Квантовые точки InSb, полученные методом жидкофазной эпитаксии на подложке InGaAsSb/GaSb

© Л.А. Сокура, Я.А. Пархоменко, К.Д. Моисеев, В.Н. Неведомский, Н.А. Берт

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

E-mail: sokura@mail.ioffe.ru

(Получена 31 января 2017 г. Принята к печати 15 февраля 2017 г.)

Методом жидкофазной эпитаксии на поверхности эпитаксиального слоя $In_{0.25}GaAsSb$, изопериодного с подложкой GaSb(001), впервые сформированы квантовые точки InSb в интервале температур $T = 450-467^{\circ}$ С. Просвечивающая электронная микроскопия показала, что форма квантовой точки близка к усеченному конусу, а распределение их в ансамбле по высоте и размеру основания является монодисперсным. Крупные квантовые точки (размер основания ~ 30–50 нм, высота 3 нм) имели специфический контраст на изображении в планарной геометрии с дифракционным контрастом, что указывало на присутствие дефектов несоответствия. Модификация химического состава рабочей поверхности подложки за счет нанесения эпитаксиального слоя $In_{0.25}$ GaAsSb позволила в 3 раза увеличить плотность ансамбля $(1 \cdot 10^{10} \text{ см}^{-2})$ квантовых точек InSb по сравнению с осаждением непосредственно на бинарное соединение GaSb.

DOI: 10.21883/FTP.2017.08.44804.8533

1. Введение

Гетероструктуры с квантовыми точками (КТ) InSb в матрице InAs излучают, как правило, в длинноволновой области среднего инфракрасного диапазона (3-5 мкм) [1], тогда как для продвижения в коротковолновую часть (2-3 мкм) необходимы более широкозонные матрицы, чем арсенид индия [2]. Такой матрицей может служить бинарное соединение антимонид галлия или многокомпонентные твердые растворы на его основе, изопериодные с GaSb. Впервые слои наноостровков InSb на подложке GaSb были получены методом молекулярно-пучковой эпитаксии (МПЭ) при 455°С [3], при этом массивы КТ были разреженными, поверхностная плотность их составляла 3 · 10⁷ см⁻². Особенности технологии получения КТ методом газофазной эпитаксии из металлоорганических соединений (МОГФЭ) подробно рассмотрены в работах [4,5]. При стандартном процессе наращивания узкозонных материалов на основе InSb как методом МПЭ, так и методом МОГФЭ, плотность массивов когерентных КТ на поверхности бинарной подложки не превышала $(2-5) \cdot 10^9 \text{ см}^{-2}$ [6].

Ранее мы сообщали о получении массивов наноостровков InSb на поверхности бинарной подложки GaSb методом жидкофазной эпитаксии (ЖФЭ) [7]. По результатам исследований с использованием атомно-силовой микроскопии (АСМ) было установлено, что при выбранном составе раствора—расплава характерные температуры для формирования КТ в системе InSb/GaSb лежат в интервале T = 450-465°C, что на 25°C выше, чем для системы InSb/InAs (425–440°C) [8]. Однако осаждение КТ InSb на подложки GaSb методом ЖФЭ сталкивается с технологическими проблемами, приводящими к подрастворению подложки GaSb при ее контакте с раствором—расплавом In—Sb. Кроме того, плотность

наноостровков InSb при их формировании на подложке GaSb была относительно низкой ($\leq 3\cdot 10^9\,{\rm cm}^{-2}).$

В настоящей работе сообщается о первых результатах получения методом ЖФЭ самоорганизующихся КТ InSb на поверхности многокомпонентного эпитаксиального слоя GaInAsSb, выращенного на подложке GaSb и изопериодного с ней.

2. Методика эксперимента

Массивы КТ InSb были получены методом ЖФЭ с использованием подложки антимонида галлия с ориентацией рабочей поверхности (001), на которой предварительно при 510°C был выращен изопериодный с GaSb эпитаксиальный слой In_{0.25}GaAsSb толщиной 4 нм. Осаждение КТ InSb на поверхность комбинированной подложки In_{0.25}GaAsSb/GaSb осуществлялось в процессе кратковременного контакта эпитаксиального слоя с пересыщенным раствором-расплавом сурьмы в индии при различных температурах контакта в интервале $T = 450 - 467^{\circ}$ C. Во всех случаях использовали индиевый раствор-расплав одного и того же состава, насыщенный сурьмой при одной и той же температуре. Массивы КТ не заращивались, а оставались открытыми на поверхности гетероструктуры. Подробности технологического процесса формирования квантовых точек приведены в работе [8].

