08,04

Моноклинные центры редкоземельных *S*-ионов в кристаллах ортоалюмината иттрия

© В.А. Важенин¹, А.П. Потапов¹, Г.Р. Асатрян², А.Г. Петросян³, К.Л. Ованесян³, А.В. Фокин¹

¹ Институт естественных наук и математики Уральского федерального университета,

Екатеринбург, Россия ² Физико-технический институт им. А.Ф. Иоффе РАН,

Санкт-Петербург, Россия

³ Институт физических исследований НАН Армении,

Аштарак, Армения

E-mail: Vladimir.Vazhenin@urfu.ru

(Поступила в Редакцию 27 февраля 2017 г.)

В кристаллах YAIO₃, легированных европием и цирконием, исследован спектр ЭПР моноклинных центров Gd³⁺ и Eu²⁺, замещающих ионы иттрия. Определены параметры тонкой структуры указанных центров. Для центров с изотопом ¹⁵¹Eu определены параметры сверхтонкого взаимодействия, обсуждается сверхтонкая структура центров с изотопом ¹⁵³Eu.

Работа выполнена в рамках государственного задания Минобрнауки РФ для Уральского федерального университета и гранта Госкомитета по науке Армении 15RF-003. Измерения проведены на спектрометре Центра коллективного пользования "Современные нанотехнологии" Уральского федерального университета.

DOI: 10.21883/FTT.2017.09.44852.052

1. Введение

Кристаллы ортоалюмината иттрия (YAlO₃), как и иттрий-алюминиевого граната (Y₃Al₅O₁₂), активированные редкоземельными элементами, являются хорошими лазерными материалами и активно используются в квантовой электронике. Возможно одновременное легирование YAlO₃ редкоземельными ионами и ионами группы переходных металлов большой концентрации, заметно расширяющее свойства материала. Кроме того, кристаллы ортоалюмината иттрия, легированные ионами Се³⁺ и Eu²⁺, оказались замечательными материалами для сцинтилляторов, применяемых в качестве детекторов ионизирующих излучений в астрофизике, медицинской аппаратуре и физике высоких энергий. Для оптимизации параметров этих материалов необходима информация о природе и структуре дефектов в реальных кристаллах, которая может быть получена с помощью магнитного резонанса.

Энергетическая структура основного состояния примесных центров Cr^{3+} [1,2], Fe^{3+} [3], Gd^{3+} [3–5], Ce^{3+} , Nd^{3+} , Er^{3+} [6], Tm^{3+} [7] в YAlO₃ и их атомная структура (в частности, локализация) уже были исследованы методом электронного парамагнитного резонанса (ЭПР). Настоящая работа представляет магниторезонансное исследование в кристаллах алюмината иттрия высокоспиновых центров редкоземельных *S*-ионов Gd^{3+} и Eu^{2+} .

2. Методика эксперимента

В работе исследованы монокристаллы алюмината иттрия с европием (YAlO₃: Eu), выращенные методом вертикальной направленной кристаллизации [8,9] с использованием высокочистых исходных компонентов-оксидов и молибденовых контейнеров (T_m [YAlO₃] = 1916°C). Для стабилизации в кристаллической решетке достаточных количеств центров Eu²⁺ в расплав дополнительно вводилась четырехвалентная примесь (Zr⁴⁺) в виде оксида ZrO₂, кристаллизация проводилась в сильно восстановительной атмосфере (Ar/H₂). Образец, отобранный для исследований, был получен из расплава, соответствующего по составу $Y_{1-x-y}Eu_xZr_yAlO_3$ (x = 0.02, y = 0.002), и имел желтоватый оттенок. В приближении участия всех ионов Zr⁴⁺ в стимулировании валентных переходов $\mathrm{Eu}^{3+} \to \mathrm{Eu}^{2+}$ концентрация Eu^{2+} в образце составляла около 0.2 at%. Как показали результаты исследований, изложенные далее, в образце в виде неконтролируемых примесей присутствовали также ионы Cr³⁺ и Gd³⁺.

Измерения спектров ЭПР неориентированных образцов проводились при комнатной температуре на спектрометре трехсантиметрового диапазона ЕМХ Plus Bruker. Ориентация образцов в резонаторе спектрометра производилась с помощью штатного одноосного автоматического гониометра и приспособления, позволяющего вращать образец в вертикальной плоскости. Для достижения выделенных ориентаций (**B** || **a**, **b**, **c**, где **B** — индукция магнитного поля, **a**, **b**, **c** — кристаллографические направления) использовались угловые зависимости положений переходов наблюдаемых в кристалле центров Cr^{3+} и Gd^{3+} , полученные авторами [1–3].

