19

Высокотемпературная теплоемкость оксидов системы CdO-V₂O₅

© Л.Т. Денисова, Л.Г. Чумилина, Н.В. Белоусова, В.М. Денисов, Н.А. Галиахметова

Институт цветных металлов и материаловедения Сибирского федерального университета, Красноярск, Россия

E-mail: antluba@mail.ru

(Поступила в Редакцию 26 апреля 2017 г.)

Твердофазным синтезом из CdO и V₂O₅ при последовательном обжиге получены Cd₂V₂O₇ (823–1073 K) и CdV₂O₆ (823–853 K). Методом дифференциальной сканирующей калориметрии измерена молярная теплоемкость оксидных соединений. С использованием экспериментальных зависимостей $C_p = f(T)$ рассчитаны изменения энтальпии, энтропии и приведенной энергии Гиббса. Показано, что между удельной теплоемкостью и составом оксидов системы CdO–V₂O₅ имеется корреляция.

Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации в рамках Госзадания на 2017–2019 гг. (проект 4.8083.2017/БЧ "Формирование банка данных термодинамических характеристик сложнооксидных полифункциональных материалов, содержащих редкие и рассеянные элементы").

DOI: 10.21883/FTT.2017.12.45253.145

1. Введение

Оксидные соединения, образующиеся в системе CdO-V₂O₅, в течение длительного времени вызывают к себе повышенный интерес исследователей [1-8]. Обусловлено это их использованием в качестве электродных материалов, сегнетоэлектриков и в катализе [9–12]. Тем не менее многие свойства таких соединений исследованы недостаточно. Это относится как к виду диаграммы состояния системы CdO-V2O5, так и к составу образующихся соединений. Если наличие соединений Cd₂V₂O₇ и CdV₂O₆ подтверждено всеми авторами, изучавшими эту систему, то для других соединений сведения существенно различаются [13]. Наличие соединения Cd₃V₂O₈ в системе CdO-V₂O₅ отмечено в работах [13,14]. Авторы работы [3] считают, что оно представляет собой смесь оксидов Cd₂V₂O₇ и Cd₄V₂O₈. В работе [4] показано, что фаза $Cd_3V_2O_8$, соответствующая файлу JCPDS (по. 28-0203), является смесью трех фаз: Cd₂V₂O₇, Cd_{1/2}□_{1/2}CdVO₄ (Cd₃V₂O₈) и Cd₁₈V₈O₃₈, а фаза $Cd_4V_2O_9$ — смесью двух фаз: $Cd_{1/2}\Box_{1/2}CdVO_4$ и Cd₁₈V₈O₃₈. В то же время попытки синтезировать чистый образец Cd₁₈V₈O₃₈ были неудачными (кроме основной фазы Cd₁₈V₈O₃₈ имелась примесь в виде CdO). Авторы работы [13] на основании того, что Cd и Zn принадлежат к одной подгруппе Периодической системы Менделеева, полагают, что должно наблюдаться подобие характера их фазообразования с кислотообразующими оксидами. В связи с этим в системе ZnO-V2O5 соединение Zn₄V₂O₉ существует только в интервале температур 1013-1173 К [15]. Сведения о теплоемкости и других термодинамических свойствах подобных фаз позволяют проводить термодинамические расчеты для уточнения фазовых равновесий в этой системе. Такие сведения для системы CdO-V2O5 практически отсутствуют. Имеются лишь данные об энтальпии образования CdV_2O_6 , $Cd_2V_2O_7$ и $Cd_4V_2O_9$ [13].

Целью настоящей работы является исследование высокотемпературной теплоемкости и определение по этим данным термодинамических свойств CdV_2O_6 и $Cd_2V_2O_7$.

