Фотолюминесценция нанокристаллов перовскитов $CsPbX_3$ (X = CI, Br, I) и твердых растворов на их основе

© Л.Б. Матюшкин, В.А. Мошников

Санкт-Петербургский государственный электротехнический университет "ЛЭТИ", 197376 Санкт-Петербург, Россия

E-mail: leva.matyushkin@gmail.com

(Получена 4 апреля 2017 г. Принята к печати 5 апреля 2017 г.)

Рассмотрены синтез, структурные и фотолюминесцентные свойства нанокристаллов с естественной огранкой системы "цезий-свинец-галоген" кристаллической структуры типа перовскит. Показана возможность непрерывной перестройки максимума спектра фотолюминесценции нанокристаллов в диапазоне длин волн 400–700 нм. Исследованы особенности образования непрерывных рядов твердых растворов CsPb($Cl_{1-x}Br_x$)₃ и CsPb($Br_{1-x}I_x$)₃ за счет постростовой обработки нанокристаллов CsPbBr₃ в результате анионного замещения при комнатной температуре. Соответствующий диапазон перестройки максимума спектра фотолюминесценции составил 410–690 нм.

DOI: 10.21883/FTP.2017.10.45018.8575

1. Введение

Коэффициент полезного действия однокаскадных солнечных элементов на основе органо-неорганических перовскитов стремительно вырос с 3.8% в 2009 г. [1] до более 22% в 2016 г. [2]. Кроме того, низкоразмерные формы перовскитов могут использоваться как активные слои светоизлучающих устройств [3]. Однако главной проблемой практического применения подобных материалов остается температурная нестабильность, приводящая к быстрой деградации характеристик устройств на их основе [4]. Другие технологические трудности создания электронных структур обусловлены возможностью депротонирования органической группы гибридных перовскитов материалом примыкающего транспортного слоя, например оксида цинка [5].

На рис. 1 представлена кристаллическая решетка перовскита с общей формулой ABX_3 . В гибридном перовските CH₃NH₃PbI₃ позицию A занимает положительно заряженная группа метиламмония CH₃NH₃⁺, B — ион свинца Pb²⁺, X — ион иода I⁻ или, в общем случае, ион другого галогена. Для повышения температурной и химической стабильности структуры органическую группу в позиции A можно заменить на крупный катион, например цезий Cs⁺ [6], перейдя, таким образом, к неорганическому материалу.

Для оценки устойчивости структуры в качестве критерия используют фактор соответствия Гольдшмидта:

$$t = \frac{r_A + r_B}{\sqrt{2}(r_B + r_X)}$$

где r_A , r_B , r_X — ионные радиусы. Из геометрии решетки (рис. 1) следует, что в идеальном кубическом кристалле t = 1. В диапазоне t = 0.71-0.9, к которому относятся галогениды свинца-цезия (см. таблицу, данные ионных радиусов взяты из [7]), возможно наблюдение других кристаллографических симметрий: кроме кубического перовскита в системе "цезий-свинец-галоген" также обнаруживаются тетрагональная, орторомбическая и моноклинная сингонии. Этот факт отмечен еще в ранних работах Мёллера [8] при синтезе первых кристаллов CsPbCl₃ и CsPbBr₃. Долгое время исследование подобных материалов не представляло существенного практического интереса. Первые наблюдения CsPbX₃ в форме нанокристаллов, по всей видимости, связаны с исследованием квантово-размерных включений в ионных матрицах CsX : Pb и PbX₂ : Cs [9–11]. Для промышленного получения нанокристаллов CsPbX₃ перспективны методы коллоидной химии. В 2015 г. группой М.В. Коваленко была продемонстрирована возможность коллоидного синтеза квантовых точек CsPbX₃ [12].

