрессионных напряжений путем как дислокационных реакций (аннигиляции дислокаций, образования полупетель), так и отклонения дислокаций от направления роста. Напряжения в GaN снижались для толщины слоя 1 мкм до -0.65 ГПа, оставаясь компрессионными. В то же время в высокотемпературных AlGaN слоях, полученных методом металло-органической газофазовой эпитаксии (МОГФЭ), авторы наблюдали переход сжимающих напряжений в растягивающие [6].

Цель данной работы состояла в исследовании деформационного состояния и дефектной структуры слоев $Al_x Ga_{1-x} N$: Si (x = 0-0.7) на сапфире при постоянном потоке легирующей примеси.

2. Экспериментальная часть

Эпитаксиальные слои твердых растворов $Al_x Ga_{1-x} N$, имеющие кристаллическую структуру вюрцита, толщи-

⁶³⁰⁰⁹⁰ Новосибирск, Россия

ной 0.5 мкм выращивались на подложках (0001) сапфира методом молекулярно-лучевой эпитаксии на установке Рибер-32 с применением аммиака в качестве источника активного азота. Температура роста слоев $Al_xGa_{1-x}N$ с x = 0-0.42 равнялась 940°С, а слоев с x = 0.62 и 0.7 — 975°С. Температура была повышена, чтобы избежать сильных искажений поверхностной морфологии растущих слоев из-за перехода от 2-мерного к 3-мерному росту. Этот переход фиксировался по уширению рефлексов в дифракции быстрых электронов на отражение и появлению разрывов на рефлексах. Содержание Al в слоях задавалось соотношением потоков Ga/Al и контролировалось по величине ширины запрещенной зоны.

Легирование слоев AlGaN осуществлялось с использованием газового источника — моносилана, с фиксированным потоком $f = 0.0175 \text{ см}^3/\text{мин.}$

Концентрация атомов Si в слоях определялась методом динамической вторично-ионной масс-спектрометрии (ВИМС) с использованием вторично-ионного микрозонда САМЕСА IMS 7f. В качестве первичных ионов использовался ¹³³Cs⁺. В качестве аналитических ионов использовались ионы ²⁸Si⁻, ²⁷Al⁻ и ⁶⁹Ga⁻. Для исключения масс-интерференции аналитических ионов ²⁸Si⁻ с ионами ²⁷Al¹H⁻ и ¹⁴N² измерения проводились при массовом разрешении $M/\Delta M = 3500$. Количественный ВИМС анализ проводился с использованием коэффициентов относительной элементной чувствительности (КОЭЧ) [7]. Зависимость КОЭЧ иона ²⁸Si⁻ от состава матрицы Al_xGa_{1-x}N предварительно определялась по результатам идентичных измерений известных содержаний Si в наборе образцов GaN, Al_{0.5}Ga_{0.5}N и AlN, ионно-имплантированных атомами ²⁸Si. Глубины кратеров ионного травления измерялись с помощью стилусного профилометра AMBIOS XP-1.

Концентрация и подвижность электронов в слоях определялись посредством измерений эффекта Холла в геометрии Ван-дер-Пау в магнитном поле 0.5 Тл при комнатной температуре.

Структурные характеристики и деформационное состояние слоев Al_xGa_{1-x}N изучались методами двух (ДКД)- и трехкристальной (ТКД) рентгеновской дифрактометрии. Измерение параметров решетки (ПР) а и с проводилось методом ТКД с использованием симметричного 0004 и асимметричного 11-24 рефлексов [8]. Путем регистрации на ДКД смещения дифракционного пика (0006) от сапфировой подложки при последовательном линейном сканировании образца в рентгеновском пучке измерялся радиус изгиба *R*, который давал информацию о латеральных биаксиальных напряжениях сжатия σ_a (R < 0) или растяжения (R > 0) [9]. Величины σ_a рассчитывались по формуле Стоуни [10], в расчетах учитывался изгиб исходных подложек сапфира. На трехкристальном дифрактометре регистрировались дифракционные пики для $(2\theta - \omega)$ - и ω-мод сканирования. Плотности вертикальных винтовых и краевых дислокаций были оценены из значений полной ширины на половине максимума интенсивности для симметричного 0002 и кососимметричного 10–15 (skew-геометрия) рефлексов (ПШПМ) в рамках модели хаотически расположенных дислокаций [11].