3. Результаты эксперимента и обсуждение

Кристаллы YAlO₃ имеют структуру искаженного перовскита с пространственной группой *Pbnm* (D_{2h}^{16}) и параметрами элементарной ячейки a = 5.176 Å, b = 5.332 Å, c = 7.356 Å. Четыре позиции иттрия попарно связаны операцией инверсии и отражением в плоскостях *ca* и *cb*. Примесные редкоземельные ионы Gd³⁺ и Eu²⁺ (электронные спины S = 7/2) в этом кристалле естественно замещают "квазиредкоземельные" ионы иттрия в позициях, имеющих единственную операцию симметрии — отражение в плоскости *ab* (группа точечной симметрии *C_S*). В случае нелокальной зарядовой компенсации примесного иона будут существовать два магнитно-неэквивалентных центра Eu²⁺ (а также Gd³⁺), которые становятся эквивалентными только в плоскостях *ac* и *bc*.

Как уже отмечалось выше, кроме переходов моноклинных центров Eu^{2+} в исследуемых образцах наблюдались сигналы центров Cr^{3+} и Gd^{3+} (рис. 1, 2). Добиваясь путем вращения образца слияния сигналов от магнитнонеэквивалентных центров Cr^{3+} , Gd^{3+} и Eu^{2+} , мы получили спектры при **B** || **a**, **B** || **b**. Для получения ориентации **B** || **c** необходимо было достичь наряду со слиянием неэквивалентных спектров еще и экстремальности положений сигналов. Кроме того, была измерена угловая зависимость вида спектра при вращении магнитного поля в плоскости, близкой к *ab*, с шагом 5° (рис. 3), а затем 2°.

3.1. YAIO₃: Gd³⁺. Для подтверждения адекватности соотнесения полученных ориентаций и кристаллографических направлений была проведена оптимизация параметров спинового гамильтониана с учетом экспериментальных положений переходов центров Gd³⁺. Моноклинный спиновый гамильтониан в определении [10] в системе координат **x** || **a**, **y** || **b**, **z** || **c** имеет следующий вид:

$$H_{\rm sp} = g\beta(\mathbf{BS}) + 1/3(b_{20}O_{20} + b_{22}O_{22} + c_{22}\Omega_{22}) + 1/60(b_{40}O_{40} + b_{42}O_{42} + c_{42}\Omega_{42} + b_{44}O_{44} + c_{44}\Omega_{44}) + 1/1260\sum_{i} b_{i} O_{i}$$
(1)

$$+ 1/1260 \sum_{m} b_{6m} O_{6m}, \tag{1}$$

где g - g-фактор, β — магнетон Бора, O_{nm} и Ω_{nm} косинусоидальные и синусоидальные спиновые операторы Стивенса [10], b_{nm} и c_{nm} — параметры тонкой структуры. В используемой системе координат параметры тонкой структуры двух магнитно-неэквивалентных центров Gd³⁺ отличаются знаками c_{nm} . Полученные нами величины параметров представлены в табл. 1, где также приведены результаты авторов [3–5]. Параметры шестого ранга (последнее слагаемое в выражении (1)) оказались очень малыми и поэтому не приводятся.

Отметим, что не приведенные в табл. 1 величины b_{4m} из [3] были на три порядка меньше значений b_{2m} , а система координат повернута вокруг оси z в плоскости ab

Рис. 1. Спектр ЭПР (производная сигналов поглощения) YAlO₃: Eu, Zr при **B** || **a** на частоте 9448 MHz. Верхние стрелки показывают сигналы Cr^{3+} , нижние — Gd^{3+} . Область спектра, выделенная пунктирными линиями, приведена на рис. 7, *b*.

Рис. 2. Спектр ЭПР YAlO₃: Eu, Zr при **B** || **b** на частоте 9449 MHz и расчетная сверхтонкая структура для изотопа ¹⁵¹Eu. Верхние стрелки показывают сигналы Cr^{3+} , нижние — Gd³⁺. Область спектра, выделенная вертикальными пунктирными линиями, приведена на рис. 7, *a*.

Рис. 3. Ориентационное поведение спектра YAIO₃: Eu, Zr при вращении магнитного поля в плоскости, близкой к *ab*.