Тройные системы Cs-Pb-X еще недостаточно изучены с позиций физико-химического анализа. Рассмотрим некоторые особенности тройных систем Cs-Pb-X методом триангуляции (рис. 1). Предварительно отложим конфигуративные точки бинарных соединений на соответствующих сторонах треугольника Гиббса. Для системы Cs-Pb подтверждено существование ряда интерметаллических соединений [13]. Точке конгруэнтного плавления (653°C) соответствует эквиатомарный плюмбат цезия CsPb, остальные указанные на треугольнике соединения — перитектические. Относительно двухкомпонентных систем "галоген-металл" известны следующие галогениды цезия и свинца (II): CsCl, CsBr, CsI, PbCl₂, PbBr₂, PbI₂. Хлорид свинца (IV) PbCl₄ при малейшем нагреве распадается до PbCl₂, а PbBr₄ и PbI₄ не существуют. Бром и иод образуют координационные полигалогенидные соединения CsBr₃, CsI₃, CsI₄, лигандный координационный ион Cl₃⁻ неустойчив и его соединения с цезием неизвестны. Таким образом, ни для

Материал	r_A , ПМ	$r_B, \Pi M$	$r_X, \Pi M$	t
CsPbCl ₃ CsPbBr ₃ CsPbI ₃	167	119	181 196 220	0.820 0.815 0.807

Рис. 1. Кристаллическая решетка типа перовскит ABX_3 и основные соединения трехкомпонентных систем Cs-Pb-X на треугольнике Гиббса, частичная триангуляция системы на примере $CsPbCl_3$.

одного из рассматриваемых по отдельности галогенов в триангуляции не имеется разрезов CsX_3-PbX_4 или CsX_4-PbX_4 , а основным разрезом, присутствующим во всех системах, является $CsX-PbX_2$. На этом разрезе лежит конфигуративная точка рассматриваемых перовскитов $CsPbX_3$, и, кроме того, точки термодинамически менее устойчивых соединений Cs_4PbX_6 и Cs_2PbX_5 .

Заметим, что учет полигалогенидов CsX_n важен относительно роста кристаллов в растворах и для создания на основе тройных соединений ячеек Гретцеля [14], а также их твердотельных аналогов. Фактически полигалогениды цезия являются координационными соединениями. К таковым относится и структурная единица [PbX₆]⁴⁻, геометрически представляющая октаэдр из комплексообразующего иона свинца Pb²⁺, координированного шестью атомами галогена (рис. 1). Этот нехарактерный для классического рассмотрения триангуляции элемент может играть решающую роль при росте кристаллов из растворов. Кроме того, октаэдр $[PbX_6]^{4-}$ отвечает за эффективное поглощение света и люминесценцию в материалах [15] — дисперсионные кривые, определяющие энергетический зазор материала, соответствуют электронным состояниям свинца и галогена [16].

Сравнивая треугольники Гиббса на рис. 1, можно видеть, что гипотетический разрез, выходящий из точки Cs и проходящий через конфигуративные точки, соответствующие соединениям Cs₄PbCl₆ и Cs₂PbCl₆, попадает на конфигуративную точку PbCl₆. На основе этого факта может быть предложен низкотемпературный метод получения твердых растворов на основе перовскитов. Конфигуративная точка PbX_6 свидетельствует о том, что при использовании жидкостных методов происходит предварительная сборка структурных элементов в виде октаэдров $[PbX_6]^{4-}$, которые могут включать ионы галогена как одного, так и нескольких типов. В присутствии ионов Cs⁺ происходит сборка структуры в кристаллическую решетку перовскита. Такой рост предполагает возможность наблюдения процессов замещения одного типа галогенов на другой при сравнительно низких температурах. В работе показывается возможность тонкой настройки спектров фотолюминесценции в результате процесса анионного замещения при комнатной температуре.

2. Методика эксперимента

Для синтеза нанокристаллов CsPbX₃ использован коллоидный метод горячей инжекции, описанный нами ранее для различных соединений $A^{II}B^{VI}$, $A^{IV}B^{VI}$ [17] и $A^{I}B^{III}C_{2}^{VI}$ [18]. В качестве прекурсоров выступали олеат цезия и галогенид свинца PbX₂, находящиеся в дисперсионной среде с высокой температурой кипения (октадецен).