3. Обсуждение результатов

Измерение эффекта Холла для Al_xGa_{1-x}N : Si показало последовательное уменьшение концентрации электронов *n* от $\sim 5.0 \cdot 10^{19} \,\mathrm{cm^{-3}}$ для x = 0 - 0.36 до $2.5 \cdot 10^{16} \,\mathrm{cm}^{-3}$ для x = 0.7, т.е. легирование становится менее эффективным при возрастании доли Al в твердом растворе Al_xGa_{1-x}N вплоть до практически полного отсутствия электронной проводимости для x = 0.7 (см. табл. 1). Подвижность электронов монотонно уменьшалась от $130 \,\mathrm{cm}^2/\mathrm{B} \cdot \mathrm{c}$ в GaN до $\sim 8 \,\mathrm{cm}/\mathrm{B} \cdot \mathrm{c}$ при x = 0.62, при x = 0.7 подвижность измерить не удалось. В то же время измерения ВИМС показали постоянный уровень концентрации атомов кремния на уровне $(8-9) \cdot 10^{19} \,\mathrm{cm}^{-3}$ в слоях с x = 0-0.42 и вдвое меньший в слоях x = 0.62 и 0.7. Снижение концентрации кремния, вероятно, связано с десорбцией радикалов SiH_x с поверхности растущего слоя при повышении температуры роста.

Известно, что кремний, встраиваясь на место катиона, является мелким донором с энергией ионизации ~ 30 мэВ до $x \sim 0.85$ [12]. Поэтому снижение концентрации электронов не объясняется заглублением донорного уровня в AlGaN при возрастании доли Al. Причиной этого явления может быть либо переход кремния в электрически неактивное состояние, либо рост концентрации компенсирующих центров. Кремний в электрически неактивном состоянии может входить как в комплексы с азотом или вакансиями, так и находиться в решетке в виде межузельных атомов и их кластеров, микровыделений и др. [13]. Компенсирующими центрами могут быть фоновые примеси (кислород, углерод) или структурные дефекты, например вакансии [14], или дислокации [15]. Так как концентрации атомов кислорода и углерода в исследуемых слоях были по данным ВИМС, на уровне порядка 10^{18} см⁻³ и существенно не менялись с изменением доли Al, то компенсация вызвана структурными дефектами.

Таблица 1. Значения содержания алюминия x, концентрация электронов n_e и концентрация кремния n_{tot} в слоях $Al_x Ga_{1-x} N$: Si

№ образца	x	$n_e,$ $10^{19} \mathrm{cm}^{-3}$	$n_{\rm tot}, 10^{19} {\rm cm}^{-3}$
834	0	4.6	8.0
835	0.05	4.8	8.0
836	0.15	3.9	9.3
820	0.36	5.1	7.3
819	0.42	1.6	9.0
821	0.62	0.066	4.6
837	0.70	0.0025	4.0

Образцы $\backslash x$	<i>R</i> (м)	<i>о</i> _а (ГПа)	KTP, 10 ⁻⁶ K ⁻¹	$\sigma_{a, ext{therm}} \ (\Gamma\Pi ext{a})$	$\sigma_{a,\mathrm{growh}} \ (\Gamma\Pi \mathrm{a})$
0	-67.5	-0.38	5.59	-0.83	+0.45
0.05	-58.4	-0.44	5.53	-0.86	+0.42
0.15	-29.2	-0.88	5.39	-0.93	+0.05
0.36	-38.1	-0.72	5.10	-1.05	+0.33
0.42	+82.4	+0.31	5.01	-1.09	+1.40
0.62	+68.7	+0.39	4.73	-1.25	+1.64
0.70	+28.3	+0.87	4.62	-1.30	+2.17

Таблица 2. Значения радиусов изгиба R, латеральных остаточных напряжений σ_a , КТР, термонапряжений $\sigma_{a, \text{therm}}$ и ростовых напряжений σ_{agrowh} для образцов $Al_x Ga_{1-x} N$

По рентгеновским измерениям макроизгиб для всех образцов был сферическим (однородным), т.е. все слои находились под действием биаксиальных латеральных напряжений σ_a . Из табл. 2 видно, что эти остаточные (после охлаждения образцов до комнатной температуры) напряжения для GaN : Si и Al_xGa_{1-x}N : Si (x = 0-0.36) — компрессионные, при увеличении x в образцах их величина уменьшалась. Характер напряжений меняется для x = 0.42-0.7 — напряжения становились растягивающими, их величина возрастала с увеличением x.

