03,04,19

Высокотемпературная теплоемкость титанатов самария и эрбия со структурой пирохлора

© Л.Т. Денисова¹, Л.Г. Чумилина¹, В.М. Денисов¹, В.В. Рябов²

¹ Институт цветных металлов и материаловедения Сибирского федерального университета, Красноярск, Россия ² Институт металлургии УрО РАН, Екатеринбург, Россия E-mail: antluba@mail.ru (Поступила в Редакцию 11 апреля 2017 г.)

> Методом твердофазного синтеза на воздухе из стехиометрических смесей Sm₂O₃(Er₂O₃)-TiO₂ последовательно при температурах 1673 и 1773 К получены титанаты Sm₂Ti₂O₇ и Er₂Ti₂O₇ со структурой пирохлора. Методом дифференциальной сканирующей калориметрии измерена высокотемпературная теплоемкость оксидных соединений. По экспериментальным зависимостям $C_p = f(T)$ рассчитаны их термодинамические свойства.

> Работа выполнена при финансовой поддержке работ, выполняемых в рамках Государственного задания Министерства образования и науки Российской Федерации Сибирскому федеральному университету на 2017–2019 (проект 4.8083.2017/БЧ "Формирование банка данных термодинамических характеристик сложнооксидных полифункциональных материалов, содержащих редкие и рассеянные элементы").

DOI: 10.21883/FTT.2017.12.45223.122

1. Введение

В течение длительного времени не ослабевает интерес к сложным оксидным соединениям со структурой пирохлора [1-5]. Обусловлено это возможностями их практического применения в различных областях науки и техники [1,4,6-8]. К подобным материалам относятся и титанаты Sm₂Ti₂O₇ и Er₂Ti₂O₇ [1–3]. Для них имеются данные о получении нано- [6,7] и монокристаллов [9], структуре [1–3], магнитных [10] и электрофизических [11] свойствах. В то же время сведения о теплофизических свойствах практически отсутствуют. Имеются лишь данные об энтальпии образования [12,13] и теплоемкости Er₂Ti₂O₇ при очень низких температурах [14,15]. Отметим, что измерение теплоемкости один из путей определения теплофизических и термодинамических свойств синтезируемых твердофазных материалов [16].

Целью настоящей работы является исследование высокотемпературной теплоемкости титанатов $Sm_2Ti_2O_7$ и $Er_2Ti_2O_7$ и определение по этим данным термодинамических свойств оксидных соединений со структурой пирохлора.

2. Эксперимент

Учитывая, что как исходные оксиды, так и $Sm_2Ti_2O_7$ и $Er_2Ti_2O_7$ имеют высокие температуры плавления [1], титанаты самария и эрбия получали твердофазным методом. Предварительно прокаленные при 1173 К исходные оксиды (Sm_2O_3 (99.99%), Er_2O_3 и TiO_2 (ос. ч)) в стехиометрических соотношениях перетирали в ага-

товой ступке и прессовали в таблетки. Их обжигали на воздухе последовательно при следующих условиях: 1) 1673 K (3 h)+1773 K (1 h); 2) 1673 K (1 h)+1773 K (3 h); 3) 1673 К (1 h) + 1773 К (4 h); 4) 1773 К (5 h). Для достижения полного твердофазного взаимодействия реагентов после каждого цикла проводили перетирание спеченных образцов с последующим прессованием. Фазовый состав синтезированных образцов контролировали с использованием рентгенофазового анализа (дифрактометр XPert Pro MPD фирмы "PANalytical") в излучении СиК_а. Регистрация выполнялась высокоскоростным детектором PIXcel с графитовым монохроматором в угловом интервале $2\theta = 14 - 124^{\circ}$ с шагом 0.013° . Полученные результаты показаны на рис. 1 и 2. Параметры решетки определены путем полнопрофильного уточнения методом минимизации производной разности [17].

Измерение теплоемкости C_p синтезированных титанатов проводили методом дифференциальной сканирующей калориметрии на приборе STA 449 C Jupiter (NETZSCH). Методика экспериментов описана ранее [18,19]. Полученные данные обрабатывались с помощью пакета анализа NETZSCH Proteus Thermal Analysis и лицензионного программного инструмента Sistat Sigma Plot 12.