Прекурсор цезия готовился под атмосферой высокочистого азота нагревом карбоната цезия при 150° С в растворе олеиновой кислоты в дисперсионной среде до полного растворения соли. Прекурсор источника галогенида свинца готовился аналогично нагревом соли PbX₂ в дисперсионной среде в присутствии небольшого количества олеиновой кислоты и олеиламина в пропорции 1:1 при непрерывном перемешивании. Для по-

Рис. 2. Спектры фотолюминесценции нанокристаллов CsPbX₃, синтезированных при 170°С: I — CsPbCl₃; 2 — CsPb(Cl_{1-x}Br_x)₃, x = 0.5; 3 — CsPbBr₃ (приведено изображение сканирующей электронной микроскопии), 4 — CsPb(Br_{1-x}I_x)₃, x = 0.33; 5 — CsPb(Br_{1-x}I_x)₃, x = 0.5; 6 — CsPb(Br_{1-x}I_x)₃, x = 0.67; 7 — CsPbI₃.

лучения твердых растворов использовались смешанные в заданной пропорции прекурсоры PbX_2 , полученные из солей соответствующих галогенидов. В полученный раствор при 170°С проводилась инжекция источника цезия. Локальное концентрационное пересыщение мономеров во всем объеме раствора приводит к мгновенной нуклеации частиц и их последующему росту. Образование нанокристаллов происходит в течение нескольких первых секунд после инжекции.

После синтеза коллоидные растворы остужались до комнатной температуры, очищались центрифугированием в присутствии осадителя — изопропилового спирта, после чего порошки частиц редиспергировались в неполярных легколетучих растворителях — толуоле или гексане. Поверхность получаемых нанокристаллов в результате синтеза покрыта молекулами олеиламина и олеиновой кислотой, препятствующими агрегации частиц в процессе очистки и хранения.

Спектры оптической плотности образцов измерялись на спектрофотометре ПЭ-5400 УФ (190–1000 нм), спектры фотолюминесценции — при помощи спектрофлуориметра на основе монохроматора ЛОМО МДР-206 и кремниевого фотодиода. Возбуждение фотолюминесценции (ФЛ) осуществлялось маломощным (10 мВт) полупроводниковым лазером с длиной волны 405 нм. Все оптические измерения проводились при комнатной температуре.

Рентгенофазовый анализ осуществлялся на порошке нанокристаллов при помощи рентгендифрактометра ДРОН-3 с трубкой Cu-*K*_α.

Электронная микроскопия образцов осуществлялась на микроскопе MIRA TESCAN при ускоряющем напряжении 10 кВ. Образцы для микроскопии представляли нанокристаллы, осажденные из коллоидного раствора на кремниевую пластину.

3. Экспериментальные результаты

В результате предварительных экспериментов было определено, что размер нанокристаллов $CsPbX_3$ определяется, в отличие от коллоидного синтеза халькогенидов металлов [17], в большей мере температурой синтеза, чем временем роста. В работе рассматривается синтез при 170° С, который в случае бромида приводит к образованию монодисперсных кубических кристаллов с длиной ребра 13 нм.

Так как процедура синтеза нанокристаллов CsPbX₃ идентична для хлорида, бромида и иодида, перестраивать положение полосы люминесценции технологически удобнее посредством изменения состава нанокристаллов, чем размерами частиц. На рис. 2 представлены спектры ФЛ нанокристаллов различного состава, полученных при температуре синтеза 170°C. Материалы обладают люминесценцией, наблюдаемой визуально даже при возбуждении естественным освещением и яркостью люминесценции на уровне органических красителей (квантовая эффективность наночастиц CsPbBr₃ ~ 90%). Полуширина полосы ФЛ плавно уменьшается от CsPbI₃ к CsPbCl₃. Образцы проявляют люминесценцию как в виде коллоидных растворов, так и твердых пленок.

Яркая люминесценция нанокристаллов CsPbX₃ в отсутствии неорганических оболочек показывает, что в сравнении с коллоидными квантовыми точками халькогенидов кадмия [17] в CsPbX₃ не создаются поверхностные ловушечные состояния, уровни которых лежали бы в запрещенной зоне полупроводника. Ширина полос ФЛ нанокристаллов соединений CsPbX₃ и твердых растворов на их основе выгодно отличаются от нанокристаллов тройных соединений $A^{I}B^{III}C_{2}^{VI}$ (CuInS₂, AgInSe₂ и т.п.) и соответствующих четверных твердых растворов. Ионный характер связей в CsPbX₃, отличие в размерах и заряде ионов Cs⁺ и Pb²⁺ (см. таблицу), видимо, обусловливает стехиометрический состав и упорядоченность в расположении атомов. В то же время нанокристаллы многокомпонентных халькогенидов металлов $A^{I}B^{III}C_{2}^{VI}$ демонстрируют существенную неоднородность в распределении катионов и анионов, приводящую к высокой плотности донорно-акцепторных состояний и широкополосной люминесценции.