Рассчитанные (из R) остаточные напряжения σ_a есть сумма напряжений в образце после окончания роста $\sigma_{\rm grow}$ и термонапряжений $\sigma_{\rm therm}$, возникающих при охлаждении до комнатной температуры. Последние имеют компрессионный характер из-за разницы коэффициентов температурного расширения нитридов и сапфира (-25%) для GaN и -44% для AlN). Их рассчитанные значения для x = 0 - 0.7 с использованием коэффициентов температурного расширения (КТР) из [16] (для $x \neq 0$ интерполяция по Вегарду) приводятся в табл. 2. В [17] найдено, что перестройки дефектной (дислокационной) структуры при охлаждении не происходит, т.е. нет релаксации напряжений роста при охлаждении. Это позволило оценить напряжения после окончания роста (ростовые) $\sigma_{\rm grow}$ для интервала $x=0{-}0.7.$ Они растягивающие для всех составов, возрастая от +0.45 (x = 0) до +2.17 ГПа (x = 0.7).

В свою очередь ростовые напряжения есть сумма напряжений из-за несоответствия ПР слоя и подложки и напряжений, возникающих при коалесценции островков пленки. Исходя из рассогласования параметров решетки $Al_x Ga_{1-x}N$ и буферного слоя AlN, напряжения несоответствия по величине должны уменьшаться с ростом *x*, оставаясь компрессиоными. В [18] предложена модель, объясняющая механизм релаксации компрессионных напряжений в слоях путем наблюдаемого экспериментально изменения направления прорастающих вертикальных краевых дислокаций, являющихся преобладающим типом дефектов в слоях. Отклоняющиеся от [0001] направления роста краевые дислокации имеют мисфит-компоненту, снижая тем самым компрессионные

напряжения несоответствия. Авторами найдено, что легирование твердого раствора $Al_xGa_{1-x}N$ кремнием стимулирует процесс отклонения прорастающих краевых дислокаций. Изменение направления дислокационных линий связывается авторами с вводимыми примесью неровностями поверхности во время роста.

Таким образом, при увеличении *x* в твердом растворе компрессионные напряжения должны снижаться за счет уменьшения несоответствия параметров решетки буферного слоя и подложки. Легирование кремнием действует в том же направлении снижения компрессионных напряжений в слоях из-за уменьшения ПР твердого раствора при замене катиона на кремний.

Появление растягивающих напряжений в слоях ряд авторов связывает с коалесценцией микрокристаллитов (зерен) на начальных стадиях роста [19-22], причем величина напряжений обратно пропорциональна размеру зерен. Мелкозернистый рост приводит к генерации сильных латеральных растягивающих напряжений при коалесценции зерен в слое. В то же время авторы наблюдали рост растягивающих напряжений и при увеличении концентрации кремния в слоях. Кремний, действуя как антисурфактант, снижает размер зерен на начальных стадиях роста слоев и тем самым увеличивает уровень растягивающих напряжений в сравнении с нелегированным ростом. Эта модель была использована в работе [4] для объяснения увеличения растягивающих напряжений в слоях $Al_xGa_{1-x}N$: Si фиксированного состава (x = 0и 0.3) с увеличением концентрации кремния.

По данным атомной силовой микроскопи (ACM), поверхность $Al_x Ga_{1-x}N$: Si имеет блочную (зеренную) структуру с блоками гексагональной формы, их размер возрастает с повышением доли алюминия: для слоев с x < 0.3 диаметр составляет около 1 мкм, а в слоях с x > 0.3 диаметр блоков больше примерно вдвое [3]. Таким образом, растягивающие напряжения, обусловленные коалесценцией микрокристаллитов, должны уменьшаться с ростом доли Al при постоянном потоке силана. Хотя ACM показывает лишь поверхностную блочную (зеренную) структуру, а не структуру, характерную для начальных стадий роста, можно предполагать, что и на начальных стадиях роста резмер зерен в слоях с большим содержанием Al выше. Следовательно, и растягивающие напряжения в таких слоях ниже.

