Молекулярно-пучковая эпитаксия структур InGaAs/InAlAs/AlAs для гетеробарьерных варакторов

© Н.А. Малеев¹, В.А. Беляков², А.П. Васильев³, М.А. Бобров¹, С.А. Блохин¹, М.М. Кулагина¹, А.Г. Кузьменков³, В.Н. Неведомский¹, Ю.А. Гусева¹, С.Н. Малеев¹, И.В. Ладенков², Е.Л. Фефелова², А.Г. Фефелов², В.М. Устинов^{3,4}

194021 Санкт-Петербург, Россия

603950 Нижний Новгород, Россия

Российской академии наук,

194021 Санкт-Петербург, Россия

195251 Санкт-Петербург, Россия

E-mail: maleev@beam.ioffe.ru

(Получена 27 апреля 2017 г. Принята к печати 12 мая 2017 г.)

Представлены результаты исследований по оптимизации технологии молекулярно-пучковой эпитаксии структур InGaAs/InAlAs/AlAs для гетеробарьерных варакторов. Выбор температуры держателя подложки, скорости роста и соотношения потоков элементов III и V групп при синтезе отдельных областей гетероструктуры, толщина AlAs-вставок и качество границ барьерных слоев являются критическими параметрами для получения оптимальных характеристик гетеробарьерных варакторов. Предложенная конструкция трехбарьерных структур гетеробарьерных варакторов с непосредственно примыкающими к гетеробарьеру InAlAs/AlAs/InAlAs тонкими напряженными слоями InGaAs, рассогласованными относительно постоянной решетки подложки InP, при толщине AlAs-вставок 2.5 нм обеспечивает плотность тока утечки на уровне лучших опубликованных значений для структур гетеробарьерных варакторов с 12 барьерами и толщиной вставок 3 нм.

DOI: 10.21883/FTP.2017.11.45095.09

1. Введение

Для создания эффективных твердотельных источников диапазона частот от сотен ГГц до 1 ТГц успешно используются многокаскадные диодные умножители частоты, на вход которых подается качественный сигнал относительно низкочастотного генератора (например, на диоде Ганна или лавинно-пролетном диоде), а выходной сигнал может быть дополнительно усилен с помощью транзисторного усилителя [1]. В качестве активных элементов таких умножителей применяются включенные по балансной схеме диоды Шоттки в планарной геометрии с несколькими анодами [2]. Возможной альтернативой является использование гетеробарьерных варакторных диодов (ГБВ, heterostructure barrier varactors — HBV) [3]. Тонкие широкозонные барьерные слои в структурах ГБВ расположены между легированными п-типом слоями узкозонного материала и создают потенциальные барьеры для электронов в зоне проводимости. Приложенное внешнее напряжение смещения приводит к накоплению электронов с одной стороны от барьерного слоя, а с другой формируется обедненная область, барьерная емкость которой уменьшается по мере роста приложенного напряжения. Нелинейная вольт-фарадная характеристика (ВФХ) ГБВ имеет симметричную форму, что позволяет реализовать эффективные утроители и

пятикратные умножители частоты [4]. При этом величина допустимого размаха амплитуды входного сигнала умножителя на основе ГБВ ограничена токами утечки через барьерные слои. Лучшие результаты для умножителей на основе ГБВ достигнуты с использованием выращенных на подложках InP гетероструктур с несколькими последовательно расположенными барьерными слоями $In_{0.52}Al_{0.48}As/AlAs/In_{0.52}Al_{0.48}As$ в матрице In_{0.53}Ga_{0.47}As, которые обеспечивают большую высоту потенциального барьера в зоне проводимости и подавление туннельных токов утечки. По результатам моделирования, выполненных в работе [5], для эффективного подавления туннельных токов утечки было предложено использовать в качестве оптимальной структуру барьера со следующей последовательностью слоев: $8\,\text{нм}\ In_{0.52}Al_{0.48}As/3\,\text{нм}\ AlAs/8\,\text{нм}\ In_{0.52}Al_{0.48}As.\ B$ то же время из результатов экспериментальных исследований следует, что при указанной толщине AlAs-вставок общая оптимальная толщина барьерного слоя лежит в диапазоне 10-14 нм [6], что существенно меньше предсказанного моделью значения $\sim 19\,\mathrm{нм}.~\mathrm{B}$ связи с этим задача оптимизации барьерных слоев гетероструктур ГБВ на подложках InP для снижения токов утечки сохраняет свою актуальность.