В спектрах поглощения нанокристаллов CsPbX₃ (рис. 3) наблюдаются особенности, соответствующие экситонным состояниям, наиболее ярко проявляющиеся в нанокристаллах CsPbCl₃ [12]. По краю поглощения для различных материалов можно видеть, что в сравнении с хорошо исследованными в XX в. диэлектрическими оксидными перовскитами [19] галоидные перовскиты свинца–цезия являются полупроводниками.

Методом порошковой рентгенодифрактометрии определено, что среди различных кристаллических модификаций реализуется кубическая структура перовскита (рис. 4). Источниками уширения дифракционных пиков являются малые размеры нанокристаллов и микродеформации [20]. Учитывая влияние обоих факторов, в первом

Рис. 3. Спектры оптической плотности нанокристаллов CsPbX₃, пунктирами соотнесены спектры фотолюминесценции: $I - CsPbCl_3$; $2 - CsPbBr_3$; $3 - CsPb(Br_{1-x}I_x)_3$, x = 0.33; $4 - CsPb(Br_{1-x}I_x)_3$, x = 0.5; $5 - CsPb(Br_{1-x}I_x)_3$, x = 0.67; $6 - CsPbI_3$.

Рис. 4. Рентгенофазовый анализ порошка нанокристаллов галогенидов свинца цезия на примере CsPbBr₃.

приближении можно считать, что интегральная ширина результирующего пика β определяется как сумма:

$$\beta = \beta_S + \beta_D$$
,

где β_S и β_D — полуширины рефлексов, обусловленные эффектами размера и микродеформаций в отдельности:

$$eta_S = rac{\lambda}{D\cos heta}, \qquad eta_D = 4arepsilon \cdot \mathrm{tg}\, heta$$

 λ — длина волны источника рентгеновского излучения (Си- K_{α}), D — средний размер нанокристаллов,

 ε — среднее значение величины микродеформаций меж-плоскостного расстояния $(\Delta d/d).$

Разделить эффекты можно, основываясь на различной зависимости интегральной полуширины пиков от угла отражения. Считая, что и функция уширения за счет размеров и функция уширения за счет микроискажений решетки являются функциями Лоренца (для гауссовых функций используются квадратичные величины), рассмотрим зависимость $\beta \cos \theta$ от sin θ :

$$\beta \cos \theta = \frac{\lambda}{D} + 4\varepsilon \sin \theta.$$

Наклон линейной зависимости дает величину 4ε , а пересечение с осью ординат — величину λ/D . Найденные приближенные значения соответствуют $D \approx 10$ нм, $\varepsilon = 0.5 - 2\%$. Имеющиеся данные, к сожалению, не позволяют достоверно определить степень анизотропии микронапряжений. Средний размер, получаемый из данных рентгенофазового анализа, соотносится с данными электронной микроскопии (рис. 2, фотография на вставке), показывающей, что система представляет кубические нанокристаллы с длиной грани 13 нм, имеющие тенденцию при осаждении упорядочиваться со стыковкой грань к грани (100). Упорядочению нанокристаллов способствует малая дисперсия размеров. Зазор между нанокристаллами обусловлен стабилизирующими молекулами олеиламина и олеиновой кислоты. В сравнении с квантовыми точками CdSe/ZnS, обладающими обычно сферической формой, в кубической геометрии нанокристаллов CsPbX₃ можно видеть преимущество относительно переноса носителей заряда от одного кристалла к другому — вместо точечного контакта шарообразных наночастиц, контакт плоскостей "куб к кубу" обеспечивает лучшие условия транспорта.