Имея в виду рассмотренные выше механизмы генерации напряжений при росте слоев, становится понятной существенная разница ростовых напряжений для x = 0 и 0.7. Для x = 0 напряжения из-за разницы ПР максимальны (несоответствие ПР GaN и AlN +2.4%) и, хотя растягивающие напряжения выше (по ACM), чем в слоях с бо́льшими x, суммарный вклад обоих механизмов дает ростовые растягивающие напряжения $\sigma_{\text{grow}} = +0.45 \Gamma \Pi a$. Для x = 0.7 компрессионные напряжения из-за несоответствия ПР существенно ниже (несоответствие ПР Al_{0.7}Ga_{0.3}N и AlN + 0.74%) и, хотя растягивающие напряжения из-за несоответствия пР существенно и (по ACM), чем в слоях с бо́льшими x = 0.7 компрессионные напряжения из-за несоответствия ПР существенно и с x = 0 (по ACM), суммарные ростовые растягивающие напряжения с x = 0 (по ACM), суммарные ростовые растягивающие напряжения с x = 0 (по ACM), суммарные ростовые растягивающие напряжения с x = 0 (по ACM), суммарные ростовые растягивающие напряжения

Рис. 1. Значения параметров решетки a и c в слоях $Al_x Ga_{1-x} N$: Si.

в этом случае значительно больше: $\sigma_{\text{grow}} = +2.17 \, \Gamma \Pi a$. Для слоев промежуточного состава вклады механизмов генерации напряжений постепенно меняются, приводя к увеличению в ростовых напряжениях растягивающей компоненты.

Отсутствие информации о эффективности релаксации компрессионных напряжений путем изменения направления вертикальных краевых дислокаций в интервале x = 0-0.7 не позволяет более детально проанализировать поведение напряжений в слоях.

Охлаждение образцов до комнатной температуры приводит из-за вклада термонапряжений для x = 0-0.36к изменению знака остаточных напряжений (они компрессионные), а в случае x = 0.42-0.7 знак остается положительным, т.е. напряжения в слоях — растягивающие.

Отметим, что, несмотря на значительные растягивающие напряжения для больших *x*, нами не наблюдалось растрескивания образцов.

Измерения параметра решетки при увеличении х представлены на рис. 1. Сплошная прямая, соединяющая значения для ненапряженных (табличных) GaN и AlN, дает значения свободных от напряжений параметров решетки слоев с разными х (линейная зависимость по Вегарду). Если провести прямую с наклоном $[-(2C_{13}/C_{33}) \cdot (c_0/a_0)]$ через экспериментальные значения ПР слоев, то точка ее пересечения с прямой, соединяющей значения ПР GaN и AlN, даст значения ПР c_{rel} и a_{rel} без искажений из-за напряжений в слоях [23]. Здесь c_0 и a_0 — табличные ПР, C_{13} и C_{33} — упругие постоянные, полученные линейной интерполяцией по Вегарду. Из полученных c_{rel} и a_{rel} был рассчитан состав исследуемых слоев. Реальные значения x_{rel} для слоев с компрессионными остаточными напряжениями были $x_{\rm rel} = 0.04$ для x = 0.05, $x_{\rm rel} = 0.09$ для x = 0.15и x_{rel} = 0.29 для x = 0.36. Однако при аналогичной обработке измерений ПР для образцов с x = 0.42 - 0.7

возникает противоречие с тем, что по измерениям кривизны остаточные напряжения в них растягивающие. Если рассматривать только биаксиальные растягивающие напряжения в этих слоях, то экспериментальные ПР должны лежать ниже прямой, соединяющей ПР GaN и AlN. Их положение на рис. 1 можно объяснить заметным вкладом гидростатических напряжений в деформацию слоев для этих х. Кроме относительно слабо деформирующих решетку катионных вакансий V_{Ga}, V_{Al}, возникающих при высоком уровне легирования *n*-типа [14], и атомов Si, замещающих Ga (и Al), в решетке может иметь место встраивание Si на место N, приводящее к сильной компрессионной гидростатической деформации из-за большой разницы ионных радиусов Si и N. В GaN энергия образования дефекта замещения Si на месте N слишком высока для возникновения этих дефектов [24]. Однако энергия образования уменьшается при подъеме уровня Ферми во время роста, поэтому высокий уровень легирования *п*-типа может привести к значительной концентрации Si на месте N. Изменение длины межатомных связей в кристаллической решетке при замещении азота кремнием составляет 13.6% для GaN и 17.5% для AlN [24]. Таким образом, вклад гидростатических деформаций возрастает с увеличением доли Аl. Количественная корректировка измеренных ПР для x = 0.42 - 0.7 затруднена также и из-за большой дисперсии табличных значений ПР, КТР, упругих постоянных, контракционных множителей и др.