В настоящей работе представлены результаты исследований по оптимизации технологии молекулярно-

¹ Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

 $^{^2}$ ОАО «НПП "Салют"»,

³ Научно-технологический центр микроэлектроники и субмикронных гетероструктур

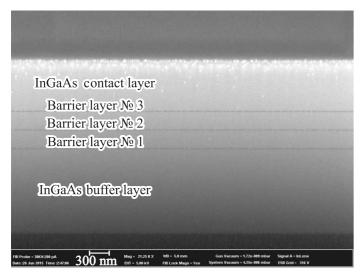
⁴ Санкт-Петербургский политехнический университет Петра Вликого,

пучковой эпитаксии (МПЭ) структур ГБВ в системе материалов InGaAs/InAlAs/AlAs. Рассмотрена возможность улучшения приборных характеристик с помощью введения в конструкцию барьера дополнительных структурно-напряженных слоев узкозонного материала, непосредственно примыкающих к барьерным слоям.

2. Детали эксперимента

Эпитаксиальные структуры для ГБВ выращивались методом МПЭ в установке Riber Compact 21 на полуизолирующих подложках InP диаметром 50.8 мм с кристаллографической ориентацией (001) и содержали три барьерных слоя InAlAs/AlAs/InAlAs с толщиной AlAs-вставок от 1.5 до 2.5 нм. Общая конструкция гетероструктур аналогична использованной в работе [4]. Для обеспечения согласования постоянных решетки эпитаксиальных слоев InGaAs и InAlAs с подложкой InP проводились предварительные калибровки с использованием метода высокоразрешающей рентгеновской дифрактометрии (HR XRD). Калибровки осуществлялись таким образом, чтобы точное согласование постоянных решетки слоев и подложки обеспечивалось при рабочей температуре держателя подложки в ходе эпитаксиального процесса. При таком подходе удается надежно обеспечить требуемую точность согласования слоев на всем протяжении эпитаксиального процесса. Выбор температуры держателя подложки ($\sim 480-500^{\circ}$ C), скоростей роста InGaAs и InAlAs ($\sim 0.5\,\mathrm{мкм/ч}$) и соотношения потоков элементов III и V групп $(\sim 1:5)$ определялся компромиссом между оптимальными условиями для получения хорошей морфологии слоев, точностью контроля содержания In и возможностью прецизионного контроля интерфейсов. Ранее выполненные исследования влияния параметров эпитаксиального процесса на качество поверхности гетероструктур ГБВ показали, что при температуре держателя подложки на 20-30°C выше оптимальной области с высокой шероховатостью поверхности занимают около 60% от общей площади образца, тогда как при оптимальной температуре области с шероховатой поверхностью располагаются у самых краев подложки (вблизи элементов крепления образца) и занимают не более 10% от его общей площади [7]. Структурные характеристики выращенных образцов исследовались методами HR XRD, сканирующей электронной микроскопии (СЭМ) с локальным травлением ионным пучком и просвечивающей электронной микроскопии (ТЕМ), количество и распределение поверхностных дефектов анализировались методом рассеяния лазерного излучения на установке SurfScan. Из выращенных гетероструктур были изготовлены наборы тестовых диодов с разной площадью барьерного контакта, для которых измерялись ВФХ и вольт-амперные характеристики (ВАХ). Рабочие образцы ГБВ с последовательным включением двух или четырех мезаструктур, каждая из которых содержит по три барьерных слоя,

Основные параметры исследуемых эпитаксиальных гетероструктур


Слой эпитаксиальной структуры	Материал слоя	Толщина слоя, нм
Контактный слой Модулирующий слой Барьерный слой Модулирующий слой Модулирующий слой Модулирующий слой	n ⁺ -In _{0.53} Ga _{0.47} As n-In _{0.53} Ga _{0.47} As i-In _{0.52} Al _{0.48} As i-AlAs i-In _{0.52} Al _{0.48} As i-In _{0.52} Al _{0.48} As	400.0 255.0 6.0 1.5, 2.0, 2.5 6.0 260.0 6.0 1.5, 2.0, 2.5 6.0 260.0 6.0 1.5, 2.0, 2.5 6.0 255.0
Буферный слой Подложка	n^+ -In _{0.53} Ga _{0.47} As InP	1000.0 450 ± 2.5 мкм
	1	

были реализованы в конструкции с балочными выводами и апробированы в составе умножителя частоты W-диапазона.

