Краткие сообщения

03

Высокотемпературное испарение капель воды в газовой среде

© И.С. Войтков, Р.С. Волков, Г.В. Кузнецов, П.А. Стрижак

Национальный исследовательский Томский политехнический университет, 634050 Томск, Россия e-mail: pavelspa@tpu.ru

(Поступило в Редакцию 28 февраля 2017 г.)

Представлены результаты экспериментальных исследований процессов испарения капель воды при нагреве в газовой среде с температурой от 500 до 1100 К. Применены высокоскоростные средства видеорегистрации и панорамные оптические методы цифровой трассерной визуализации. Вычислены времена полного испарения капель и массовые скорости парообразования. Выполнено сравнение скоростей испарения с вычисленными при применении известных моделей испарения. Определены диапазоны температур, при которых данные математического моделирования хорошо коррелируют с экспериментами.

DOI: 10.21883/JTF.2017.12.45220.2218

Введение

Развитие теории фазовых превращений жидкостей характеризуется этапным созданием физических и математических моделей, начиная от представлений Рэнца и Маршала [1], Фукса [2] и Сполдинга [3] до Йена, Чена и Разумбулута [4,5], С.С. Кутателадзе [6], Д.В. Лабунцова и В.В. Ягова [7]. Модели [1–7] условно можно разделить на две группы ("диффузионные" и "кинетические") по доминирующему фактору влияния на интенсивность отрыва и последующего оттока молекул от поверхности раздела "жидкость-внешняя среда" (градиента концентрации молекул или интенсивности нагрева поверхности фазового перехода).

Современные представления (например, [8–11]) о скоростях испарения и конденсации чаще всего опираются на закон Герца–Кнудсена [6,7], отражающий существенно нелинейную зависимость скорости парообразования как от температуры, так и от градиента концентрации паров. Особую значимость имеют такие зависимости при высоких температурах внешней по отношению к капле газовой среды [11].

В связи с многочисленными возможными приложениями выполнен [11] сравнительный анализ значений скоростей испарения капель воды W_e при высокотемпературном нагреве в газовой среде, полученных с использованием известных "диффузионных" и "кинетических" моделей парообразования. Экспериментальные значения W_e представлены в [11] лишь при умеренных температурах (около 300 K) и максимально возможных для использовавшегося в [11] стенда (около 1100 K). Поэтому сопоставление экспериментальных и теоретических значений скоростей испарения проводилось в [11] лишь в двух "точках" широкого и представляющего интерес для практики диапазона температур (300–1100 K). Целесообразно провести экспериментальное изучение скоростей испарения капель воды для всего этого диапазона температур при разных конвективных и радиационных тепловых потоках, характерных для большой группы приложений (например, термическая и огневая очистка жидкостей). По результатам таких экспериментов станет возможным проведение оценок температурных диапазонов, в которых модели [1–7] адекватно описывают реальные скорости испарения W_e .

Цель настоящей работы — определение температурных диапазонов обоснованного использования известных моделей испарения воды [1–7] для достоверного прогноза W_e .

Экспериментальный стенд и методы исследования

Функциями цели в экспериментах являлись скорости парообразования (W_e) и времена полного испарения (t_e) капель воды. С применением подхода [12] выполнялись оценки $W_e = \Delta R \rho / \Delta t$, где Δt — интервал времени, s; ΔR — изменение радиуса капли в течение Δt , m; ρ — плотность воды, kg/m³. На рис. 1 показано изображение капли с иллюстрацией схемы определения ее размеров. Последние вычислялись при выполнении непрерывного слежения за границей раздела сред с применением программного обеспечения "Тета Automotive" [12]. Систематические погрешности определения времен (t_e) и размеров (R_d) определялись частотой и разрешением видеосъемки и составили 0.01 s и 0.025 mm соответственно.

Температуры нагрева (T_g) капель воды варьировались в соответствии с диапазонами (от 300 до 1100 K) их возможного изменения в перспективных газопарокапельных приложениях: термическая и огневая очистка жидкостей, топливные технологии, теплоносители на основе дымовых газов и капель воды, пожаротушение и др. Поэтому

Рис. 1. Схемы экспериментальных стендов, обеспечивающих разные условия нагрева (*a* — в керамической трубке в условиях доминирования радиационного теплообмена, *b* — в потоке разогретого воздуха), с иллюстрацией системы подвешивания капли на держателе (*c*): *1* — высокоскоростная СМОЅ-видеокамера, *2* — светодиодный прожектор, *3* — моторизированное координатное устройство, *4* — держатель капли, *5* — капля воды, *6* — трубчатый нагревательный элемент, 7 — зеркало, *8* — кварцевый цилиндр, *9* — нагнетатель, *10* — воздухонагреватель.

