Оптические свойства объемных монокристаллов нитрида галлия, выращенных методом хлорид-гидридной газофазной эпитаксии

© В.Ф. Агекян, Е.В. Борисов, А.Ю. Серов, Н.Г. Философов

Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

E-mail: v.agekyan@spbu,ru

(Поступила в Редакцию 11 апреля 2017 г.)

Кристалл нитрида галлия толщиной 5 mm был выращен методом хлорид-гидридной газофазной эпитаксии на сапфировой подложке, от которой кристалл отделился в процессе остывания. На ранней стадии был реализован трехмерный режим роста с последующей сменой на двумерный режим. В нескольких характерных областях образца исследованы спектры экситонного отражения, экситонной люминесценции и рамановского рассеяния. Анализ этих спектров и сравнение с ранее полученными данными для тонких эпитаксиальных слоев GaN с широким диапазоном легирования кремнием позволили сделать выводы о качестве кристаллической решетки в этих характерных областях образца.

Работа выполнена в рамках инициативной темы СПбГУ № 11.52.454.2016, для исследования спектров рамановского рассеяния использовалось оборудование Ресурсного центра СПбГУ "Оптические и лазерные методы исследования вещества".

DOI: 10.21883/FTT.2017.12.45237.120

1. Введение

Нитрид галлия (GaN) — прямозонный полупроводник с широкой запрещенной зоной, на основе которого в настоящее время формируется новое поколение электроники и выпускается широкий спектр электронных приборов — от светодиодов и лазеров до силовых и СВЧ-приборов и элементов цифровой электроники. В настоящее время существуют проблемы с коммерчески доступными высококачественными подложками GaN, вследствие чего большинство приборов до сих пор производится по гетероэпитаксиальной технологии на инородных подложках (кремний, сапфир, карбид кремния и др.). Это приводит к образованию в приборных слоях GaN механических напряжений и значительного количества дислокаций несоответствия, что ухудшает характеристики материала и снижает рабочие параметры приборов. Использование подложек из нитрида галлия позволяет получать приборные структуры более высокого качества, и этим определяется интерес к развитию способов получения механически ненапряженных объемных кристаллов GaN с низкой плотностью дислокаций и к изучению их физических свойств. Существующая техника расслаивания объемных кристаллов GaN позволяет получать серии высококачественных подложек.

В настоящей работе исследованы оптические свойства ненапряженных объемных кристаллов GaN, выращенных методом хлорид-гидридной газофазной эпитаксии (HVPE).

2. Технология изготовления объемных кристаллов нитрида галлия

Образцы нитрида галлия были выращены методом НVPE в специально сконструированном реакторе вертикального типа, позволяющем получать объемные кристаллы диаметром до 75 mm на шести подложках одновременно. В качестве рабочих газов использовались аммиак (чистота 99.99995%) и хлористый водород (чистота 99.999%), транспортирующим газом являлся азот (чистота 99.99999%), как источник Ga применялся металлический галлий (чистота 99.99999%). Скорость роста кристаллов GaN составляла 0.2 mm/h при температуре 990°С и давлении в реакторе 700 Torr, парциальные давления GaCl и NH₃ составляли $0.8 \cdot 10^3$ и $2 \cdot 10^4$ Pa соответственно. Продолжительность ростового процесса варьировалась от 3 до 25 h. Затравками для получения объемных кристаллов служили пленки нитрида галлия толщиной 40 µm, выращенные в HVPE-реакторе на подложках из сапфира с ориентацией (0001). Особенность технологического процесса состоит в переходе от начального трехмерного режима роста GaN к двумерному режиму, что позволяет предотвратить растрескивание кристалла в реакторе вследствие ростовых напряжений [1]. После завершения роста при остывании кристаллов до комнатной температуры происходило их спонтанное отделение от сапфировой подложки вследствие различия коэффициентов температурного расширения нитрида галлия и сапфира (при остывании тонких кристаллов часто наблюдалось их поперечное растрескивание). В результате были получены кристаллы нитрида галлия диаметром 52 mm с толщиной от 0.6 до 5 mm. Поверхность образцов является зеркально гладкой, на поверхности присутствуют ростовые дефекты — ямки, имеющие форму инверсных гексагональных пирамид, происхождение которых обсуждается в работе [2].

3. Оптические свойства объемных кристаллов GaN

Для проведения измерений оптическими методами (отражение, фотолюминесценция, рамановское рассеяние) образец GaN толщиной 5 mm был расколот параллельно плоскости (1120). Спектры фотолюминесценции и отражения исследовались на спектрометре МДР-204-2 (производство ЛОМО-Фотоника), люминесценция возбуждалась непрерывным гелий-кадмиевым лазером с энергией фотонов 3.81 eV, исследование рамановского рассеяния проводилось на спектрометре SENTERRA (производство Bruker). Спектры отражения, люминесценции и рамановского рассеяния изучались в характерных областях объемного образца GaN: нижняя и верхняя поверхности; боковая поверхность (скол) в точках, соответствующих двум указанным выше режимам роста; поверхность инверсных пирамид (см. схему на рис. 2).