3. Результаты и обсуждение

В процессе исследований после оптимизации технологических режимов эпитаксиального выращивания отдельных слоев была выращена серия гетероструктур ГБВ с тремя барьерными слоями In_{0.52}Al_{0.48}As/AlAs/ In_{0.52}Al_{0.48}As, имеющими фиксированную толщину слоев InAlAs 6 нм и различную толщину AlAs-вставок в диапазоне от 1.5 до 2.5 нм. Параметры эпитаксиальных структур HBV1-HBV4, результаты для которых представлены в настоящей работе, приведены в таблице. Толщина вставок AlAs для четырех исследуемых структур составляет: HBV1 — 1.5 нм, HBV2 — 2 нм, HBV3 — 2 нм, HBV4 — 2.5 нм. Гетероструктуры HBV3, HBV4 дополнительно имеют непосредственно примыкающие к барьерным слоям $In_{0.52}Al_{0.48}As/AlAs/In_{0.52}Al_{0.48}As$ тонкие ($\sim 5\,\mathrm{HM}$) вставки структурно-напряженных слоев InGaAs, роль которых обсуждается в дальнейшем.

На рис. 1 приведено СЭМ-изображение поперечного разреза гетероструктуры HBV2, подтверждающее хорошее соответствие толщин эпитаксиальных слоев проектным значениям. Представленные на рис. 2 результаты измерений ВФХ тестовых диодов с размерами барьерной области 47×47 мкм, изготовленных из структур HBV1-HBV4, демонстрируют высокую воспроизводимость абсолютной величины удельной барьерной емкости для выращенных гетероструктур с различной конструкцией барьерного слоя и симметричную форму ВФХ с отношением значений барьерной емкости при напряжениях 0 и 7 В около пяти. Измеренные ВФХ

Basic sequence of layers

Contact layer n^+ -InGaAs (400 nm)

Modulating layer *n*-InGaAs (250 nm)

Modulating layer *n*-InGaAs (250 nm)

Barrier layer № 2 InAlAs/AlAs/InAlAs (14 nm)

Modulating layer *n*-InGaAs (250 nm)

Barrier layer № 1 InAlAs/AlAs/InAlAs (14 nm)

Barrier layer № 3 InAlAs/AlAs/InAlAs (14 nm)

Modulating layer n-InGaAs (250 nm)

Buffer layer n^+ -InGaAs (1000 nm)

Substrate is semi-insulating InP

Рис. 1. Изображение поперечного разреза эпитаксиальной гетероструктуры ГБВ в сканирующем электронном микроскопе с указанием последовательности основных слоев.

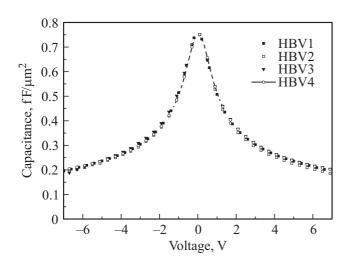


Рис. 2. Вольт-фарадные характеристики тестовых ГБВ.

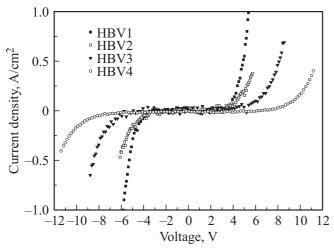
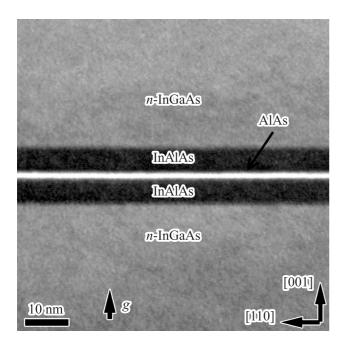



Рис. 3. Вольт-амперные характеристики тестовых ГБВ.