применялись два стенда, схемы которых приведены на рис. 1. В качестве камер нагрева использовались полые цилиндры с внутренним диаметром 0.1 m из керамики и кварцевого стекла. Основным блоком первого стенда (рис. 1, a) был нагревательный элемент (полый керамический цилиндр) b, выполненный по принципу действия муфельной трубчатой печи. С применением второго стенда (рис. 1, b) проводился нагрев капли воды в потоке разогретого воздуха. Использовался нагреватель 10 (мощность 11 kW, максимальная температура газа на выходе 1250 K) и нагнетатель 9 (мощность 0.25 kW, расход воздуха до 12001/min).

Скорость движения потока воздуха U_g поддерживалась на уровне 2.5 m/s и контролировалась с применением панорамного метода PIV [12]. Систематические погрешности определения U_g не превышали 0.05 m/s. Конвективные тепловые потоки соответствовали достигнутым в экспериментах [12]. Температуры в камерах 6 и 8 контролировались группой термопар (диапазон 273–1873 К, погрешность ± 3 К, инерционность не более 1 s). Максимальные случайные погрешности определения T_g и U_g не превышали 15 К и 0.05 m/s соответственно.

Для генерации капель воды 5 (рис. 1) применялся электронный дозатор (объем — 2.5–100 µl, шаг варьирования — 0.1 µl). Радиусы капель варьировались в диапазоне 1–3 mm. В каждом эксперименте капля 5

помещалась на держатель 4 и с применением координатного механизма 3 перемещалась (со скоростью 0.5 m/s) в нагревательную камеру. В качестве держателя использованы: спай термопары (диаметр 0.1 mm, диапазон 273–1873 K, погрешность ±1 K, инерционность не более 0.1 s); стальная проволочка (диаметр 0.1 mm); фосфорный стержень (диаметр 0.1 mm). С использованием видеокамеры *I* проводилась высокоскоростная (до 10^5 fps) видеорегистрация процесса испарения капли с вычислением соответствующих значений t_e . Также проведены дополнительные эксперименты с регистрацией изменений размеров свободно падающей капли во встречном потоке воздуха по методике [12].

Результаты и обсуждение

На рис. 2 представлены типичные результаты экспериментов — времена t_e и скорости парообразования W_e . Значения W_e можно вычислить при использовании разных подходов к усреднению скоростей изменения размеров капель вследствие испарения. Первый — основан

Рис. 2. Времена полного испарения капель воды в потоке разогретого воздуха на разных держателях (a) и рассчитанные скорости испарения (треугольниками обозначены вычисленные значения, штриховая кривая представляет их аппроксимацию) (b): I — в потоке разогретого воздуха, 2 — в керамической трубке (воздух практически неподвижен).

Рис. 3. Зависимости скоростей испарения капель воды от температуры газовой среды: I — в потоке разогретого воздуха, 2 — в керамической трубке в условиях доминирования радиационного теплообмена, 3 — свободное падение капли во встречном потоке разогретого воздуха, 4 — экспериментальные данные [12], 5 — экспериментальные данные [9], 6 — "диффузионная" модель испарения [2,3], 7 — модель "фазового перехода" [1,4,5,9], 8 — модель испарения, учитывающая радиационный, конвективный и кондуктивный теплообмен, подогрев паров воды, нелинейную зависимость скорости испарения от температуры поверхности капли [11] (материал держателя: I — спай малоинерционной термопары, II — стальная проволочка, III — фосфорный стержень).

на использовании коротких интервалов времени (например, $\Delta t = 0.1 \,\mathrm{s}$) и регистрации ΔR в течение Δt . Как следствие, полученные значения We можно считать мгновенными. Второй подход предполагает расчет среднего значения W_e (за время полного испарения t_e) и считая, что $\Delta R = R_d$. На рис. 2 показаны средние значения W_e , вычисленные за время t_e . Для достижения цели настоящей работы такой подход является достаточным. На рис. 3 приведены значения W_e , полученные в экспериментах при разных условиях нагрева. Также приведены экспериментальные значения We, полученные в условиях испарения капель в потоке продуктов сгорания при температуре 1100 К [12] и в потоке воздуха при 300 К [9]. Для оценки диапазонов соответствия экспериментам моделей парообразования [1-7] вычислены значения We. Выбраны три широко используемые и

существенно отличающиеся модели из рассмотренных в [11]. Первая — "диффузионная" (модель Сполдинга [3] с учетом гипотезы Максвелла), основанная на предположении о доминировании диффузии паров и малой значимости других процессов вблизи межфазной границы. Вторая — "кинетическая" или "модель фазового перехода" [4,5,8], основой которой является предположение о расходовании всей подведенной к границе раздела сред энергии на испарение. При этом предполагается, что $Q_e W_e = \alpha (T_g - T_s)$, где Q_e теплота фазового перехода, J/kg; α — коэффициент теплообмена, W/(m²K); T_g, T_s — температура газовой среды и поверхности капли, К. Третья модель (система уравнений в частных производных приведена в [11]) учитывает конвективный, кондуктивный и радиационный теплообмен на поверхности капли, а также собственное излучение газов (продуктов сгорания и водяного пара).