3.1. Спектры отражения. В спектре отражения от верхней части боковой поверхности — скола, в

Рис. 1. Поверхность кристалла GaN с инвертированными гексагональными пирамидами.

Рис. 2. Схема характерных областей кристалла GaN, в которых исследовались оптические характеристики (см. текст).

слоях исследуемого образца. В спектре отражения от плоскости, примыкавшей к сапфировой подложке (точка 3), экситонная структура сильно размыта. Уширение экситонного спектра отражения от этой области кристалла не сопровождается энергетическим сдвигом, и можно сделать вывод, что уширение экситонных резонансов определяется высокой концентрацией дефектов, а не механическими напряжениями. Отметим, что подобное уширение экситонной структуры наблюдалось в спектрах отражения эпитаксиальных слоев GaN с

концентрацией кремния, превышающей 10^{18} cm⁻³ [4]. 3.2. Спектры люминесценции. На рис. 4 представлены спектры люминесценции, полученные от указанных выше характерных областей кристалла GaN. Для сравнения на рис. 5 приведены спектры люминесценции слоев GaN толщиной 4 μ m, выращенных методом хлорид-гидридной эпитаксии с диапазоном концентрации донорной примеси кремния $10^{16}-10^{19}$ cm⁻³ [4].

Спектр излучения поверхности образца в точке 2 содержит полосы бесфононного излучения свободных экситонов, экситонов, связанных на нейтральных донорах и акцепторах, а также их фононные реплики, соответствующие рождению до пяти продольных оптических (LO)-фононов решетки GaN с энергией 91 meV (принадлежность отдельных фононных реплик к различным механизмам излучения указана на рис. 6). Сопоставление

Рис. 3. Резонансы свободных экситонов $A_{n=1}$, $B_{n=1}$, $C_{n=1}$ (головные линии трех экситонных серий) в спектрах отражения GaN, T = 5 K; a, b, c соответствуют точкам 2, 1, 3 на рис. 2.

плоскости которого лежит гексагональная ось кристалла

(точка 1), наблюдается резкая структура, соответству-

ющая резонансам А, В и С — экситонов нитрида

галлия с главным квантовым числом n = 1 (рис. 3).

Рис. 4. Спектры люминесценции объемного образца GaN при T = 5 К (полулогарифмический масштаб). Цифры слева соответствуют точкам на рис. 2. $A_{n=1}$ — свободный экситон, D^0x и A^0x — экситоны, связанные на нейтральных донорах и акцепторах, 1-5 LO — фононные реплики экситонного излучения с рождением продольных оптических фононов.

Рис. 5. Спектры люминесценции слоев GaN толщиной 4 μ т, выращенных на сапфировых подложках методом хлор-гидридной эпитаксии, T = 5 K [4]. Концентрации донорной примеси кремния составляют $4 \cdot 10^{16}$ (*a*), $3 \cdot 10^{17}$ (*b*), $3 \cdot 10^{18}$ (*c*) и $5 \cdot 10^{19}$ (*d*) сm⁻³. $A_{n=1}$, $B_{n=1}$, $C_{n=1}$ — свободные экситоны, D^0x и A^0x — экситоны, связанные на нейтральных донорах и акцепторах, $(A_{n-1}-1LO)$, $(A_{n=1}-2LO)$, (D^0x-1LO) — фононные реплики связанных экситонов $A_{n=1}$ и D^0x с рождением LO-фононов.

Рис. 6. Спектр люминесценции поверхности GaN (точка 2 на рис. 2) в полулогарифмическом масштабе (*a*) и фононные реплики этого спектра в линейном масштабе (*b*), T = 5 К. $(A^0x - mLO)$ и $(D^0x - mLO)$ — фононные реплики излучения связанных экситонов A^0x и D^0x с рождением LO-фононов.

Рис. 7. Сопоставление спектров отражения и люминесценции поверхности GaN (точка 2 на рис. 3) в линейном масштабе, T = 5 K.

спектров отражения и люминесценции в точке 2 (рис. 7) подтверждает, что самая высокоэнергетическая полоса излучения соответствует свободному экситону серии A с главным квантовым числом n = 1.

Спектр излучения скола боковой поверхности образца (точка 1) также хорошо структурирован, обращает на себя внимание малая интенсивность фононной реплики свободного экситона, которая соответствует рождению одного LO-фонона. Известно, что излучательная аннигиляция свободного экситона с рождением одного фонона является при низких температурах запрещенным процессом для идеального кристалла [5], так что малая интенсивность соответствующей полосы излучения свидетельствует о совершенстве кристаллической решетки.

Таким образом, можно сделать вывод о хорошем качестве исследуемого кристалла GaN в точках 1 и 2, спектры люминесценции от этих областей близки к спектрам высококачественных тонких эпитаксиальных слоев GaN, легированных донорами на уровне 10^{16} cm⁻³.