на угол $\Delta \varphi = (1/2)$ arctan $(c_{22}/b_{22}) = 28^{\circ}$, в результате чего параметр c_{22} обращается в нуль, т. е. тензор второго ранга спинового гамильтониана приобретает более симметричную ромбическую структуру. Величины $\Delta \varphi$, соответствующие параметрам, полученным нами и авторами [4,5], также приведены в табл. 1.

Следует заметить, что при повороте системы координат на угол, обнуляющий значение c_{22} , параметры c_{4m} и c_{6m} не исчезают, и, следовательно, спиновый гамильтониан остается моноклинным. Величина $(b_{22}^2 + c_{22}^2)^{0.5}$ при поворотах системы координат вокруг оси z остается постоянной и в работах, упомянутых в табл. 1, практически не различается. Аналогичные отклонения магнитной оси низкоспиновых редкоземельных ионов от оси a в плоскости ab получены авторами [6,7]: 41.4° для Er^{3+} , 30.5° для Nd^{3+} , 31.8° для Ce^{3+} и 55° для Tm^{3+} .

На рис. 4 сплошными кривыми показано ориентационное поведение положений переходов одного из магнитно-неэквивалентных центров Gd^{3+} , соответствующее параметрам из табл. 1. Угловые зависимости для второго центра, параметры которого отличаются знаками c_{nm} , показаны штриховыми кривыми. Небольшое число экспериментальных точек на рис. 4 в ориентациях магнитного поля, отличных от **B** || **a** и **B** || **b**, обусловлено, как видно из рис. 1–3, сложностью регистрации слабых сигналов Gd^{3+} на фоне интенсивных сигналов Eu^{2+} .

Согласие полученных нами параметров и угловых зависимостей с результатами [4,5] свидетельствует о правильной идентификации спектров с направлениями в кристалле и, следовательно, о возможности использо-

Таблица 1. Параметры спинового гамильтониана центров Gd³⁺ в YAlO₃ в системе координат $\mathbf{x} \parallel \mathbf{a}, \mathbf{y} \parallel \mathbf{b}, \mathbf{z} \parallel \mathbf{c}$ (среднеквадратичное отклонение расчетных частот от экспериментальных F(N), где N — число использованных экспериментальных положений сигналов, и параметры b_{nm} , c_{nm} приведены в MHz, $\Delta \varphi$ — угол поворота системы координат, приводящего к обнулению c_{22})

Параметры	Лит. ссылка			
Параметры	[4,5]	[3]*	Наст. раб.	
$egin{array}{c} g \\ b_{20} \\ b_{22} \end{array}$	1.992 -334.8** 1621.4	278.7 -2926.0	1.991 -245** 1805	
$\begin{array}{c} c_{22} \\ b_{40} \\ b_{42} \\ c_{42} \end{array}$	2432.2 19.0 -69.0	0	2367 34 -227 17	
$(b^2 + c^2)^{0.5}$	-123.3 99.9	2026	-163 146 2976	
$\frac{(v_{22}+v_{22})}{F(N)}$ $\Delta \varphi, \deg$	5(100) 28	2920	43(17) 26.5	

Примечание. * Система координат повернута вокруг ос
иzна 28°. ** Знак b_{20} не определялся.

Рис. 4. Угловая зависимость положений переходов моноклинных центров Gd^{3+} вблизи плоскости *ab*. Сплошные кривые — расчет с параметрами из табл. 1, штриховые — расчет с c_{nm} , имеющими противоположные знаки, точки — эксперимент. Цифры около кривых — номера уровней, между которыми происходят соответствующие переходы (нумерация снизу).

вания экспериментальных спектров в ориентациях **B** \parallel **a**, **B** \parallel **b**, **B** \parallel **c** для определения параметров, описывающих неизвестный ранее центр Eu²⁺ в неориентированных кристаллах алюмината иттрия.

3.2. YAlO₃: Eu²⁺. Как видно из рис. 1–3, сигналы центров Eu²⁺ (ядерные спины изотопов ¹⁵¹Eu, ¹⁵³Eu равны 5/2, естественная распространенность 48 и 52% соответственно) характеризуются различной формой линии. Среди них можно выделить сигналы с довольно разрешенной, но несимметричной сверхтонкой структурой (СТС), широкие и практически бесструктурные, а также сигналы промежуточной формы.