3. Результаты и их обсуждение

Параметры элементарной ячейки Sm₂Ti₂O₇ (пр. гр. Fd3m, V = 1069.92(2)Å³) и Er₂Ti₂O₇ (пр. гр. Fd3m, V = 1022.51(2)Å³) в сравнении с данными других авторов приведены в табл. 1, из которой следует, что наши

Рис. 1. Дифрактограмма $Sm_2Ti_2O_7$ при комнатной температуре.

Рис. 2. Дифрактограмма Er₂Ti₂O₇ при комнатной температуре.

Рис. 3. Температурная зависимость молярной теплоемкости $Sm_2Ti_2O_7(1)$ и $Er_2Ti_2O_7(2)$.

Таблица 1. Параметры элементарных ячеек $Sm_2Ti_2O_7$ и $Er_2Ti_2O_7$

$Sm_2Ti_2O_7$		$Er_2Ti_2O_7$		
a, Å	Лит. ссылка	a, Å	Лит. ссылка	
$\begin{array}{c} 10.211\\ 10.227\\ 10.239\\ 10.238\\ 10.211\\ 10.1996(51)\\ 10.234(4)\\ 10.1933(6)\\ 10.2321(2) \end{array}$	[1] [3] [3] [4] [7] [11] [12] [20]	$\begin{array}{c} 10.07\\ 10.073\\ 10.085\\ 10.076\\ 10.060\\ 10.0450(54)\\ 10.075\\ 10.0840(2)\\ 10.077044(1) \end{array}$	[1] [3] [3] [4] [7] [10] [12] [21]	
10.2278(1)	Наст. работа	$10.0^{\circ}/45(1)$	Наст. работа	

результаты достаточно близки известным значениям параметров решетки.

Влияние температуры на теплоемкость Sm₂Ti₂O₇ и Er₂Ti₂O₇ показано на рис. 3. Видно, что с ростом температуры значения C_p закономерно увеличиваются. На зависимостях $C_p = f(T)$ отсутствуют разного рода экстремумы. Полученные значения C_p могут быть описаны уравнением Майера-Келли

- Sm₂Ti₂O₇

$$C_p = (265.44 \pm 0.51) + (29.7 \pm 0.5) \cdot 10^{-3}T$$

- $(32.23 \pm 0.52) \cdot 10^5 T^{-2}$, (1)
- $\mathrm{Er}_2 \mathrm{Ti}_2 \mathrm{O}_7$

$$C_p = (258.06 \pm 0.51) + (14.58 \pm 0.60) \cdot 10^{-3}T$$

$$-(25.09\pm0.49)\cdot10^{5}T^{-2}.$$
 (2)

Коэффициенты корреляции уравнений (1) и (2) соответственно равны 0.9982 и 0.9979.

С использованием уравнений (1) и (2) по известным термодинамическим соотношениям рассчитаны изменения энтальпии $H^0(T) - H^0(320 \text{ K})$, энтропии $S^0(T) - S^0(320 \text{ K})$ и приведенной энергии Гиббса $\Phi^0(T)$. Эти результаты приведены в табл. 2.

Из табл. 2 следует, что для Sm₂Ti₂O₇ при температурах выше 600 K значения C_p , полученные нами, превышают классический предел Дюлонга-Пти 3*Rs*, где R — универсальная газовая постоянная, s — число атомов в формульной единице оксида. В то же время для Er₂Ti₂O₇ значения C_p его не превышают.

С использованием найденных нами значений характеристической температуры Дебая ($\Theta_D = 510 \text{ K}$ для Sm₂Ti₂O₇, $\Theta_D = 544 \text{ K}$ для Er₂Ti₂O₇), которые определялись аналогично [22] по соотношению

$$C_p = sD\left(\frac{\Theta_{\rm D}}{T}\right),\tag{3}$$

где $D(\Theta_{\rm D}/T)$ — функция Дебая [23], были рассчитаны C_p . При этом считалось, что в первом приближе-