2. Эксперимент

Ванадаты CdV₂O₆, Cd₂V₂O₇ и Cd₄V₂O₉ получали из исходных оксидов CdO и V₂O₅ (ос.ч.). Методика синтеза подобна описанной в работе [3]: CdV₂O₆ (823 K, 12 h + 853 K, 48 h); Cd₂V₂O₇ и Cd₄V₂O₉ (823 K, 12 h + 873 K, 12 h + 923 K, 12 h + 973 K, 12 h + 1223 K, 12 h + 1073 K, 24 h). Для гомогенизации и достижения полноты твердофазного взаимодействия реагентов через каждые 12 h образцы перетирали и снова прессовали в таблетки. Контроль фазового состава синтезированных оксидов проводили с использованием рентгенофазового анализа (дифрактометр X'Pert Pro MPD PANalytical, Нидерланды) на излучении CuK_α. Регистрацию выполняли на высокоскоростном детекторе PIXcel в угловом интервале $2\theta = 12-115^{\circ}$ с шагом 0.013°.

Измерение теплоемкости проводили методом дифференциальной сканирующей калориметрии на приборе STA 449 С Jupiter (NETZSCH, Германия). Методика экспериментов подобна описанной ранее [16]. Экспериментальные результаты обрабатывали с помощью пакета NETZSCH Proteus Thermal Analysis и лицензионного программного инструмента Systat Sigma Plot.

3. Результаты и обсуждение

Несмотря на полное повторение методики синтеза $Cd_4V_2O_9$ [13], все попытки его получения были неудач-

$a, \mathrm{\AA}$	b, Å	$c, \mathrm{\AA}$	β , deg	$V, Å^3$	Лит. ссылка
			CdV ₂ O ₆		I
9.356 9.3622(13) 9.37036(5)	3.560 3.5662(8) 3.56864(2)	6.985 6.950(11) 6.95526(4)	112.13(1) 112.1120(3)	214.97 215.474(2)	[18] [19] Данные настоящей работы
			$Cd_2V_2O_7$		
7.077(4) 7.07865(8)	8.996(2) 8.9964(1)	4.976(2) 4.97567(5)	103.20(4) 103.2466(4)	303.5(2) 308.432(6)	[5] Данные настоящей работы

Таблица 1. Параметры элементарных ячеек CdV_2O_6 и $Cd_2V_2O_7$ (пространственная группа C2/m)

ными. Во всех случаях продуктами твердофазного взаимодействия стехиометрической смеси CdO и V_2O_5 были $Cd_{18}V_8O_{38}$ и $Cd_2V_2O_7.$

Рентгенограммы полученных однофазных образцов CdV_2O_6 и $Cd_2V_2O_7$ приведены на рис. 1. Параметры элементарных ячеек определены путем полнопрофильного уточнения методом минимизации производной разности [17]. Эти результаты в сравнении с данными других

Рис. 1. Экспериментальный (1), расчетный (2) и разностный (3) профили рентгенограмм CdV_2O_6 (*a*) и $Cd_2V_2O_7$ (*b*); штрихи указывают расчетные положения рефлексов.

Рис. 2. Температурная зависимость молярной теплоемкости CdV_2O_6 .

авторов приведены в табл. 1, из которой видно, что они достаточно близки между собой.

На рис. 2 показана температурная зависимость молярной теплоемкости CdV₂O₆. В области температур 423–512 К на кривой $C_P = f(T)$ имеется экстремум. Согласно данным работ [3,14,19,20], в этой области температур наблюдается полиморфный переход α -CdV₂O₆ $\rightarrow \beta$ -CdV₂O₆. По данным разных авторов, температура этого перехода различается. В работе [3] начало перехода отмечено при 433 ± 5 К, а конец — при 453 ± 5 К, по данным работы [20], — соответственно при 433 и 483 К (максимум при 458 К), в работе [19] этот переход наблюдается при 443 К, в [21] — при 453 К, а в [14] — при 453 ± 10 К.