Похожая ситуация для центров Eu²⁺ имеет место в иттрий-алюминиевом [11] и лютеций-алюминиевом [12] гранатах. Представленный на рис. 2 оценочный расчет СТС для изотопа ¹⁵¹Eu с константой сверхтонкого взаимодействия $A \approx -100 \text{ MHz}$ [11,12] и параметрами тонкой структуры, определенными далее, однозначно свидетельствует о том, что разная форма сигналов в спектре центров Eu²⁺ в YAlO₃ обусловлена в первую очередь различной сверхтонкой структурой (количество компонент, их интенсивности и взаимное расположение) на разных электронных переходах. Необходимость учета СТС от изотопа ¹⁵³Еи еще больше затрудняет возможность соотнесения расчетных и экспериментальных положений электронно-ядерных переходов и делает невозможным одновременное определение параметров спинового гамильтониана, описывающих тонкую и сверхтонкую структуры центров Eu²⁺ с использованием матрицы энергии 48 порядка ((2S + 1)(2I + 1)).

В связи с этим параметры тонкой структуры определялись с использованием матрицы энергии восьмого порядка для гипотетического изотопа Eu²⁺ с нулевым ядерным спином, за резонансные положения которого на разных электронных переходах брались значения магнитного поля, приближенно соответствующие центрам СТС. Для описания спектра использовалась система координат $X \parallel a, Y \parallel c, Z \parallel b$. В этой системе спиновый гамильтониан тонкой структуры имеет вид

$$H_{\rm sp} = g\beta(\mathbf{BS}) + 1/3(b_{20}O_{20} + b_{21}O_{21} + b_{22}O_{22}) + 1/60(b_{40}O_{40} + b_{41}O_{41} + b_{42}O_{42} + b_{43}O_{43} + b_{44}O_{44}) + 1/1260\sum_{m} b_{6m}O_{6m},$$
(2)

где обозначения величин такие же, как в (1), но параметры тонкой структуры двух магнитно-неэквивалентных центров Eu²⁺ различаются знаками b_{nm} с нечетными проекциями *m*. Результат оптимизации методом наименьших квадратов параметров (2) с использованием 22 резонансных положений при **B** || **a**, **B** || **b**, **B** || **c** приведен в табл. 2. Среднеквадратичное отклонение экспериментальных частот от расчетных F = 45 MHz, что довольно велико, но легко объясняется используемым способом определения резонансных магнитных полей для переходов гипотетического изотопа Eu²⁺. Параметры шестого ранга порядка погрешности определения и поэтому не приводятся.

Для подтверждения адекватности параметров гамильтониана (2) проведено сравнение экспериментальных угловых зависимостей положений переходов гипотетического изотопа Eu²⁺ с расчетными (рис. 5). Обнаружено, что спектры при **B** || **b** хорошо согласуются, тогда как при **B** || **a** они могут быть объяснены лишь при допущении, что экспериментальная угловая зависимость на рис. 5 получена при $\varphi \approx 15^{\circ}$. В связи с этим полярная зависимость положений переходов (сплошные кривые на рис. 5) была рассчитана с параметрами из табл. 2 при $\varphi = 15^{\circ}$.

Поворот системы координат на угол $\Delta \theta = 20.6^{\circ}$ вокруг оси Y приводит к обращению в нуль параметра

Таблица 2. Параметры спинового гамильтониана моноклинных центров Eu^{2+} (*bnm* в MHz) в двух системах координат (вторая повернута вокруг *Y* на угол 20.6°).

Параметры	$X \parallel a, Y \parallel c, Z \parallel b$	$\Delta heta = 20.6^\circ$
g	1.9905	1.9905
b_{20}	1592*	2147
b_{21}	5908	0
b_{22}	-1974	2529
b_{40}	1	-58
b_{41}	-324	-229
b_{42}	-178	-54
b_{43}	-384	-236
b_{44}	-125	-73

Примечание. * Предполагается, что $b_{20} > 0$.

Рис. 5. Полярная зависимость положений переходов моноклинных центров Eu^{2+} при $\varphi = 15^{\circ}$. Сплошные кривые расчет с параметрами из табл. 2, штриховые — расчет с b_{nm} противоположного знака (при нечетном *m*), точки эксперимент.