	2301

<i>T</i> , K	$C_p, J/(\text{mol} \cdot \mathbf{K})$	$\begin{array}{c} H^0(T) - H^0(320\mathrm{K}) \\ \mathrm{kJ/mol} \end{array}$	$S^0(T) - S^0(320 \mathrm{K}) \\ \mathrm{J/(mol \cdot K)}$	$\Phi^0(T),$ J/(mol · K)		
Sm ₂ Ti ₂ O ₇						
320	243.5		_	_		
350	249.5	7.40	22.10	0.96		
400	257.2	20.08	55.94	5.75		
450	262.9	33.08	86.58	13.05		
500	267.4	46.35	114.6	21.83		
550	271.1	59.81	140.2	31.44		
600	274.3	73.45	163.9	41.50		
650	277.1	87.24	186.0	51.77		
700	279.7	101.2	206.6	62.11		
750	282.0	115.2	226.0	72.40		
800	284.2	129.4	244.3	82.57		
850	286.2	143.6	261.5	92.60		
900	288.2	158.0	278.0	102.4		
950	290.1	172.4	293.6	112.1		
1000	291.9	187.0	308.5	121.5		
		Er ₂ Ti ₂ O ₇				
320	238.2	_	—			
350	242.7	7.22	21.55	0.94		
400	248.2	19.50	54.34	5.60		
450	252.2	32.01	83.82	12.68		
500	255.3	44.71	110.6	21.15		
550	257.8	57.54	135.0	30.14		
600	259.9	70.48	157.5	40.08		
650	261.6	83.52	178.4	49.93		
700	263.2	96.64	197.9	59.81		
750	264.5	109.8	216.1	69.62		
800	265.8	123.1	233.2	79.31		
850	267.0	136.4	249.3	88.85		
900	268.1	149.8	264.6	98.15		
950	269.1	163.2	279.1	107.3		
1000	270.1	176.7	293.0	116.3		

Таблица 2. Термодинамические свойства Sm₂Ti₂O₇ и Er₂Ti₂O₇

нии величины C_p и C_v близки. Установлено, что для $Er_2Ti_2O_7$ рассчитанные и экспериментальные значения достаточно хорошо совпадают между собой (максимальное отклонение наблюдается в области 600 K и составляет 1.2%). Для $Sm_2Ti_2O_7$ такого соответствия не отмечено, поскольку, как отмечено выше, полученные значения C_p превышают предел Дюлонга–Пти.

Следует отметить, что если станнаты $R_2 \text{Sn}_2 \text{O}_7$ представляют полную серию изоструктурных соединений со структурой пирохлора, тогда как для титанатов редкоземельных элементов этого не наблюдается [1–3,5]. Пирохлорные соединения $R_2 \text{Ti}_2 \text{O}_7$ существуют для редкоземельных элементов, ионные радиусы которых удовлетворяют условию 1.28 < $r_{R^{3+}}/r_{\text{Ti}^{4+}} \leq 1.76$ [1]. Соединения $R_2 \text{Ti}_2 \text{O}_7$ (R = La-Nd) кристаллизуются в моноклинной структуре ($r_{R^{3+}}/r_{\text{Ti}^{4+}} < 1.2$) [1,3]. Sm₂Ti₂O₇ является первым соединение в ряду Sm–Lu со структурой пирохлора. К тому же установлен переход кубической

модификации Sm₂Ti₂O₇ в моноклинную после выдержки при температуре 1663 К и давлении 5.4 GPa [3], тогда как для других титанатов РЗЭ требуются более высокие давления [1]. Отношение $r_{R^{3+}}/r_{Ti^{4+}}$ является одним из факторов, влияющих на величину области гомогенности титанатов R_2 Ti₂O₇ [1]. Не исключено, что все это сказывается на особенности $C_p = f(T)$ для Sm₂Ti₂O₇ и Er₂Ti₂O₇.

4. Заключение

Исследована высокотемпературная теплоемкость титанатов Sm₂Ti₂O₇ и Er₂Ti₂O₇. Показано, что зависимости $C_p = f(T)$ хорошо описываются уравнением Майера-Келли. Отмечено, что для Er₂Ti₂O₇ для описания теплоемкости хорошо применима теория Дебая. Рассчитаны термодинамические свойства оксидных соединений.

