01

Исследование спектров гигантского комбинационного рассеяния гидрохинона, адсорбированного на диоксиде титана

© А.М. Полуботко¹, В.П. Челибанов^{2,¶}

¹ Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия ² Университет ИТМО, 197101 Санкт-Петербург, Россия

[¶] e-mail: alex.marina@mail.ioffe.ru; Chelibanov@gmail.com

Поступила в редакцию 27.04.2017 г.

В работе анализируется спектр гигантского комбинационного рассеяния (ГКР) гидрохинона, адсорбированного на наночастицах диоксида титана TiO₂. Указывается, что усиление тем больше, чем больше средний размер наночастиц, что находится в согласии с электростатическим приближением. Кроме того, обнаружено, что в спектре появляются линии, запрещенные в обычном комбинационном рассеянии (КР). При этом усиление испытывают линии, обусловленные компонентами электрического поля, как нормальной, так и тангенциальной по отношению к поверхности. Этот результат является свойством, характерным для ГКР на полупроводниковых и диэлектрических подложках. Обнаружение запрещенных линий говорит о достаточно большой роли сильного квадрупольного взаимодействия в такой системе.

DOI: 10.21883/OS.2018.01.45359.101-17

Исследование явления ГКР на полупроводниковых и диэлектрических подложках представляет большой интерес как с теоретической, так и с экспериментальной точек зрения. В [1] показано, что причиной ГКР в этом случае, как и в случае металла, является поверхностная шероховатость. Причем усиление происходит в малых областях поверхности с большой положительной кривизной. Нами было показано, что в случае ГКР на полупроводниках и диэлектриках усиление в этих областях меньше, чем на металле с таким же значением модуля диэлектрической проницаемости. Этот результат связан с тем, что диэлектрики и полупроводники в принципе прозрачны для электромагнитного поля в достаточно широкой области частот в отличие от металла, который стремится "вытолкнуть" поле. Поэтому системы с полупроводниковыми или диэлектрическими подложками имеют "меньшую неоднородность" среды в отличие от металла, что приводит к меньшему усилению поля и его производных. Однако в соответствии с экспериментальными и теоретическими результатами [1] в отличие от металла на шероховатых поверхностях полупроводников и диэлектриков должно происходить усиление как нормальной, так и тангенциальной компонент, что приводит к определенным особенностям в спектрах ГКР. Нами были исследованы спектры молекулы гидрохинона, адсорбированного на диоксиде титана TiO2. Как известно из литературы, гидрохинон представляет собой симметричную молекулу с группой симметрии C_{2h} (рис. 1). В соответствии с представлениями, изложенными в [2], он может образовывать молекулярный кристалл с триклинной или моноклинной сингонией. При этом молекулы гидрохинона образуют цепи, соединяясь друг с другом через атомы водорода. Исследование спектров комбинационного рассеяния и инфракрасного поглощения показало [2], что колебательные частоты молекулы гидрохинона для обоих случаев очень близки между собой и близки также к частотам молекулы в паре или в растворе CH₃CN. Этот результат позволил нам использовать соотнесение линий неприводимым представлениям группы симметрии гидрохинона, полученное в [3–5] (таблица). Спектры гидрохинона, адсорбированного на коллоидных частицах TiO₂ со средним размером 10 и 80 nm в интервале волновых чисел 600–1700 сm⁻¹ показаны на рис. 2. Отметим, что спектры снимались для значения длины падающей волны 785 nm. При этом коэффициент усиления составлял величину ~ 10^3-10^4 . Описание спектрометра, на котором были получены экспериментальные данные, изложены в [6,7].

По нашим представлениям гидрохинон адсорбируется параллельно поверхности наночастиц. Особенностью

Рис. 1. Молекула гидрохинона.

Средний размер 10 nm	Средний размер 80 nm	Линии чистого TiO ₂	Неприводимые представления (группа D _{2h})
196 оч. сл.			A_u
376 оч. сл.			B_{g}
		397-400	
		476	
		515 - 517	
		638-641	
704 оч. сл.	704 оч. сл.		B_g
808 сл.			Отсутствует
811 сл.	811 cp.		Отсутствует
843	843 c.		A_g
853 оч. сл.	853 c.		A_g
	894 оч. сл.		Отсутствует
	915 оч. сл.		Отсутствует
	1001 сл.		B_u
1153 пл.	1153 оч. сл.		A_g
1159 сл.	1159		A_g
	1220 оч. сл.		B_u
	1241 оч. сл.		B_u
	1263 c.		A_g
1269	1267 с.пл.		A_g
1274	1274 пл.		A_g
1280			Отсутствует
1185			Отсутствует
1500 сл.	1500 сл.		B_u
	1590 оч. сл. пл.		A_g
1607 сл.	1607 cp.		A_g

Соотнесение линий гидрохинона (сm $^{-1})$ в спектрах ГКР для наночастиц TiO2 со средними размерами 10 и 80 nm

Примечание. с. — сильная, сл. — слабая, оч. сл. — очень слабая, пл. — плечо.