Такое различие в температурах полиморфного превращения может быть связано со следующим. С изменением содержания в атмосфере кислорода переход наблюдается при разных температурах [19]: в чистом кислороде она ниже, на воздухе — выше. Из этого следует, что важную роль в этом процессе играет стехиометрия по кислороду в анализируемых образцах. Ее образование в

			-	
<i>Т</i> ,К	$C_P,$ J/(mol · K)	$H^{0}(T) - H^{0}$ (320 K), kJ/mol	$S^{0}(T) - S^{0}$ (320 K), J/(mol · K)	$\Phi^0(T),$ J/(mol · K)
550	201.1	44.24	103.7	23.24
600	203.9	54.36	121.3	30.69
650	206.4	64.62	137.7	38.30
700	208.9	75.00	153.1	45.96
750	211.1	85.51	167.6	53.59
800	213.3	96.12	181.3	61.14
850	215.4	106.8	194.3	68.60
900	217.5	117.7	206.7	75.92
950	219.5	128.6	218.4	83.12
1000	221.5	139.6	229.8	90.17
			•	

Таблица 2. Термодинамические свойства β -CdV₂O₆

работе [20] связывают с протеканием реакции

$$CdV_2O_6 \to CdV_2O_{6-x} + \frac{x}{2}O_2 + 2xe.$$
 (1)

В развернутом виде метаванадат кадмия представляют в следующем виде:

$$Cd^{2+}V_2^{5+}O_6 \to Cd^{2+}V_{2-2x}^{5+}V_{2x}^{4+}O_{6-x}.$$
 (2)

Без учета экстремума на кривой $C_P = f(T)$ экспериментальные значения C_P могут быть описаны уравнением

$$C_P = (188.06 \pm 0.32) + (35.37 \pm 0.30) \cdot 10^{-3}T$$

- $(19.56 \pm 0.29) \cdot 10^5 T^{-2}$, (3)

коэффициент корреляции 0.9993.

Величина скачка С_Р в области фазового перехода составляет $\Delta C_P(T_{\text{max}}) \approx 95 \text{ J/(mol} \cdot \text{K})$, а ширина перехода $\Delta T \approx 89$ К. Энтропия фазового перехода определяется по экспериментальным данным измерения $C_P = f(T)$ в широком интервале температур, включающем точку фазового перехода [22]. Для этого избыточная теплоемкость С_{Рі}, связанная с фазовым переходом, определяется вычитанием из измеренной теплоемкости ее регулярной части С_b, задаваемой базисной линией зависимости $C_P = f(T)$ [23]. В качестве последней принята сглаживающая кривая, описываемая уравнением (3). При этом область фазового перехода, как и в работе [23], во внимание не принималась. Для этих условий оценка энтропии перехода $\Delta S_{PT} = \int (C_{Pi} - C_b) dT/T \approx 6.1 \text{ J/(mol \cdot K)}$, значение $\Delta H_{PT} = 2.9$ kJ/mol.

С использованием уравнения (3) по известным термодинамическим соотношениям для β -CdV₂O₆ рассчитаны изменения энтальпии $H^0(T) - H^0(320 \text{ K})$, энтропии $S^0(T) - S^0(320 \text{ K})$ и приведенная энергия Гиббса $\Phi^0(T)$ (табл. 2).

Влияние температуры на теплоемкость $Cd_2V_2O_7$ показано на рис. 3. Видно, что с ростом температуры значения C_P закономерно увеличиваются, а на зависимости $C_P = f(T)$ нет разного рода экстремумов. В интервале температур 320–1000 К полученные данные хорошо описываются уравнением

$$C_P = (239.54 \pm 0.51) + (43.95 \pm 0.50) \cdot 10^{-3}T$$

- $(31.03 \pm 0.53) \cdot 10^5 T^{-2}$, (4)

коэффициент корреляции 0.9988.

Согласно данным [13,14] у пированадата кадмия полиморфные переходы отсутствуют. Кроме того, температура его конгруэнтного плавления 1273 ± 15 K [14]. Принимая это во внимание, мы рассчитали теплоемкость Cd₂V₂O₇ при температуре плавления (C_{Pm}) по уравнению (4). Она составила 293.5 J/(mol·K), что на 10% меньше оцененной по уравнению [24]:

$$C_{P298}^0/C_{Pm}^0 \approx (298/T_m)^{1/4},$$
 (5)

где *T_m* — температура плавления.