изготовленных тестовых ГБВ близки к проектным значениям. Поскольку величина удельной барьерной емкости и форма ВФХ преимущественно определяются общим количеством барьерных слоев, их толщиной и уровнем легирования модулирующих слоев InGaAs, наблюдаемое отсутствие заметной зависимости ВФХ от толщины AlAs-вставок вполне ожидаемо. В то же время, как следует из приведенных на рис. З данных измерений ВАХ тестовых диодов, проведенные исследования показывают сильное влияние толщины AlAs-вставок на уровень токов утечки. Увеличение толщины AlAs-вставок с 1.5 (структура HBV1) до 2 нм (структура HBV2) приводит к двухкратному падению плотности тока утечки при напряжении $6 \,\mathrm{B} - \mathrm{c} \, 1$ до $0.5 \,\mathrm{A/cm^2}$. Следует отметить, что выращенные в оптимизированных условиях структуры ГБВ имеют высокое структурное совершенство и планарность гетерограниц барьерных областей, что подтверждается представленными на рис. 4 результатами исследований методом TEM для структуры HBV2.

Структуры ГБВ с толщиной AlAs-вставок 2 нм были успешно использованы для предварительной приборной апробации в составе умножителя частоты. На их основе были изготовлены планарные ГБВ в интегральном исполнении с четырьмя диодными мезаструктурами, последовательно соединенными через сильно легированный InGaAs буферный слой. Каждая из диодных мезаструктура с размерами контактов $\sim 5 \times 100\,\mathrm{мкm}$ содержала по три барьерных слоя. Созданный на основе изготовленных ГБВ утроитель с частотой выходного сигнала 94 ГГц в импульсном режиме обеспечивает выходную мощность 220 мВт при мощности входного сигнала 1 Вт. В непрерывном режиме выходная мощность составляет 80 мВт при входной мощности 500 мВт и ограничена неоптимальной схемой теплоотвода.

Рис. 4. TEM-изображение единичного барьерного слоя InAlAs/AlAs/InAlAs гетероструктуры HBV2.

Попытки использования толщины AlAs-вставок больше 2 нм для решеточно-согласованной конструкции эпитаксиальной гетероструктуры в нашем случае приводили к неустойчивым результатам, в том числе к деградации качества поверхности для большей части площади эпитаксиальной структуры. В связи с этим была исследована возможность использования преднамеренного рассогласования состава непосредственно примыкающих к $In_{0.52}Al_{0.48}As/AlAs/In_{0.52}Al_{0.48}As$ гетеробарьеру тонких ($\sim 5\,\text{нм}$) слоев $\text{In}_x\text{Ga}_{1-x}\text{As}$ относительно значения x = 0.53, соответствующего постоянной решетки подложки InP. Фактически данный подход лежит в русле концепции частичной компенсации структурных напряжений, в ряде случаев успешно используемой при выращивании напряженных приборных гетероструктур различного типа. В результате было обнаружено, что при одинаковой толщине AlAs-вставок 2 нм фиксированный уровень тока утечки 0.5 A/cм² при использовании тонких слоев In_{0.565}Ga_{0.435}As достигается при напряжении 8В, что на 2В выше, чем для структур с полностью решеточно-согласованными слоями In_{0.53}Ga_{0.47}As (рис. 4). Для выращенных трехбарьерных структур ГБВ с толщиной AlAs-вставок 2.5 нм и примыкающими к барьеру тонкими слоями In_{0.565}Ga_{0.435}As плотность тока утечки при напряжении 10 В составляет 0.4 А/см², что соответствует лучшим опубликованным значениям для структур ГБВ с номинальной толщиной AlAs-вставок 3 нм при последовательном включении 12 барьеров [4]. Таким образом, в расчет на один барьер обеспечивается снижение тока утечки в 4 раза. Следует отметить, что предложенный подход при рекордно низком уровне

токов утечки позволяет уменьшить общий уровень механических напряжений в структуре ГБВ.