тонкой структуры b₂₁, отвечающего за отличие моноклинного тензора второго ранга от ромбического; величины остальных параметров после поворота приведены в табл. 2. На рис. 5 указанный поворот соответствует сдвигу оси Z в позицию, помеченную вертикальной прямой. Как видно, даже для высокополевых переходов угловые зависимости не совсем симметричны относительно новой оси Z, для низкополевых переходов асимметрия еще больше. Следовательно, центры Eu²⁺ после поворота остаются моноклинными, при этом их отличие от ромбической симметрии заметно больше, чем у центров Gd³⁺. Следует заметить, что определенные здесь и в работах [3-7] величины поворота системы координат, приводящего к уменьшению числа параметров тонкой структуры, невозможно просто связать со структурой окружения редкоземельного иона [3].

Сложная СТС, наблюдаемая даже в ориентациях магнитного поля вдоль кристаллографических осей a, b, c (рис. 1-3), очень затрудняет определение параметров, описывающих сверхтонкую структуру изотопов ¹⁵¹Еи и ¹⁵³Еи. Наиболее простая структура (шесть эквидистантных линий примерно равной интенсивности) для изотопов европия может наблюдаться на переходах между практически чистыми состояниями. Как показали оценочные расчеты СТС для изотопа ¹⁵¹Eu (рис. 2), таких переходов в ориентации **B** || **b** всего два. На рис. 6, где показаны все переходы для гипотетического изотопа Eu, они выделены жирными отрезками. Но переход в уровнях 5-7 (нумерация снизу) практически совпадает по полю с переходом в уровнях 4-6, в связи с чем идентификация электронно-ядерных переходов и оценка величины сверхтонкого взаимодействия изотопа ¹⁵¹Eu²⁺ при В || b || Z оказались возможными лишь на переходе 7-8 в поле $\sim 530 \,\mathrm{mT}$ (рис. 6). Переход 7-8 — это сильно запрещенный переход (с $\Delta M \approx 7$, где M — проекция электронного спина), поэтому его интенсивность много

Рис. 6. Уровни энергии и ЭПР-переходы для гипотетического изотопа Еu с нулевым ядерным спином при $\mathbf{B} \parallel \mathbf{b} \parallel \mathbf{Z}$ на частоте 9449 MHz.

Рис. 7. Экспериментальная и расчетная СТС для изотопа ¹⁵¹Eu. *a* — для перехода 7–8 при **B** || **b** ($\theta = 0^{\circ}, \varphi = 0^{\circ}$) на частоте 9449 MHz, *b* — для перехода 1–2 при **B** || **a** ($\theta = 90^{\circ}, \varphi = 0^{\circ}$) на частоте 9448 MHz.

меньше (рис. 2), чем у большинства других переходов в этой ориентации. Выделенная пунктирными линиями область спектра рис. 2 показана на рис. 7, *a*.

При **B** || **a** ($\theta = 90^{\circ}$, $\varphi = 0^{\circ}$) идентификация электронно-ядерных переходов ¹⁵¹Eu оказалась возможной тоже только на одном электронном переходе. Это также запрещенный переход с $\Delta M \approx 7$ еще меньшей интенсивности, но только в уровнях 1–2, регистрируемый в том же магнитном поле (выделенная область спектра на рис. 1), что и переход в уровнях 7–8 при **B** || **b** ($\theta = 0^{\circ}$, $\varphi = 0^{\circ}$). Близость резонансных положений переходов

1-2 и 7-8 в двух ориентациях обусловлена тем, что в случае $b_{22} \approx b_{20}$ при повороте магнитного поля на 90° происходит опрокидывание системы уровней энергии. Такой эффект наблюдался в [11]. Сверхтонкая структура перехода 1-2 при **В** || **а** представлена на рис. 7, *b*.

В общем случае для описания СТС изотопов Eu²⁺ необходимо кроме сверхтонкого учесть еще и квадрупольное взаимодействие, описываемое параметром Q. Его влияние заключается в нарушении эквидистантности интенсивных линий СТС и появлении слабых компонент в промежутках между основными. Сходство СТС ионов ¹⁵¹Eu (рис. 7, a и b) на указанных выше переходах в ориентациях В || b || Z и В || а || Х (шесть эквидистантных линий) дает основание утверждать, что константа Q для ¹⁵¹Eu много меньше константы сверхтонкого взаимодействия и может не учитываться. Численной минимизацией среднеквадратичного отклонения расчетных частот от экспериментальных для двенадцати значений магнитного поля (рис. 7, a, b) с использованием матрицы энергии 48 порядка получена величина A = -95(3) MHz. Знак константы A выбран по аналогии с [11,12]. Влияние константы квадрупольного взаимодействия Q на СТС переходов, использованных для оценки константы А, должно проявляться начиная со значения $\pm (20 - 30)$ MHz.