Зависимость измеренных полуширин $(\omega)0002,$ $(\omega)10{-}15$ и $(2\theta - \omega)0002$ рефлексов от состава $Al_x Ga_{1-x} N$: Si приведена на рис. 2. Как $w(\omega)$, так и $w(2\theta - \omega)$ возрастают при увеличении *x*, говоря о существенном ухудшении кристаллического совершенства слоев. В слоях преобладают вертикальные краевые (и смешанные) дислокации, плотность которых увеличивается с ростом доли Al и для x = 0.7 достигала $8.2 \cdot 10^{10} \,\mathrm{cm}^{-2}$. Плотность вертикальных винтовых

Рис. 2. Полуширины (ω) 0002, (ω) 10–15 и ($2\theta - \omega$) 0002 рефлексов слоев Al_xGa_{1-x}N : Si.

237

дислокаций в этих слоях существенно ниже — $0.9 \cdot 10^{10} \, \text{см}^{-2}$.

4. Заключение

Деформационное состояние и дефектная структура эпитаксиальных слоев $Al_xGa_{1-x}N$: Si, выращенных при постоянном потоке силана (источника Si) и с содержанием алюминия, варьируемым в диапазоне x = 0 - 0.7, были исследованы методами рентгеновской дифрактометрии. Показано, что легирование кремнием приводит к изменению характера остаточных напряжений: из компрессионных они становятся растягивающими для x = 0.42 - 0.7. Этот эффект связан с тем, что ростовые растягивающие напряжения из-за коалесценции островков превышают компрессионные напряжения, возникающие как из-за рассогласования ПР кристалических решеток $Al_xGa_{1-x}N$ и буферного слоя AlN, так и изза термонапряжений при охлаждении для этих х. Снижение уровня компрессионных напряжений в слоях при росте, вероятно, обусловлено отклонением от нормали к растущему слою прорастающих краевых дислокаций, плотность которых возрастает при увеличении содержания алюминия.

Работа поддержана Российским фондом фундаментальных исследований (грант № 16-02-00018). ВИМС измерения выполнялись в федеральном ЦКП "Материаловедение и диагностика в передовых технологиях" (ФТИ им. А.Ф. Иоффе), поддерживаемом Минобрнауки России, с использованием установки ВИМС САМЕСА IMS 7f.

Список литературы

- P.A. Bokhan, P.P. Gugin, D.E. Zakrevsky, K.S. Zhuravlev, T.V. Malin, I.V. Osinnykh, V.I. Solomonov, A.V. Spirina. J. Appl. Phys., **116**, 113103 (2014).
- [2] I.V. Osinnykh, T.V. Malin, V.F. Plyusnin, A.S. Suranov, A.M. Gilinski, K.S. Zhuravlev. Jpn. J. Appl. Phys., 55, 05FG09 (2016).
- [3] K.S. Zhuravlev, I.V. Osinnykh, D.Yu. Protasov, T.V. Malin, V.Yu. Davydov, A.N. Smirnov, R.N. Kyutt, A.V. Spirina, V.I. Solomonov. Phys. Status Solidi C, 10, 315 (2013).
- [4] V.V. Ratnikov, R.N. Kyutt, A.N. Smirnov, V.Yu. Davydov, M.P. Scheglov, T.V. Malin, K.S. Zhuravlev. Crystallography Reports, 58, 1023 (2013).
- [5] D. Zolotukhin, D. Nechaev, N. Kuznetsova, V. Ratnikov, S. Rouvimov, V. Jmerik, S. Ivanov. J. Phys. Conf. Ser., 741, 012025 (2016).
- [6] S. Raghavan, J.M. Redwing. J. Appl. Phys. 98, 023514 (2005).
- [7] R.G. Wilson, F.A. Stevie, C.W. Magee. Secondary Ion Mass Spectrometry. A Practical Handbook for Depth Profiling and Bulk Impurity Analysis (Wiley, N.Y., 1989).
- [8] P.Y. Fewster, A. Andrew. J. Appl. Cryst., 20. 451 (1995).
- [9] G.A. Rozgonii, T.J. Ciesielka. Rev. Sci. Instrum., 44, 1053 (1973).
- [10] G.G. Stoney. Proc. Royal Soc. (London), 82 (553), 172 (1909).
- [11] M.A. Moram, M.E. Vickers. Rep. Progr. Phys., 72, 036502 (2009).