4. Заключение

Представлены результаты исследований по оптимизации технологии молекулярно-пучковой эпитаксии структур InGaAs/InAlAs/AlAs для гетеробарьерных варакторов (ГБВ). Выбор температуры держателя подложки, скорости роста и соотношения потоков элементов III и V групп при синтезе отдельных областей гетероструктуры, толщина AlAs-вставок и качество границ барьерных слоев являются критическими параметрами для получения оптимальных характеристик ГБВ. Трехбарьерные структуры ГБВ с непосредственно примыкающими к гетеробарьеру InAlAs/AlAs/InAlAs тонкими напряженными слоями InGaAs, рассогласованными относительно постоянной решетки подложки InP, при толщине AlAs-вставок 2.5 нм демонстрируют плотность тока утечки на уровне лучших опубликованных значений для структур ГБВ с 12 барьерами при толщине AlAs-вставок 3 нм. Предложенная конструкция барьерных слоев при рекордно низком уровне токов утечки позволяет уменьшить общий уровень механических напряжений в структуре ГБВ.

Работа выполнена при частичной поддержке проекта РФФИ 16-29-03346 офи-м.

Список литературы

- [1] J.L. Hesler, T. Crowe. SPIE Newsroom. 10.1117/2.1201506.005859 (2015).
- [2] N.R. Erickson. Proc IEEE MTT-S International, 1301 (1990).
- [3] A. Rydberg, H. Grönqvist, E. Kollberg. IEEE Electron Dev. Lett., 11, 373 (1990).
- [4] A. Malko, T. Bryllert, J. Vukusic, J. Stake. 24th Intern. Conf. on Indium Phosphide and Related Materials (Santa Barbara, USA, 2012) p. 92.
- [5] Y. Fu, J. Stake, L. Dillner, M. Willander, E.L. Kollberg. J. Appl. Phys., 82, 5568 (1997).
- [6] T.A. Emadi, T. Bryllert, M. Sadeghi, J. Vukusic, J. Stake. Appl. Phys. Lett., 90, 012108 (2007).
- [7] Н.А. Малеев, В.А. Беляков, А.П. Васильев, М.М. Кулагина, А.Г. Кузьменков, Ю.А. Гусева, С.Н. Малеев, Е.В. Никитина, С.А. Блохин, М.А. Бобров, С.В. Оболенский, Е.Л. Фефелова, И.В. Ладенков, А.Г. Фефелов, В.М. Устинов. Электроника и микроэлектроника СВЧ. У Всеросс. конф. (Санкт-Петербург, 2016). Сб. ст., т. 1, с. 68.

Редактор А.Н. Смирнов

Molecular-beam epitaxy growth of InGaAs/InAlAs/AlAs structures for heterobarrier varactor diodes

N.A. Maleev¹, V.A. Belyakov², A.P. Vasil'ev³, M.A. Bobrov¹, S.A. Blokhin¹, M.M. Kulagina¹, A.G. Kuzmenkov³, V.N. Nevedomskii¹, Yu.A. Guseva¹, S.N. Maleev¹, I.V. Ladenkov², E.L. Fefelova², A.G. Fefelov², V.M. Ustinov^{3,4}

¹ loffe Institute,
194021 St. Petersburg, Russia
² JSC ≪NPP "Salyut"»,
603950 Nizhny Novgorod, Russia
³ Submicron Heterostructures for Microelectronics,
Research & Engineering Center of the Russian
Academy of Sciences,
194021 St. Petersburg, Russia
⁴ Peter the Great St. Petersburg Politechnic University,
195251 St. Petersburg, Russia

Abstract Molecular-beam epitaxy growth of InGaAs/InAlAs/AlAs structures for heterobarrier varactor diodes (HBV) was investigated and optimized. Substrate holder temperature, growth rate and III/V ratio, thickness of AlAs insertions and heterointerface quality are essential parameters for optimal HBV performance. Proposed triple barrier HBV structures with InAlAs/AlAs/InAlAs barriers surrounded by thin lattice-mismatched compressively-strained InGaAs layers at AlAs insertion thickness of 2.5 nm demonstrates leakage current as low as best published 12 barriers HBV structures with AlAs insertion thickness of 3 nm.