Одной из особенностей галоидных перовскитов является быстрый анионный обмен (anion exchange) [12] образование твердых растворов за счет контакта галогенида свинца-цезия и источника другого галогена. В случае рассматриваемых перовскитов процесс происходит при нормальных условиях. Для исследования динамики анионного смешения концентрированный, предварительно очищенный от продуктов реакции, коллоидный раствор наночастиц CsPbBr₃ был смешан с соизмеримым количеством прекурсора PbI₂. После смешивания непрерывно измерялась ФЛ раствора. Визуально люминесценция в течение 1 ч сменилась с зеленого на красный цвет. На рис. 5 представлена динамика изменения спектра ФЛ, энергетического положения максимума ФЛ и полуширины линии (FWHM). Зависимости можно разбить на два участка с точкой перегиба при одном и том же времени 120 с (при уменьшении концентрации частиц и прекурсора противоположного галогенида это время уменьшается).

1) На первом (быстром) этапе происходит резкое уменьшение среднего значения энергии испускаемых фотонов и одновременное резкое увеличение полуширины сигнала ФЛ.

Рис. 5. Динамика изменения спектров фотолюминесценции в процессе анионного смешения Br–I: треугольники — временная зависимость энергии соответствующей максимальной интенсивности ФЛ, точки — временная зависимость полуширины линии ФЛ. На вставке — перестройка спектра люминесценции с течением времени в результате анионного замещения.

Рис. 6. Спектры фотолюминесценции серии образцов $CsPb(Cl_{1-x}Br_x)_3$ и $CsPb(Br_{1-x}I_x)_3$, полученных в результате анионного замещения.

2) На втором этапе энергия эмиссии медленно уменьшается, но уже с другой скоростью, а характер изменения полуширины меняется на обратный и полуширина быстро падает до значений, близких к исходным.

Результаты можно описать следующей простой моделью: на первом этапе превалирует диффузия ионов замещающего галогена в растворе до поверхности нанокристалла, а на втором этапе — диффузия ионов по твердой фазе нанокристаллов. Пренебрегая малым временем быстрой диффузии в жидкости, грубая оценка коэффициента диффузии иона галогена в нанокристалле дает порядок 10⁻¹⁵ см²/с.

На рис. 6 показан практический результат перестройки спектров ФЛ для 60 образцов при постсинтетической обработке растворов CsPbBr₃ в случае различного добавления исходных прекурсоров: как источника иода, так и источника хлора. Показана непрерывная перестройка в видимом диапазоне с шагом 5 нм.

4. Заключение

Таким образом, в результате работы показана перестройка спектра фотолюминесценции нанокристаллов галогенидов свинца—цезия во всем видимом диапазоне, как в результате синтеза при соответствующем соотношении исходных компонентов, так и при постростовой обработке.

Описанный эффект анионного замещения обладает как определенными технологическими достоинствами, так и негативными последствиями. С одной стороны, можно синтезировать материал определенного состава и постсинтетически при комнатной температуре изменять величину энергетического зазора или использовать эффект анионного замещения как чувствительный метод определения концентрации галогенов в неполярных растворах. С другой стороны, контакт слоев, состоящих из различных галогенидов, приводит к диффузионному усреднению состава.

Синтез материалов для солнечной энергетики и оптоэлектроники может производиться в промышленных масштабах при помощи поточного реактора [21,22]. Получение кубических квантовых точек также представляет интерес для создания различных эталонных образцов микроскопических измерений, альтернативным методом оценки размеров которых будут служить оптические измерения.

Важное физическое отличие неорганических перовскитов $CsPbX_3$ от гибридных материалов типа $CH_3NH_3PbX_3$ состоит в том, что Cs^+ является центрально-симметричной частицей, в то время как $CH_3NH_3^+$ — нескомпенсированный диполь, взаимодействующий с распространяющимися по кристаллической решетке свободными носителями заряда, что может приводить к различным временам жизни носителей заряда и частотным характеристикам сравниваемых материалов. Эти вопросы представляются важными для исследования нового класса ионных полупроводников галоидных перовскитов и требуют дополнительного рассмотрения.

Авторы выражают благодарность С.А. Кирилловой за помощь в рентгенофазовом анализе порошков и П.А. Сомову за исследование образцов методами сканирующей электронной микроскопии.

Список литературы

- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka. J. Am. Chem. Soc., 131 (17), 6050 (2009).
- [2] http://www.nrel.gov. The National Renewable Energy Laboratory's (NREL) URL: (10.12.2016)
- [3] B.R. Sutherland, E.H. Sargent. Nature Photonics, **10** (5), 295 (2016).
- [4] G. Niu, X. Guo, L. Wang. J. Mat. Chem. A, 3 (17), 8970 (2015).