Выращенные гетероструктуры исследовали с помощью просвечивающей электронной микроскопии (ПЭМ) на микроскопе JEOL JEM 2100F с ускоряющим напряжением 200 кВ в режимах дифракции и изображения с дифракционным контрастом. Образцы для электронно-микроскопических исследований подготавливали в планарной геометрии и в поперечном сечении в соответствии со стандартной процедурой, с предварительным механическим утончением и последующим распылением пучком ионов Ar⁺ с энергией 4 кэВ.

3. Экспериментальные результаты и обсуждение

Для исследования методами ПЭМ были выбраны образцы с КТ InSb, осажденными на эпитаксиальный слой In_{0.25}GaAsSb при двух предельных температурах из интервала 450–467°C.

При исследовании поперечного сечения образца с КТ, осажденными при 467°С, на поверхности эпитаксиального слоя In_{0.25}GaAsSb наблюдались плоские наноостровки. Характерный пример такого изображения представлен на рис. 1. Как можно видеть, в поперечном сечении наноостровки имеют трапециевидную форму, размер их основания составляет L = 30-50 нм, высота наноостровков в основном лежит в диапазоне h = 2-4 нм, что совпадает со средним значением 3 нм, полученным из ACM-измерений для образца, выращенного при близкой температуре T = 465°C [7].

На изображениях в планарной геометрии наноостровки в обоих образцах главным образом имеют округ-

Рис. 1. Светлопольное изображение поперечного сечения ($\mathbf{g} = 002$) образца с КТ InSb, осажденными при $T = 467^{\circ}$ C.

лую форму, крупные островки оказываются вытянутыми вдоль одного и того же из двух направлений [110] в плоскости подложки (рис. 2). Плотность массива наноостровков возрастает от $0.4 \cdot 10^{10}$ до $1 \cdot 10^{10}$ см⁻² при понижении температуры осаждения от 467 до 450°С. Гистограммы распределения наноостровков по размеру основания в обоих образцах приведены на рис. 3. Как видно из рисунка, понижение температуры осаждения приводит к уменьшению среднего размера основания наноостровков от 45 до 25 нм. Аналогичные изменения плотности и размеров КТ с изменением температуры осаждения наблюдались ранее для системы InAs/GaAs, полученной методом МПЭ [9], и InSb/InAs, полученной $Ж\Phi$ Э [8].

В двулучевых дифракционных условиях на изображениях наноостровков в планарной геометрии обнаруживаются картины муара (рис. 4), полосы которого при действующем дифракционном векторе $\mathbf{g} = \bar{2}\bar{2}0$ или $\mathbf{g} = \bar{2}20$ эквидистантны и располагаются перпендикулярно ему. Очевидно, что в формировании картины муара при действующем дифракционном векторе типа $\mathbf{g} = 220$ принимают участие атомные плоскости (220) подложки и КТ. Измеренный период муара равен 6 нм для $\mathbf{g} = \bar{2}\bar{2}0$ (рис. 4, *a*). Для $\mathbf{g} = \bar{2}20$ муаровые полосы имеют линзоподобную форму, период муара уменьшается от 8 нм по центру наноостровка до 5 нм по краям (рис. 4, *b*).

Появление картины муара в электронно-микроскопическом изображении, как известно, вызвано различием межплоскостных расстояний контактирующих кристаллов. Для свободностоящей на подложке и когерентной с ней КТ такое различие может возникать из-за упругой деформации, в результате которой межплоскостные расстояния в КТ, совпадая с соответствующими расстояниями в подложке на границе КТ-подложка, изменяются по высоте КТ. В результате

Рис. 2. Изображение в планарной геометрии в двулучевых дифракционных условиях (g = 220) образцов с КТ InSb, осажденными при T = 450 (a) и 467° C (b).

Рис. 3. Гистограммы распределения по размеру основания для KT InSb, осажденных при T = 450 (1) и 467° C (2).

