
Физика и техника полупроводников, 2017, том 51, вып. 12

Single electron transistor: energy-level broadening effect

and thermionic contribution
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In this paper, a theoretical study of single electron transistor (SET) based on silicon quantum dot (Si−QD)
has been studied. We have used a novel approach based on the orthodox theory. We studied the energy−level

broadening effect on the performance of the SET, where the tunnel resistance depends on the discrete energy. We

have investigated the I−V curves, taking into account the effects of the energy-level broadening, temperature and

bias voltage. The presence of Coulomb blockade phenomena and its role to obtain the negative differential resistance

(NDR) have been also outlined.
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1. Introduction

Recently, The integration of nano-devices in circuits

or systems dealing with advanced functions, has been

developed to perform processing and information transport

technology. Among the new device concepts proposed for

nanoscale architectures, the single electron transistor is a

very promising one [1–3]. It has been made to overcome

the problem of power consumption and to open the way

for building nanoscale architectures. Different materials

have been used to realize SET devices such as metals [4],
semiconductors [5], carbon nanotubes, [6], graphene [7] and
single molecules [8,9]. Furthermore, SET device has been

performed to obey many required applications such as logic

device [10], radio−frequency [11], gas sensor [12] and single

electron memory [13]. The investigated device operates

on the principle of Coulomb blockade [14], which is more

prominent at nanoscale. The electronic characteristic of SET

is totally different from classical one due to the presence of

tunnel junctions. The gate electrode, capacitively coupled

with the island, is used to control the charges transfer.

As in the Coulomb blockade regime, the electron is carried

by sequential tunneling from source to drain through the

island. The average number of electrons on the island can

change discretely due to quantum mechanical effects and

electron−electron interaction. We notice that this concept

has been reported in previous works by Miralaie et al. [15]
and Mahapatra [16,17].
In this paper, we have studied the influence of different

physical and electrical parameters on the I−V characteristic

of SET simulated using a new approach. We have disco-

vered an additive properties in the I−V characteristics of

SET such as negative differential resistance (NDR) behavior.
These electronic properties give us the possibility to realize

nano-electronic devices in the future such as gate logic and

single memory device.

This paper has been divided into two sections described

as follows: in section 2, we have presented a new

mathematical model of SET based silicon quantum dot

taking into consideration the tunnel current and thermionic

contribution; in section 3, our simulation results have been

discussed.

2. Model Description

A. Tunnel Cureent Calculation

In order to understand the phenomena occured for the

SET semiconductor, many models have been used. Based

on the analytical approach given by M. Miralaei et al. [15],
the tunnel resistance depends mainly on the discrete energy.

The last condition gives birth to a novel orthodox theory

approach. The tunneling rate from the source to the

drain was calculated according to the orthodox theory and

the tunnelling resistance. A lot of approximations are

used [10–15] to improve our model. For that, we have

considered a system with a double-junction. The free energy

will be determined by:
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where, N is a number given by

N

{

n + 1 if, n even,

n, if n odd,

e is the electron charge, C tot is the total island capacitance,
λ is a real number that presents the background charge,
n — the number of electrons in the island, CG , CD

and CS represent respectively, the gate, drain and source
capacitance. We notice that the total island capacitance Cdot

in the 2D structure per array becomes (4C tot + CG)/2. For
the 3D structure it is equal to (5C tot + CG)/3 for the upper
and over planes and 2C tot for the planes between them due
to the series and parallel combination of C tot .
To adjust the first energy level to the Fermi level of

the source-drain electrodes, we have calculated the energy,
that equal to 1E + Ec/2 (Ec = e2/C tot). Where, 1E is
the energy required for the electron to move from the
highest level occupied to the lowest unoccupied level of
the island [18]. The tunneling rate can be written in a
general form using the Helmholtz free energy 1F and
Fermi’s golden rule [11,13–16]:
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Where, h is the Planck constant, Ŵ is the total tunneling rate
across the barrier from the side i of the occupied initial state
in the metallic electrode to the side f of the unoccupied
final state in the island. Ei , E f , Di and D f are respectively
the energies and densities of the initial and final state (DOS).
In fact, f (E f ) is the Fermi−Dirac distribution that gives the
occupation probability of energy levels, |T |2 represents the
tunneling transmission coefficient. Therefore, (1− f (E f ))
is the probability of finding an empty state. The equation
can be simplified as follow [15]:

Ŵ(n, n + 1) =
2π

h
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−1F
(
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) . (3)

Where, ti f is defined as the tunneling transmission proba-
bility between the initial and final state and it is composed
of the product of Di , D f , and the tunneling transmission
coefficient |T |2. In case of metallic islands, the probability
of tunneling transmission is considered as constant for all
energy levels. In contrast, for molecules or semiconductor
islands, the energy level broadening can be modeled through
Lorentzian function taking into account the tunneling trans-
mission probability as follows [11,13,14]
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Where, (n = 0, 1, 2, 3, . . .) are discrete energy levels (due
to quantization) in the semiconductor island that can be

obtained by solving the Schrödinger equation. γn represents

a parameter related to the
”
escape frequency“ of an electron

from the island (a term used for any particular energy state

to indicate the amount of broadening) that describes the

half-width of the DOS peaks. The transmittance strength

parameter allows us to classify tunnel barriers according to

their transparency, i.e. width and height.

Neglecting charging effects, the tunnel junction has an

Ohmic I−V characteristic. It can be defined by a phe-

nomenological quantity, namely the
”
tunneling resistance“,

RT = V/I . The presence of a current through the junction is

proportional to the bias voltage applied across the junction.

Therefore, from the tunneling transmission probability

and discrete energy levels [15], the tunneling discrete

resistance is given by Eq. (5):
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h
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. (5)

Using the orthodox theory [18–23] and [19–23] equations
described above (Eq. (3)−(5)), the expression for the

transmission rate will be:

Ŵ(n, n + 1) =
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In this paper, we have taken into account the basic concept

of the energy level broadening. Therefore, using the Eq. (6),
the tunneling rate is modified for discrete energy levels as

follows:
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In order to test our model, we have used MATLAB

simulator. The current’s expression is calculated using the

master equation described in details in Ref. [20–22].

B. Thermionic Contribution

At high-temperature operation, the electrons are ther-

mally excited and move freely in a parallel channel through

the SET. To get a better understanding of the relationship

between the transport properties and the temperature

contribution, we have considered the thermionic emission

effect [14] which is described below:
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Where, kB is the Boltzmann constant, E is the electric

field and εr is the relative dielectric permittivity.

The structural parameters of our simulated device are

summarized in Table.
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Electronic parameters description of the SET

Description Value

A constant effective Richardson 1.20173 · 106 A ·m−2
·K−2

S Junction area 10 · 2 nm

mox mass of the electron

in the oxide TiOx 0.40m0

ε0 vacuum permittivity 8.854 187 817 · 10−12 F/m

εr relative permittivity

of the dielectric TiOx 3.5

ϕ0 barrier height Ti/TiOx 0.35 eV

Dielectric thickness 8 nm

SET drain capacitance, CD 0.062 aF

SET source capacitance, CS 0.062 aF

SET gate capacitance, CG 0.24 aF

We notice that C tot = 0.362 aF, the charging energy

EC = e2/2C tot ≈ 0.432 eV > 10 kBT for T = 300K. The

final current through the SET can be defined as the sum

of the tunnel and the thermionic currents:

ITOT(V ) = I tunnel current + I thermionic. (9)

The three-dimensional (3D) structure of the simulated SET

device is shown in Fig 1.

The developed analytical model of the I−V characteristics

of Single Electron Transistor is described in section 3.

Si-island

Ti

TiO
x

Figure 1. 3D-Structure of Single Electron transistor.