Список литературы

- Л.Н. Комиссарова, В.М. Шацкий, Г.Я. Пушкина, Л.Г. Щербакова, Л.Г. Мамсурова, Г.Е. Суханова. Соединения редкоземельных элементов. Карбонаты, оксалаты, нитраты, титанаты. Наука, М. (1984). 235 с.
- [2] Я.С. Рубинчик. Соединения двойных окислов редкоземельных элементов. Наука и техника, Минск (1974). 144 с.
- [3] К.И. Портной, Н.И. Тимофеев. Кислородные соединения редкоземельных элементов. Металлургия, М. (1986). 480 с.
- [4] М.Ф. Васильева, А.К. Герасюк, А.И. Гоев, В.В. Потелов, Б.Н. Сенник, А.Б. Сухачев, Б.М. Жигарновский, В.В. Кириленко, А.В. Ноздрачев. Прикл. физика 5, 91 (2007).
- [5] А.В. Шляхтина. Кристаллография **58**, *4*, 545 (2013).
- [6] L. Zhang, W. Zhang, J. Zhu, Q. Hao, C. Xu, X. Yang, L. Lu, X. Wang, J. Alloys Comp. 480, L45 (2009).
- [7] W. Wang, L. Zhang, H. Zhong, L. Lu, Y. Yang, X. Wang. Mater. Characteriz. 61, 154 (2010).
- [8] V.F. Zinchenko, V.I. Maksimenko, V.P. Sobol', L.V. Sadkovska, Ye.V. Timukhin, A.V. Bogatsky. CAOL. Int. Conf. Adv. Optoelectr. Laser. Sevastopol. (2010). 233 p.
- [9] G. Balakrishnan, O.A. Petrenko, M.R. Lees. J. Phys.: Condens. Matter. 10, L.723 (1998).
- [10] N. Ben Amor, M. Bejar, M. Hussein, E. Dhahri, M.A. Valente, E.K. Hlil. J. Supercond. Nov. Magn. 25, 1035 (2012).
- [11] N. Cioatera, E.A. Voinea, E. Panaintescu, A. Rolle, S. Somacescu, C.I. Spinu, R.N. Vannir. Ceramics Int. 42, 1492 (2016).
- [12] K.B. Helean, S.V. Ushakov, C.E. Brown, A. Navrotsky, J. Lian, R.C. Ewing, J.M. Farmer, L.A. Boatner. J. Solid State Chem. 177, 1858 (2004).
- [13] A. Navrotsky, W. Lee, A. Mielewczyk-Gryn, S.V. Ushakov, A. Anderko, H. Wu, R.E. Riman. J. Chem Thermodyn. 88, 126 (2015).
- [14] S.S. Sosin, L.A. Prozorova, M.R. Lees, G. Balakrishan, O.A. Petrenko. Phys. Rev. B 82, 094428-1 (2010).
- [15] P. de Réotier Dalmas, A. Yaouanc, Y. Chapuis, S.H. Curoe, B. Grenier, E. Ressouche, C. Marin, J. Lago, C. Baines, S.R. Gilin. Phys. Rev. B 86, 104424-1 (2012).
- [16] Ю.К. Товбин, М.В. Титов, В.Н. Комаров. ФТТ 57, 2, 342 (2015).
- [17] L.A. Solovyov. J. Appl. Crystallogr. 37, 743 (2004).
- [18] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, В.С. Биронт. ФТТ **52**, 7, 1274 (2010).
- [19] Л.Т. Денисова, Л.А. Иртюго, Ю.Ф. Каргин, В.В. Белецкий, В.М. Денисов. Неорган. материалы **53**, *1*, 71 (2017).
- [20] M. Jafar, P. Sengupta, S.N. Achary, A.K. Tyagi. J. Eur. Ceram. Soc. 34, 4373 (2014).
- [21] K. Boroudi, B.D. Gaulin, S.H. Lapidus, J. Gaudet, R.J. Cava. Phys. Rev. B. 92, 024110-1 (2015).
- [22] В.И. Петьков, Е.А. Асабина, М.В. Суханов, А.В. Маркин, Н.Н. Смирнова. ЖФХ 87, 12, 2000 (2013).
- [23] С.М. Скуратов, В.П. Колесов, А.Ф. Воробьев. Термохимия. Изд-во МГУ, М. (1966). Ч. II. 434 с.