Сверхпроводящие свойства (Pb_{0.05}Sn_{0.95})Те, легированного индием, в условиях гидростатического сжатия

© Н.Ю. Михайлин, Р.В. Парфеньев, А.В. Черняев[¶],

Д.В. Шамшур, Г.О. Андрианов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

¶E-mail: chernyaevav@yandex.ru

(Получена 31 января 2017 г. Принята к печати 8 феврая 2017 г.)

Изучены сверхпроводящие свойства полупроводникового сплава Pb_{0.05}Sn_{0.95}Te, легированного 5 ат.% In, при гидростатическом сжатии P < 7 кбар. При увеличении давления P > 1.35 кбар исчезает скачок сопротивления к $\rho = 0$ на температурных и магнитополевых зависимостях электросопротивления $\rho(T)$ при $T \ge 1.3$ К и $\rho(H)$, соответствующих переходу в сверхпроводящее состояние. Экспериментальные результаты свидетельствуют об уменьшении плотности состояний на уровне Ферми с ростом давления, что можно интерпретировать как смещение уровня индия вглубь валентной зоны. Полученные данные уточняют и дополняют результаты работ по изучению барических зависимостей критических параметров сверхпроводящего перехода в (Pb_zSn_{1-z})_{0.95}In_{0.05}Te с различным содержанием свинца z.

DOI: 10.21883/FTP.2017.08.44788.57

1. Введение

Введение в твердые растворы Pb_zSn_{1-z}Te индия в количестве до 20 ат.% (предел растворимости In в SnTe достигает 40 ат.% [1]) приводит к образованию полосы квазилокальных примесных состояний In с высокой плотностью, расположенной на фоне сплошного спектра валентных L- и Σ-зон [2]. Именно высокой плотностью состояний на уровне Ферми определяется сверхпроводящий (СП) переход с критической температурой, достигающей в $Sn_{0.95}In_{0.05}Te_{1+y}$ $T_c \approx 2.6 \, \text{K}$ (при содержании дополнительной примеси избыточного Те у = 1 ат.%) [3]. Ранее было установлено, что для наблюдения СП состояния с критической температурой в гелиевой области требуются определенные условия: 1) расположение уровня Ферми зонных дырок E_F в пределах полосы квазилокальных состояний индия E_{In}; 2) расположение полосы квазилокальных состояний индия E_{In} на фоне дополнительного Σ -экстремума валентной зоны [4].

В предыдущих работах была показана возможность управлять критическими параметрами СП перехода, варьируя количество In и/или содержание свинца z, что влияет определяющим образом на энергетическое положение примесной полосы и уровня Ферми относительно края тяжелой Σ -валентной зоны в энергетическом спектре твердых растворов [5].

Гидростатическое сжатие также позволяет в определенных пределах изменять параметры зонной структуры $Pb_z Sn_{1-z}$ Te:In (взаимное расположение E_{In} и потолок валентных *L*- и Σ -зон [6,7]) и соответственно СП характеристики материала. Задача настоящей работы — установление влияния давления на низкотемпературные электрические свойства сверхпроводящего твердого раствора ($Pb_{0.05}Sn_{0.95}$)0.95In_{0.05}Te.

2. Методика эксперимента

Четверной твердый раствор, соответствующий химической формуле (Pb_{0.05}Sn_{0.95})_{0.95}In_{0.05}Te, изготавливался по металлокерамической технологии [8,9], позволяющей получать однородные образцы. При синтезе образцов выдерживали следующие технологические параметры. Сплавление в вакууме исходных компонентов (Pb, Sn, In, Te) полупроводниковой степени чистоты производили при 900-1000°С. Далее в течение 200 ч проводили отжиг при 600°C с последующей быстрой закалкой. Для улучшения однородности образцов полученные слитки, раздробленные до размеров микронных зерен (100-200 мкм), подвергали горячему прессованию и отжигу в вакууме при 600°С в течение 200ч. Размеры образцов (площадь поперечного сечения образца $S = 2.3 \,\text{мм}^2$, расстояние между контактами $l = 3.5 \,\text{мм}$) определялись требованиями к измерениям в условиях гидростатического сжатия.

Исследования температурных и магнитополевых зависимостей электросопротивления проводили на постоянном токе в диапазоне температур $T = 1.35 - 300 \, \text{K}$ в магнитных полях Н до 1 Т. Критические параметры СП перехода — температура T_c и магнитное поле $H_{c2}(T)$ определялись из температурных $\rho(T)$ (при H = 0) и магнитополевых $\rho(H)$ (при T = const) зависимостей удельного сопротивления по скачку сопротивления (на уровне $ho = 0.5
ho_N$, где ho_N — сопротивление в нормальном состоянии). Омические контакты к образцам создавали путем электролитического осаждения слоя Ni из раствора Ni₂SO₄. Образец помещали в немагнитную автономную камеру высокого давления [8], заполняемую полиэтилсилоксаном и расположенную в криостате непосредственно в жидком Не4. Величину гидростатического сжатия до $P \le 12$ кбар (при T = 300 K) определяли по изменению сопротивления датчика (манганиновая проволока диаметром d = 0.05 мм). Низкотемпературный сброс давления в камере при понижении температуры составлял $\Delta P \approx 3$ кбар.