3. Results and discussion

In this section, the result of simulating a SET has been

investigated. We have taken into account that the tunnel

junction resistance depends on the discrete energy, which

leads to a novel orthodox theory approach. When a bias

voltage is equal to zero, the Fermi levels of both electrodes

are in the equilibrium state which lead to the absence of

current flow. This absence of the electron tunneling at low

bias condition is called coulomb blockade. Once external

voltage VDS is applied above the threshold voltage, the

tunneling of an electron between the source to drain via

the quantum dot was obtained.

The simulation results illustrated in Fig. 2 reveal a strong

field effect in the conductance of the gate voltage. The

modulated current is established by changing the polarity of

gate field that leads to a variation of the QD Fermi level. As

a consequence, the current flows between source and drain,

it can be controlled by the gate voltage.

Generally, at high temperature, thermally activated elec-

tron transport occurs by thermionic emission. The I−VDS

characteristic shows that changing the temperature has

a remarkable effect on the electrical characteristics and

especially in the Coulomb blockade area. Fig. 3 depicts the

I−VDS characteristics for different temperatures. At high

temperature, we can see there are no coulomb blockade

effect which is generally explained by the thermionic

contribution.

Fig. 4 and 5 shows the I−VG characteristics for diffe-

rent temperatures and source−drain voltage, respectively.

The I−V characteristics has a periodic function namely
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Figure 2. I−VDS characteristic of gate voltage effect on

source−drain currents.

Drain voltage, V

–2

0

–1

–2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0
–4

1

D
ra

in
 c

u
rr

en
t

A
, 
 1

0
–
8

–3

2

3
Simulated device characteristic

250 K
300 K
350 K
400 K
450 K

Figure 3. I−VDS characteristics for different temperature.
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Figure 4. I−VGS characteristics for different temperatures.
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Figure 5. I−VG characteristics of source-drain voltage effect on

source−drain currents.

Coulomb blockade oscillation. One can easily distinguish

the effect of variation of energy level broadening. As

we know, in the metallic QD, a single energy level lead

to equality of the current peaks [24,26]. However, in

semiconductor QD, the current peaks are not equal, due

to the contribution of broadening of energy level.

The rise of gate voltage leads to increase of the current

value peaks. This can be explained by the increasing of the

number of electrons in the QD and the role of broadening

of energy level. At high temperature, the electron transport

is thermally activated. As result, the current increases due

to the thermionic contribution.

The simulation of I−VG characteristics at 300K for

different source−drain voltages is illustrated in Fig 5. When

VDS voltage increases up to threshold voltage electron

tunnels from source to drain via dot. The increasing of

drain voltages plays a crucial role to increase the electron

tunnel. As a result, The current is enhanced.

Additionally, the negative differential resistance (NDR)
effect has been investigated. It defines as a negative slope

region of the I−V curve. An increase in voltage across the

device’s terminals results in a decrease in current through it.

The coulomb oscillation curves and NDR behavior are

well shown in Fig. 5. They depend on the Coulomb

interaction between electrons and the effect of the discrete

resistance (Rdiscrete
t ). The NDR effect is observed on the

I−VG curve. It can be explained by the tunnelling through

discrete quantum-mechanical state and a small density of

state (DOS) of the quantum dot levels. The electron

tunnelling from the dot decreases from one electrode to

the other one. These give us a non- linear current resulting

in the NDR effect.

4. Conclusions

To sum up, the single electron transistor has been simu-

lated using MATLAB simulator. A novel orthodox theory

approach in which a non equal energy level broadening was

considered. Different tunneling current rates for distinct

energy levels of the Silicon QD have been demonstrated.

Using this model, we have found that the total current

is the sum of the tunneling and the thermionic currents.

The investigation of the I−V curves leads to conclusior that

the energy level broadening affects the Coulomb oscillation

by changing the current peak value. Our device can be

operated at high temperature required for many applications

in the field of nano-electronics with stability and low

power dissipation in the future. We note that the negative

differential resistance effects could be highly useful in the

miniaturization of a wide variety of applications such as

in memory cells, analog-to-digital converter, RF oscillators,

logic circuit and cellular neural network.
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