Согласно данным [25], для кристаллических веществ при их температуре плавления теплоемкость равна $30.32 \pm 2.1 \text{ J/(g-at} \cdot \text{K})$. В этом случае эта величина больше рассчитанной по уравнению (4) на 13.6%.

Рис. 3. Температурная зависимость молярной теплоемкости $Cd_2V_2O_7$.

<i>Т</i> ,К	$C_P,$ J/(mol · K)	$H^{0}(T) - H^{0}$ (320 K), kJ/mol	$S^{0}(T) - S^{0}$ (320 K), J/(mol · K)	$\Phi^0(T),$ J/(mol · K)
320	223.3	_	—	-
350	239.6	6.80	20.30	0.88
400	237.7	18.50	51.51	5.29
450	244.0	30.54	79.88	12.02
500	249.1	42.87	105.9	20.13
550	253.4	55.43	129.8	29.02
600	257.3	68.20	152.0	38.36
650	260.7	81.15	172.8	47.91
700	263.9	94.27	192.2	57.53
750	266.9	107.5	210.5	67.12
800	269.8	121.0	227.8	76.63
850	272.6	134.5	244.3	86.01
900	275.2	148.2	259.9	95.24
950	277.8	162.0	274.9	104.3
1000	280.3	176.0	289.2	113.2

Таблица 3. Термодинамические свойства Cd₂V₂O₇

С использованием уравнения (4) рассчитаны термодинамические свойства пированадата $Cd_2V_2O_7$ (табл. 3).

Ранее было установлено, что между составом оксидов систем $Bi_2O_3 - V_2O_5$ [26] и $CuO - V_2O_5$ [27] и их удельной теплоемкостью c_p^0 имеется корреляция. Из рис. 4 следует, что подобная зависимость реализуется и для системы $CdO - V_2O_5$. Как и для системы $CuO - V_2O_5$, наблюдается положительное отклонение экспериментальных значений теплоемкости от аддитивных величин, рассчитанных по уравнению Неймана-Коппа [28]

$$c_{P298}^{0}(j) = \sum_{i} m_{i} c_{P298}^{0}(i), \tag{6}$$

где $c_{P298}^{0}(j)$ — удельная теплоемкость сложного оксидного соединения, $c_{P298}^{0}(i)$ — удельная теплоемкость *i*-го простого оксида, m_i — мольная доля соответствующего

Рис. 4. Связь состава и удельных значений теплоемкости системы CdO-V₂O₅. *1* — наши данные, *2* — данные работы [28].

простого оксида. Для того, чтобы не учитывать различие молярных масс теплоемкость приведена в $J/(g \cdot K)$. Необходимые для расчета по уравнению (6) значения c_P^0 для CdO и V₂O₅ взяты из работы [28]. По данным работы [29], как положительные, так и отрицательные отклонения от аддитивности связаны с изменением частот колебаний атомов в сложном оксидном соединении по сравнению с простыми оксидами.

4. Заключение

Методом дифференциальной сканирующей калориметрии исследовано влияние температуры (320–1000 K) на теплоемкость CdV₂O₆ и Cd₂V₂O₇. Установлено, что на кривой $C_P = f(T)$ для CdV₂O₆ имеется экстремум, связанный с переходом α -CdV₂O₆ $\rightarrow \beta$ -CdV₂O₆. По экспериментальным данным $C_P = f(T)$ рассчитаны термодинамические функции оксидных соединений.

Список литературы

- P. Huang, X. Zhang, J. Wei, J. Pan, Y. Sheng. Mater. Chem. Phys. 147, 996 (2014).
- [2] S. Goni-Elizalde, S. Fresno-Ruiz, M.E. Garcia-Clavel. Thermochim. Acta 107, 115 (1986).
- [3] M. Bosacka, A. Blonska-Tabero. J. Therm. Anal. Cal. 93, 811 (2008).
- [4] H. Ben Yahia, E. Gaudin, C. Feral-Martin, J. Darrier. J. Solid State Chem. **183**, 776 (2010).
- [5] Т.И. Красненко, М.В. Ротермель. ЖНХ 55, 3, 480 (2010).
- [6] R. Lozada-Morales, A. Cid-Garcia, E. Cervantes-Juárez, J.Ma. Rincon, G. López-Calzada, J. Carmona-Rodriguez, Ma.E. Zayas, O. Zelaya-Angel, S. Jiménez-Sandoval. J. Non-Cryst. Solids 398–399, 10 (2014).