на электронно-микроскопических изображениях когерентных КТ в планарной геометрии возникает псевдомуар [10], обусловленный отличием среднего межплоскостного расстояния в КТ от соответствующего межплоскостного расстояния в подложке. Возникновение и рисунок такого псевдомуара определяются степенью упругой релаксации КТ, которая, в свою очередь, сильно зависит от формы КТ, описываемой аспектным отношением — отношением высоты КТ к ее диаметру (h/L). В нашем случае КТ имеют малую высоту (h = 2-4 нм) и большой размер основания (L = 30-40 нм), аспектное отношение составляет $h/L \approx 0.1$. Степень упругой релаксации КТ при такой ее форме существенно мала и не вызывает появления муара.

Другой причиной возникновения муара на изображении КТ является ее пластическая деформация за счет генерации дислокаций несоответствия и/или дефектов упаковки. Вычисленное по измеренному периоду муара

Рис. 4. Изображения в двулучевых дифракционных условиях при $\mathbf{g} = \bar{2}\bar{2}0$ (*a*) и $\bar{2}20$ (*b*) КТ InSb, осажденных при $T = 450^{\circ}$ C.

Рис. 5. Искажение картины муара на двулучевых изображениях (g = 400) КТ InSb, осажденных при T = 450 (*a*) и 467°С (*b*).

Рис. 6. Светлопольное изображение ($\mathbf{g} = 200$) в поперечном сечении образца с KT InSb, осажденными при $T = 467^{\circ}$ C.

межплоскостное расстояние в КТ $d_{220} = 0.225$ нм, что больше соответствующего межплоскостного расстояния в кристаллической решетке подложки GaSb (0.215 нм). Это означает, что исследуемые КТ являются некогерентными и содержат дефекты несоответствия.

Дополнительным подтверждением присутствия дефектов несоответствия в КТ являются искажения на картине муара, возникающие на изображениях с действующим дифракционным вектором $\mathbf{g} = 0\overline{4}0$ или $\mathbf{g} = 400$ для крупных КТ. Примеры искажений муара для обоих исследованных образцов можно видеть на рис. 5. Нерегулярность и искривление полос муара являются, очевидно, следствием наличия протяженных дефектов кристаллической решетки КТ. При этом на изображениях крупных КТ, полученных при 467°С, картина муара имеет особенности, характерные для дефекта упаковки, как нами ранее было показано посредством моделирования [11]. Кроме того, на изображениях поперечных сечений крупных (размер основания 70–90 нм) и некоторых более мелких КТ под их основанием наблюдаются неоднородности деформационного контраста (рис. 6), что также является косвенным подтверждением присутствия структурных дефектов.

Исходя из среднего размера основания и средней высоты, получаем, что объем, рассчитанный для КТ в форме диска, равен $3.7 \cdot 10^3$ нм³ при температуре осаждения 450°С и $5.7 \cdot 10^3$ нм³ при 467°С. Увеличение объема КТ с повышением температуры осаждения может объясняться тем, что в массивах исследуемых КТ наблюдаются случайные наноостровки большого размера с дефектной структурой. При повышении температуры осаждения вследствие возрастания скорости миграции адатомов по поверхности подложки большие дефектные наноостровки увеличиваются за счет уменьшения размеров и плотности мелких когерентных наноостровков.

Суммарный объем InSb, содержащийся в массиве KT на площади 1 см^2 для образца, выращенного при $T = 450^{\circ}$ С, оказывается равен $3.7 \cdot 10^{-8} \text{ см}^3$, что примерно соответствует 1 монослою однородно осажденного материала. Для $T = 467^{\circ}$ С суммарный объем InSb уменьшается на $\sim 30\%$, что обусловлено, по-видимому, меньшей степенью пересыщения раствора—расплава при повышении температуры контакта.

4. Заключение

Методом ЖФЭ на поверхности эпитаксиального слоя четверного твердого раствора $In_{0.25}$ GaAsSb, изопериодного с подложкой GaSb (001), впервые сформированы КТ InSb. Образование КТ имело место при кратковременном контакте пересыщенного сурьмой индиевого раствора—расплава с поверхностью эпитаксиального слоя при $T = 450-467^{\circ}$ C.

По результатам электронно-микроскопических исследований установлено, что форма КТ близка к усеченному конусу. Распределение ансамбля КТ по размерам содержит один выраженный максимум. В образце, осаждение в котором производили при низкой температуре (450°C), КТ имели среднюю высоту h = 4.9 нм и средний размер основания L = 31 нм, что соответствовало аспектному соотношению h/L = 0.16. При повышении температуры осаждения до 467°C средняя высота КТ уменьшилась до h = 2.8 нм, тогда как средний размер основания возрос до L = 51 нм, при этом среднее аспектное соотношение уменьшилось в 3 раза (h/L = 0.05). С повышение температуры контакта от 450 до 467°C также уменьшилась плотность массива КТ от $1 \cdot 10^{10}$ до $0.4 \cdot 10^{10}$ см⁻².