У изотопа ¹⁵³Еи ядерный магнитный момент примерно в 2.2 раза меньше, чем у ¹⁵¹Еи, поэтому в простейших случаях шесть линий СТС ¹⁵³Еи должны располагаться между четырьмя средними компонентами СТС ¹⁵¹Еи. Зато квадрупольный момент ¹⁵³Еи в ~ 2.5 раза больше, чем у ¹⁵¹Еи. С учетом оценочных значений константы квадрупольного взаимодействия для ¹⁵¹Еи получаем величину отношения $A/Q \approx 1$ для ¹⁵³Еи в YAIO₃. При таком соотношении расчетная структура должна состоять из полутора десятков неэквидистантных и соизмеримых по интенсивности компонент, которые частично перекрываются с переходами СТС ¹⁵¹Еи, что делает практически невозможным ее соотнесение с экспериментальным спектром (рис. 7, *a*, *b*).

По-видимому, точное определение параметров, описывающих СТС Eu^{2+} в алюминате иттрия, будет возможно только в кристаллах YAlO₃, обогащенных изотопами ¹⁵³Eu или ¹⁵¹Eu.

4. Заключение

В неориентированных монокристаллах алюмината иттрия, легированного европием и цирконием, при комнатной температуре исследован спектр парамагнитного резонанса моноклинных центров Gd^{3+} (неконтролируемая примесь) и Eu^{2+} , замещающих ионы иттрия с симметрией C_S . Путем сравнения наблюдаемых спектров Gd^{3+} с результатами коллег из Казанского университета установлены кристаллические оси образцов. Определены параметры тонкой структуры центров Gd^{3+} и Eu^{2+} , для центров Eu²⁺ осуществляется нелокальная компенсация заряда. Для центров европия с изотопом ¹⁵¹Eu определены параметры сверхтонкого взаимодействия, обсуждается СТС центров с изотопом ¹⁵³Eu.

Список литературы

- [1] A. Pinto, N.Z. Sherman. J. Magn. Res. 6, 422 (1972).
- [2] M. Yamaga, H. Takeuchi, T.P.J. Han, B. Henderson. J. Phys.: Condens. Matter 5, 8097 (1993).
- [3] R.L. White, G.F. Herrmann, J.W. Carson, M. Mandel. Phys. Rev. A **136**, 231 (1964).
- [4] Н.М. Низамутдинов, Н.М. Хасанова, А.А. Галеев, Г.Р. Булка, В.М. Винокуров, В.А. Аккерман, Г.А. Ермаков. Кристаллография 34, 893 (1989).
- [5] Н.М. Хасанова, Н.М. Низамутдинов, Г.Р. Булка, В.М. Винокуров, В.А. Аккерман, Г.А. Ермаков, А.А. Маркелов. Физика минералов и их синтетических аналогов. Изд-во Казан. ун-та, Казань (1988). С. 73.
- [6] Г.Р. Асатрян, J. Rosa. ФТТ 44, 830 (2002).
- [7] Г.Р. Асатрян, А.П. Скворцов, Г.С. Шакуров. ФТТ 55, 958 (2013).
- [8] А.А. Чернов, Е.И. Гиваргизов, Х.С. Багдасаров, В.А. Кузнецов, Л.Н. Демьянец, А.Н. Лобачев. Современная кристаллография. Наука, М. (1980). 337 с.
- [9] A.G. Petrosyan, G.O. Shirinyan, K.L. Ovanesyan, C. Pedrini, C. Dujardin. J. Cryst. Growth 198/199, 492 (1999).
- [10] С.А. Альтшулер, Б.М. Козырев. Электронный парамагнитный резонанс соединений элементов промежуточных групп. Наука, М. (1972). С. 121.
- [11] В.А. Важенин, А.П. Потапов, Г.Р. Асатрян, А.Г. Петросян, К.Л. Ованесян, А.В. Фокин, Г.С. Шакуров. ФТТ 58, 2406 (2016).
- [12] В.А. Важенин, А.П. Потапов, Г.Р. Асатрян, А.Г. Петросян, А.В. Фокин, М.Ю. Артёмов. ФТТ 59, 1323 (2017).