- [7] P. Lozada-Morales, L. Aquino-Meneses, G. López-Calzada, Ma.E. Zayas, O. Zeleya-Angel, J. Carmona-Rodriguez, F. Rodriguez-Melgarejo, S. Jiménez-Sandoval. J. Non-cryst. Solids 386, 39 (2014).
- [8] L. Aquino-Meneses, R. Lozada-Morales, G. Lopez-Calzada, S. Jiménez-Sandoval, Ma.G. Zayas, O. Zelaya-Angel, L.E. Carmona-Rodriguez, E. Sanchez-Mora, L.E. Serrano. J. Non-Cryst. Solids 408, 26 (2015).
- [9] A.A. Belik, A.V. Mironov, R.V. Shpanchenko, E. Takayama-Muromachi. Acta Cryst. C 63, i37 (2007).
- [10] Б.В. Слободин, Л.Л. Сурат. ЖНХ 52, 10, 1722 (2007).
- [11] D. Li, X. Bai, C. Pan, Y. Zhu. Eur. J. Inorg. Chem. 17, 3070 (2013).
- [12] M. Cui, Q. Nong, J. Yu, H. Lin, Y. Wu, X. Jiang. J. Mol. Catal. A 423, 240 (2016).
- [13] А.А. Фотиев, Б.В. Слободин, М.Я. Ходос. Ванадаты. Состав, синтез, структура, свойства. Наука, М. (1988). 272 с.
- [14] J.J. Brown. J. Am. Ceram. Soc. 55, 10, 500 (1975).
- [15] M. Kurzawa, I. Rychlowska-Himmel, M. Dasacka, A. Blonska-Tabero. J. Therm. Anal. Calorim. 64, 1113 (2001).
- [16] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, В.С. Биронт. ФТТ 52, 7, 1274 (2010).
- [17] L.A. Solovyov. J. Appl. Cryst. 37, 743 (2004).
- [18] X. Chen, X. Wang, Z. Wang, J. Wan, J. Liu, Y. Qian. Chem. Lett. 33, 10, 1374 (2004).
- [19] K. Mocala, J. Ziólkowski. J. Solid State Chem. 69, 299 (1987).
- [20] N.S. Rao, O.G. Palanna. Bull. Mater. Sci. 19, 6, 1073 (1996).
- [21] A. Tsuzuki, K. Kani, S. Kawakami, T. Sekiya, Y. Torii. J. Mater. Sci. Lett. 8, 1255 (1989).
- [22] Б.А. Струков, А.П. Леванюк. Физические основы сегнетоэлектрических явлений в кристаллах. Физматлит, М. (1983). 264 с.
- [23] А.А. Буш, Е.А. Попова. ФТТ 46, 5, 875 (2004).
- [24] Г.К. Моисеев, Н.А. Ватолин, Л.А. Маршук, Н.И. Ильиных. Температурные зависимости приведенной энергии Гиббса некоторых неорганических веществ. УрО РАН, Екатеринбург. (1997). 230 с.
- [25] О. Кубашевский, С.Б. Олкокк. Металлургическая термохимия. Металлургия, М. (1982). 392 с.
- [26] Л.Т. Денисова, А.Д. Изотов, Л.Г. Чумилина, Ю.Ф. Каргин, В.М. Денисов. ДАН **467**, *1*, 58 (2016).
- [27] Л.Т. Денисова. Н.В. Белоусова, В.М. Денисов, Н.А. Галиахметова. ФТТ **59**, *6*, 1243 (2017).
- [28] J. Leitner, P. Chuchvalec, D. Sedmidubskŷ, A. Strejc, P. Abrman. Thermochim. Acta. 395, 27 (2003).
- [29] Л.К. Резницкий. Калориметрия твердого тела. Изд-во МГУ, М. (1981). 184 с.