- [12] B. Borisov, V. Kuryatkov, Yu. Kudryavtsev, R. Asomoza, S. Nikishin, D.Y. Song, M. Holtz, H. Temkin. Appl. Phys. Lett. 87, 132106 (2005).
- [13] Z.H. Lu, T. Tyliszczak, P. Broderson, A.P. Hitchcock, J.B. Webb, H. Tang, J. Bardwell. Appl. Phys. Lett., 75, 534 (1999).
- [14] Y. Zhang, W. Liu, H. Niu. Phys. Rev. B 77, 035201 (2008).
- [15] M. Albrecht, J.L. Weyher, B. Lucznik, I. Grzegory, S. Porowski. Appl. Phys. Lett. 92, 231909 (2008).
- [16] Landolt-Bornstein. In: Physics of Group IV Elements and HI-V Compounds, ed. by O. Madelung (Springer, N.Y., 1982) v. 17
- [17] S. Heanre, E. Chason, J. Han. Appl. Phys. Lett., 74, 356 (1999).
- [18] P. Cantu, F. Wu, P. Waltereit, S. Keller, A.E. Romanov, S.P. DenBaars, J.S. Speck. J. Appl. Phys. 97, 103534 (2005).
- [19] W.D. Nix, B.V. Clemens. J. Mater. Res. 14, 3467 (1999).
- [20] A. Cremades, L. Gorgens, O. Ambacher, M. Stutzmann, F. Scholz. Phys. Rev. B., 61, 2812 (2000).
- [21] L.T. Romano, C.G. Van de Walle, J.W. Ager III, W. Götz, R.S. Kern. J. Appl. Phys., 87, 7745 (2000).
- [22] T. Bottcher, S. Einfeldt, S. Figge, R. Chierchia, H. Heinke, D. Hommel, J.S. Speck. Appl. Phys. Lett., 78, 1976 (2001).
- [23] J.G. Kim, A. Kimura, Y. Ketei. J. Appl. Phys., 110, 033511 (2011).
- [24] P. Boguslawski, J. Bernholc. Phys. Rev. B, 56, 9496 (1997).

Редактор Г.А. Оганесян

Change in the character of biaxial stresses with increase of *x* from 0 to 0.7 in the Al_xGa_{1-x}N : Si layers obtained by ammonia molecular-beam epitaxy

V.V. Ratnikov¹, M.P. Sheglov¹, B.Ya. Ber¹, D.Yu. Kazantsev¹, I.V. Osinnykh^{2,3}, T.V. Malin², K.S. Zhuravlev^{2,3}

¹ loffe Institute,

194021 St. Petersburg, Russia ² Rzhanov Institute of Semiconductor Physics Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia

³ Novosibirsk State University,

630090 Novosibirsk. Russia

Abstract The deformation state and the defect structure of $Al_x Ga_{1-x}N$: Si epitaxial layers grown by the molecular beam epitaxy technique with a constant flux of silane as a Si source and with the aluminum content (*x*) varying from 0 to 0.7 were studied by *X*-ray diffractometry. According to the secondary ion mass spectrometry measurements, concentration of silicon atoms lies in the range of $(4.0-8.0) \cdot 10^{19} \text{ cm}^{-3}$. The residual lateral stresses are compressive when x < 0.4, while for x > 0.4 they become tensile. Estimation of the stress values after the end of growth was made; the contributions of coalescence of the growing layer grains and the mismatch stresses in the layer-buffer system into the deformation state of the layers are discussed. It was found that for x = 0.7, the densities of vertical screw and edge dislocations are maximum and equal to $1.5 \cdot 10^{10}$ and $8.2 \cdot 10^{10}$ cm⁻², respectively.