Спектр излучения боковой поверхности (скола) в точке 4, соответствующей начальной стадии роста объемного кристалла (трехмерный режим), уширен, четкая структура, в отличие от спектров в точках I и 2, в нем отсутствует. Это свидетельствует о более низком качестве кристаллической решетки в этой области, ее спектр излучения аналогичен спектру тонких эпитаксиальных слоев с уровнем легирования 10^{18} сm⁻³.

Спектры люминесценции от нижней плоскости образца, контактировавшей с подложкой, и спектры от поверхности инверсных гексагональных пирамид (точки 3 и 5) также уширены, отдельные компоненты бесфононного излучения свободных и связанных экситонов в них не разрешаются. Для спектра в точке 5 характерно сильное расширение в область высоких энергий, что, как показано в работе [4], является особенностью спектра кристаллов GaN с концентрацией кремния на уровне $10^{19} \, \text{cm}^{-3}$ (рис. 5). Можно заключить, что слои образца, контактировавшие с сапфировой подложкой, имеют высокую концентрацию дефектов. Это могут быть как дислокации, так и примеси, внедрившиеся в процессе роста. Что касается поверхностей инверсных пирамид, эти слои растут медленнее, чем те слои, которые формируют регулярную поверхность образца, что, повидимому, способствует накоплению в них примесей.

3.3. Спектры рамановского рассеяния. На рис. 8 представлены нормированные по интенсивности компоненты $E_2(high)$ -спектры рамановского рассеяния света от верхней и нижней плоскостей образца и от поверхности инверсных пирамид (точки 2, 3 и 5). Наряду с известными линиями спектра рассеяния первого порядка A_1 (TO, LO), E_1 (TO, LO), E_2 (low, high) наблюдаются более слабые компоненты в областях 317, 410, 850-1000 и 1150-1500 cm⁻¹. Эти компоненты согласно результатам теоретико-группового анализа [6] соответствуют рассеянию более высоких порядков акустическим обертонам, комбинированным акустическим и оптическим колебаниям, оптическим обертонам. Спектр рассеяния от верхней плоскости кристалла (точка 2) содержит только эти составляющие, относящиеся к регулярной решетке GaN. В спектре рассеяния от поверхностей инверсных пирамид присутствует широкая полоса с максимумом около 420 ст-1, происхождение которой обусловлено дефектами. В спектре рассеяния от нижней плоскости образца наблюдаются дополнительные компоненты с максимумами 509 и $653 \, \text{cm}^{-1}$. Эта область кристалла контактировала с подложкой, и дополнительные максимумы можно интерпретировать как локальные колебания, индуцированные дефектами примесного типа.

Рис. 8. Спектры рамановского рассеяния GaN при комнатной температуре: a — поверхность кристалла (точка 2), b — инверсная пирамида (точка 5), c — плоскость, контактировавшая с сапфировой подложкой (точка 3). Стрелками отмечены компоненты спектра, индуцированные дефектами: широкая полоса в спектре b с максимумом 420 cm⁻¹, полосы 317, 420, 509 и 653 cm⁻¹ в спектре c. Структура в области выше 800 cm⁻¹ соответствует рассеянию с участием двух и более фононов.

Итак, в результате проведенных оптических исследований объемного кристалла нитрида галлия, выращенного методом хлорид-гидридной газофазной эпитаксии, получены сведения о качестве кристаллической решетки в характерных областях кристалла.

Авторы выражают благодарность Ю.Г. Шретеру за предоставление объемного кристалла GaN для оптических исследований и за полезное обсуждение результатов.

Список литературы

- V. Voronenkov, N. Bochkareva, R. Gorbunov, P. Latyshev, Y. Lelikov, Y. Rebane, A. Tsyuk, A. Zubrilov, Y. Shreter. Jpn. J. Appl. Phys. 52, 08JE14 (2013).
- [2] V.V. Voronenkov, N.I. Bochkareva, R.I. Gorbunov, P.E. Latyshev, Y.S. Lelikov, Y.T. Rebane, A.I. Tsyuk, A.S. Zubrilov, U.W. Popp, M. Strafela, H.P. Strunk, Y.G. Shreter. Phys. Status Solidi C 10, 468 (2013).
- [3] M. Reshchikov, H. Morkoç. J. Appl. Phys. 97, 061031 (2005).
- [4] V.F. Agekyan, E.V. Borisov, L.E. Vorob'ev, G.A. Melent'ev, Y. Nykännen, L. Riuttanen, A.Yu. Serov, S. Suihkonen, O. Svensk, N.G. Filosofov, V.A. Shalygin, L.A. Shelukhin. Phys. Solid State 57, 787 (2015) [ΦTT 57, 768 (2015)].
- [5] S.A. Permogorov. In Excitons / Ed. E.I. Rashba, M.D. Sturge. North-Holland Publ. Comp. (1982). 177 p.
- [6] H. Siegle, G. Karzmarczyk, L. Filippidis, A.P. Litvinchuk, A. Hoffman, C. Thonsen. Phys. Rev. B 55, 7000 (1997).