Из анализа зависимостей $W_e(T_g)$, представленных на рис. 3, можно сделать несколько основных заключений. Во-первых, верхняя граница диапазона изменения температуры газов, в котором экспериментальные значения We удовлетворительно коррелируют со всеми теоретическими, соответствует 700 К. Во-вторых, при дальнейшем росте температуры конвективный и радиационный тепловые потоки значительно растут. Это приводит к существенно нелинейному увеличению W_e. Так как в "диффузионной" модели [3] не учитывается температурный градиент на границе раздела сред, то полученные с ее применением значения We существенно ниже рассчитанных с учетом конвекции и излучения в тонком слое газовой смеси вблизи поверхности фазового превращения (рис. 3). В-третьих, при сравнении результатов, выполненных на двух стендах экспериментов при идентичной температуре газовой среды, хорошо виден вклад процесса обтекания капли потоком разогретого воздуха (конвективной составляющей теплового потока). В-четвертых, сопоставление значений *W*_e для разных условий крепления капли в газовой среде показало влияние как процесса стока тепла к держателю, так и, наоборот, дополнительного подвода энергии через него к испаряющейся капле. В-пятых, кривая 3 соответствует условиям экспериментов, в которых капля воды свободно падала в потоке разогретого воздуха. При сопоставлении значений We для температуры воздуха 1100 К и данных опытов [12] хорошо виден вклад собственного излучения продуктов сгорания. В частности, оценки тепловых потоков для выполненных экспериментов показывают, что конвективный тепловой поток может достигать 65-80 kW/m², кондуктивный — 25-35 kW/m², радиационный (за счет излучения стенок камеры нагрева) — 75-90 kW/m², излучение смеси продуктов сгорания и паров в тонком слое вблизи поверхности капли воды $7-11 \, \text{kW/m^2}$. Чем больше размер последней, тем существеннее будет роль лучистой составляющей теплового потока по сравнению с конвективной. На основании полученных результатов можно сделать вывод о том, что общая теория высокотемпературного испарения жидкостей может быть создана лишь на базе моделей, учитывающих все тепломассообменные процессы вблизи границы раздела сред (учет лишь конвективного или радиационного тепловых потоков недостаточен).

Заключение

По результатам выполненных исследований впервые определен диапазон изменения температуры газовой среды (до 700 К), в котором "диффузионные" и "конвективные" модели парообразования [1-7], сформулированные в соответствии с представлениями Рэнца, Маршала, Фукса, Сполдинга, Йена, Чена, Разумбулута, С.С. Кутателадзе, Д.В. Лабунцова и В.В. Ягова, позволяют достоверно прогнозировать скорости испарения капель волы. Также выделен диапазон температур (выше 1000 К), в котором адекватное воспроизведение экспериментальных скоростей испарения можно обеспечить лишь при учете конвективного, кондуктивного и радиационного теплообмена, а также излучательных свойств газовой среды. Результаты выполненного анализа способствуют развитию современных представлений о высокотемпературном испарении жидкостей, эмульсий, растворов и суспензий, а также потенциально способствуют разработке перспективных газопарокапельных технологий (термическая очистка, топливные системы, пожаротушение, теплоносители и др.).

Исследование выполнено при поддержке гранта Президента Российской Федерации (МД-1221.2017.8).

Список литературы

- [1] *Ranz W.E., Marshall W.R.* // Chem. Eng. Prog. 1952. Vol. 48. P. 141–146, 173–180.
- [2] *Fuchs N.A.* Evaporation and droplet growth in gaseous media. London: Pergamon Press, 1959. 80 p.
- [3] *Spalding D.B.* Some fundamentals of combustion. London: Butterworth's, 1955. 250 p.
- [4] Yuen M.C., Chen L.W. // Int. J. Heat Mass Transfer. 1978. Vol. 21. P. 537–542.
- [5] Renksizbulut M., Yuen M.C. // J. Heat Transfer. 1983. Vol. 105. P. 389–397.
- [6] Кутателадзе С.С. Основы теории теплообмена. М.: Атомиздат, 1979. 416 с.
- [7] Лабунцов Д.А., Ягов В.В. Механика двухфазных систем.
 М.: МЭИ, 2000. 374 с.
- [8] Терехов В.И., Пахомов М.А. Тепломассоперенос и гидродинамика в газокапельных потоках. Новосибирск: Изд-во НГТУ, 2009. 282 с.
- [9] *Терехов В.И., Терехов В.В., Шишкин Н.Е., Би К.Ч. //* ИФЖ. 2010. Т. 83. № 5. С. 829–836.
- [10] Asdees A.A., 3ydun Ю.Б. // ТВТ. 2012. Т. 50. № 4. C. 565–574.
- [11] Высокоморная О.В., Кузнецов Г.В., Стрижак П.А. // ИФЖ. 2016. Т. 89. № 1. С. 133–142.
- [12] Кузнецов Г.В., Куйбин П.А., Стрижак П.А. // ТВТ. 2015.
 Т. 53. № 2. С. 264–269.