спектра, снятого на частицах со средним размером 10 nm, является появление дублетов в линиях с волновыми числами (808,811) и (1153,1159) ст⁻¹, а также достаточно широких полос и их тонкой структуры в районе 849 и 1270 ст⁻¹. Достаточно большая ширина и тонкая структура полос, по-видимому, говорят о сильном взаимодействии молекулы с подложкой и существовании нескольких неэквивалентных положений молекулы. Для спектра, снятого для частиц 10 nm, практически все линии относятся к колебаниям с единичным неприводимым представлением A_g как и в обычном КР, однако одна линия с волновым числом $\sim 1500 - 1512 \, \mathrm{cm}^{-1}$ относится к колебанию с неприводимым представлением B_u, описывающему трансформационные свойства компонент дипольного момента d_x и *d*_{*v*}, параллельных поверхности. Появление этой линии, которая запрещена в спектре обычного КР, связано с возникновением в системе квадрупольного взаимодействия. Ее малая интенсивность указывает, что возникающее квадрупольное взаимодействие слабо в этой системе в отличие от случая с металлом. Кроме того, появление линии, относящейся к неприводимому представлению B_u , указывает на справедливость нашего теоретического результата [1], указывающего на возможность усиления не только нормальной, но и тангенциальных компонент электрического поля в отличие от металлов, где такое усиление либо отсутствует, либо мало из-за высокой проводимости.

В случае больших частиц со средним размером ~ 80 nm спектр ГКР усилен значительно сильнее. Этот результат объясняется тем, что находясь в области, в которой дифракция на наночастицах может быть описана в рамках электростатического приближения, интенсивность рассеяния должна быть больше для частиц больших размеров. В этом случае в спектре появляется еще несколько очень слабых запрещенных линий, относящихся к колебаниям с неприводимым представлением B_u , с волновыми числами 1001, 1220 и 1241 сm⁻¹. Кроме того, в спектре появляется также линия 704 сm⁻¹, связанная с неприводимым представлением B_g .

Рис. 2. Спектр ГКР гидрохинона, адсорбированного на наночастицах TiO_2 со средними размерами 10 (сплошная кривая) и 80 nm (штриховая кривая) в диапазоне волновых чисел 600–1700 сm⁻¹.

Рис. 3. Спектр ГКР гидрохинона, адсорбированного на наночастицах со средним размером 10 nm в диапазоне волновых чисел 100-700 cm⁻¹.

В области волновых чисел $100-700 \,\mathrm{cm^{-1}}$ (рис. 3) спектр адсорбированного гидрохинона маскируется наложением сильных линий, принадлежащих колебаниям решетки TiO₂, при значениях волновых чисел 397-400, 476, 512-517 и $638 \,\mathrm{cm^{-1}}$. Однако в этой области видна одна слабая запрещенная линия при значении волнового числа $196 \,\mathrm{cm^{-1}}$, относящаяся к колебаниям с неприводимым представлением A_u , и линия с неприводимым представлением B_g при значении волнового числа $378 \,\mathrm{cm^{-1}}$.

В целом исследование спектра гидрохинона указывает на правильность нашей теории ГКР на полупроводниковых и диэлектрических подложках [1] и необходимость учитывать квадрупольное взаимодействие, которое оказалось достаточно сильным в данной системе и привело к появлению слабых запрещенных линий.

Список литературы

- [1] Полуботко А.М., Челибанов В.П. // Опт. и спектр. 2017. Т. 122. № 6. С. 78.
- [2] Kubinyi M.J., Keresztury G. // Spectrochim. Acta. A. 1989. V. 45. P. 421.
- [3] Kubinyl M., Billes F., Grofcsik A., Keresztury G. // J. Mol. Str. 1992. V. 266. P. 339.
- [4] Nonella M. // J. Phys. Chem. B. 1997. V. 101. P. 1235.
- [5] Kubinyi M.J., Keresztury G. // Mikrochim. Acta. 1997. V. 14.
 P. 525.
- [6] Iasenko E., Marugin A., Kozliner M. // Proc. 17th Int. conf. "Laser Optics 2016". 2016. St. Petersburg. P. 51.
- [7] Iasenko E.A., Chelibanov V.P., Polubotko A.M. Электронный ресурс. Режим доступа: arXiv:1604.00497