Таким образом, изменение химического состава поверхности, на которую осаждаются КТ, путем введения многокомпонентного эпитаксиального слоя InGaAsSb при сохранении величины несоответствия постоянных решетки контактирующих материалов и температурного режима наращивания привело к повышению плотности массива КТ InSb по сравнению с их осаждением на поверхность бинарного соединения GaSb от $3 \cdot 10^9$ до $1 \cdot 10^{10}$ см⁻².

Структурные исследования выполнены с использованием оборудования федерального ЦКП "Материаловедение и диагностика в передовых технологиях" (ФТИ им. А.Ф. Иоффе).

Список литературы

- В.В. Романов, Э.В. Иванов, К.Д. Моисеев. ФТП, 48, 938 (2014).
- [2] F. Doré, C. Cornet, P. Caroff, A. Ballestar, J. Even, N. Bertru, O. Dehaese, I. Alghoraibi, H. Folliot, R. Piron, A. Le Corre, S. Loualiche. Phys. Status Solidi C, 3, 3920 (2006).
- [3] N. Bertru, O. Brandt, M. Wassermeier, K. Ploog. Appl. Phys. Lett., 68, 31 (1996).
- [4] P. Mock, G.R. Booker, N.J. Mason, R.J. Nicholas, E. Aphandery, T. Topuria, N.D. Browning. Mater. Sci. Eng. B, 80, 112 (2001).
- [5] S. Shusterman, Y. Paltiel, A. Sher, V. Ezersky, Y. Rosenwaks. J. Cryst. Growth, 291, 363 (2006).
- [6] N. Deguffroy, V. Tasco, A.N. Baranov, E. Tournie, B. Satpari, A. Trampert, M. Dunaevski, A. Titkov, M. Ramonda. J. Appl. Phys., **101**, 124309 (2007).
- [7] Я.А. Пархоменко, П.А. Дементьев, К.Д. Моисеев. ФТП, 50, 993 (2016).

- [8] К.Д. Моисеев, Я.А. Пархоменко, Е.В. Гущина, А.В. Анкудинов, М.П. Михайлова, Н.А. Берт, Ю.П. Яковлев. ФТП, 43, 1142 (2009).
- [9] Н.А. Черкашин, М.В. Максимов, А.Г. Макаров, В.А. Щукин, В.М. Устинов, Н.В. Луковская, Ю.Г. Мусихин, Г.Э. Цырлин, Н.А. Берт, Ж.И. Алфёров, Н.Н. Леденцов, Д. Бимберг. ФТП, 37, 890 (2003).
- [10] Н.А. Берт, А.Л. Колесникова, И.К. Королев, А.Е. Романов, А.Б. Фрейдин, В.В. Чалдышев, Е.С. Aifantis. ФТТ, 53 (10), 1986 (2011).
- [11] N.A. Bert, V.N. Nevedomskiy, L.A. Sokura. J. Phys.: Conf. Ser., 586, 012004 (2015).

Редактор Л.В. Шаронова

InSb quantum dots grown by liquid-phase epitaxy on the InGaAsSb/GaSb substrate

L.A. Sokura, Y.A. Parkhomenko, K.D. Moiseev, V.N. Nevedomsky, N.A. Bert

loffe Institute, 194021 St. Petersburg, Russia

Abstract InSb quantum dots (QDs) were obtained by liquid phase epitaxy in the temperature range $T = 450-467^{\circ}$ C on the surface of the In_{0.25}GaAsSb epitaxial layer lattice matched to GaSb(001) substrate for the first time. It was shown by transmission electron microscopy study that QDs had a shape similar to truncated cone and exhibited the monomodal distribution in the height and the lateral size in their ensemble. The large QDs (base size about 30–50 nm, height of 3 nm) manifested specific contrast in a plan-view diffraction-mode image that indicated presence of mismatch defects. Modifying the chemical composition of the working surface of a substrate by applying the In_{0.25}GaAsSb epitaxial layer provided a 3-fold increase in the InSb QDs density $(1 \cdot 10^{10} \text{ cm}^{-2})$ compared with deposition directly on the GaSb binary compound.