- [5] J. Yang, B.D. Siempelkamp, E. Mosconi, F. De Angelis, T.L. Kelly. Chem. Mater., **27** (12), 4229 (2015).
- [6] R.E. Beal, D.J. Slotcavage, T. Leijtens, A.R. Bowring, R.A. Belisle, W.H. Nguyen, G.F. Burkhard, E.T. Hoke, M.D. McGehee. J. Phys. Chem. Lett., 7 (5), 746 (2016).
- [7] R.D. Shannon. Acta Cryst., A32, 751 (1976).
- [8] C.K. Moller. Nature, 182 (4647), 1436 (1958).
- [9] M. Nikl, K. Nitsch, K. Polák, E. Mihókova, S. Zazubovich, G.P. Pazzi, P. Fabeni, L. Salvini, R. Aceves, M. Barbosa-Flores, R. Perez Salas, M. Gurioli, A. Scacco. J. Luminesc., 72, 377 (1997).
- [10] V. Babin, P. Fabeni, M. Nikl, G.P. Pazzi, I. Sildos, N. Zazubovich, S. Zazubovich. Chem. Phys. Lett., 314 (1), 31 (1999).
- [11] П.Г. Баранов, Н.Г. Романов, А.Г. Бадалян, Д.О. Толмачев, В.Л. Преображенский. Письма ЖЭТФ, 82 (11), 822 (2005).
- [12] L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, M.V. Kovalenko. Nano Lett., 15 (6), 3692 (2015).
- [13] Н.П. Лякишев. Диаграммы состояния двойных металлических систем (М., Машиностроение, 1997) с. 221.
- [14] B. O'regan, M. Gratzel. Nature, 353 (6346), 737 (1991).
- [15] A. Bohun, J. Dolejší, Č. Barta. Czechoslovak J. Phys. B, 20 (7), 03 (1970).
- [16] V.K. Ravi, G.B. Markad, A. Nag. ACS Energy Lett., 1 (4), 665 (2016).
- [17] Наночастицы, наносистемы и их применение. Ч. 1. Коллоидные квантовые точки, под ред. В.А. Мошникова, О.А. Александровой (Уфа, Аэтерна, 2015).
- [18] Д.С. Мазинг, А.И. Шульга, Л.Б. Матюшкин, О.А. Александрова, В.А. Мошников. Оптика и спектроскопия, 122 (1), 122 (2017). In English: D.S. Mazing, A.I. Shul'ga, L.B. Matyushkin, O.A. Aleksandrova, V.A. Moshnikov. Opt. Spectrosc., 122 (1), 110 (2017).
- [19] P. Granger, V.I. Parvulescu, S. Kaliaguine, W. Prellier. Perovskites and Related Mixed Oxides: Concepts and Applications (Wiley, 2016).
- [20] С.В. Цыбуля, С.В. Черепанова. Введение в структурный анализ нанокристаллов (Новосибирск, НГУ, 2009).
- [21] Л.Б. Матюшкин, О.А. Рыжов, О.А. Александрова,
 В.А. Мошников. ФТП, **50** (6), 859 (2016). In English:
 L.B. Matyushkin, O.A. Ryzhov, O.A. Aleksandrova,
 V.A. Moshnikov. Semiconductors, **50** (6), 844 (2016).
- [22] О.А. Рыжов, Л.Б. Матюшкин, В.А. Мошников, О.А. Александрова. Патент Rus 166323 от 24.12.2015.

Редактор Г.А. Оганесян

Photoluminescence of perovskite $CsPbX_3$ (X = Cl, Br, l) nanocrystals

L.B. Matyushkin, V.A. Moshnikov

St. Petersburg Electrotechnical University "LETI", 197376 St. Petersburg, Russia

Abstract The synthesis, structural and photoluminescent properties of cesium lead halide cube-shaped perovskite nanocrystals with different composition are described. The possibility of the photoluminescence spectrum maximum tuning in the wavelength range of 400–700 nm is shown. The effect of $CsPb(Cl_{1-x}Br_x)_3$ and $CsPb(Br_{1-x}I_x)_3$ nanocrystals postsynthetic anion mixing at room temperature is also investigated.