3. Экспериментальные результаты и обсуждение

На рис. 1 представлена температурная зависимость сопротивления (Pb_{0.05}Sn_{0.95})_{0.95}In_{0.05}Te в области СП перехода ($T_c \approx 1.72 \, {\rm K}$) при нормальном давлении. Образец для изучения барических зависимостей $\rho(T)$ и $\rho(H)$ был выбран исходя из следующих соображений. На вставке к рис. 1 показано изменение $T_c(z)$ в серии образцов $(Pb_z Sn_{1-z})_{0.95} In_{0.05} Te$, имеющее форму колокола с максимумом при $z \approx 0.2$ [2]. Ранее было проведено исследование влияния давления на СП характеристики твердого раствора с содержанием свинца z = 0.3 (в области максимума Т_с на вставке рис. 1), показавшее слабую зависимость $T_c(P)$ вплоть до $P \approx 9$ кбар [6]. В то же время изначально (при *P* = 1 бар) несверхпроводящий образец с большим содержанием свинца (Pb_{0.45}Sn_{0.55})_{0.95}In_{0.05}Te обнаружил при повышении $P > 4 \, \kappa \delta ap \, [10]$ переход в СП состояние с температурой, достигающей $T_c \approx 1.7 \, {
m K}$ при P = 6.8 кбар. Нашей задачей было последовательное изучение барических зависимостей СП свойств образца твердого раствора (Pb_{0.05}Sn_{0.95})_{0.95}In_{0.05}Te (из "левой" части колоколообразной зависимости $T_c(z)$ на вставке к рис. 1).

На рис. 2 показаны температурные зависимости электросопротивления твердого раствора $(Pb_{0.05}Sn_{0.95})_{0.95}In_{0.05}$ Те при гидростатическом сжатии $P \leq 6.8$ кбар. Они имеют линейную зависимость от *T*, характерную для образцов твердых растворов

Рис. 1. Температурная зависимость сопротивления образца $(Pb_{0.05}Sn_{0.95})_{0.95}In_{0.05}Te$ при нормальном давлении. На вставке показана зависимость критической температуры T_c СП перехода от содержания свинца z в твердом растворе $(Pb_z Sn_{1-z})_{0.95}In_{0.05}Te$ (P = 1 бар) [2,6]. Стрелкой указан состав исследуемого образца.

Рис. 2. Температурные зависимости удельного сопротивления образца ($Pb_{0.05}Sn_{0.95}$)_{0.95}In_{0.05}Te при различном давлении *P*, кбар: *I* — 0.001, *2* — 1.35, *3* — 3.1, *4* — 4.28, *5* — 6.35, *6* — 6.8. На вставке показана зависимость сопротивления ($Pb_{0.05}Sn_{0.95}$)_{0.95}In_{0.05}Te в нормальном состоянии от степени гидростатического сжатия: *I* — 300 K, *2* — 77 K, *3* — 4.2 K.

(Pb_zSn_{1-z})Te, легированных In. Металлический ход сопротивления обусловлен высокой концентрацией носителей из-за электрически активных заряда дефектов собственных И высокой концентрации $(\sim 10^{21} \,\mathrm{cm}^{-3})$. На вставке к примеси рис. 2 представлены зависимости удельного сопротивления (Pb_{0.05}Sn_{0.95})_{0.95}In_{0.05}Te от степени гидростатического сжатия при комнатной, азотной и гелиевой температурах. Видно, что сопротивление образца монотонно уменьшается с увеличением давления во всей исследованной области температур. Барическое изменение удельного сопротивления составило для комнатной, азотной и гелиевой температур $\partial \rho / \partial P = -0.028$, -0.020 и -0.017 мОм/кбар соответственно.

На рис. З показаны зависимости $\rho(T, P)$ в (Pb_{0.05}Sn_{0.95})_{0.95}In_{0.05}Te в области СП перехода (при 1.35-2.5 К). Увеличение степени гидростатического сжатия до P = 1.35 кбар приводит к смещению критической температуры СП перехода в область более низких температур ($T_c \approx 1.5 \, \text{K}$). При дальнейшем повышении давления СП переход исчезает в исследованном диапазоне температур $(T \ge 1.35 \,\mathrm{K}).$ Уменьшение Т_с с ростом Р подтверждают зависимости сопротивления OT магнитного поля (рис. 4). Критические магнитное поля разрушения СП состояния уменьшаются, и при $P \ge 3.1$ кбар скачок сопротивления (Pb_{0.05}Sn_{0.95})_{0.95}In_{0.05}Te в магнитном поле, связанный с СП переходом, исчезает.

Ранее в работе [6] было исследовано влияние давления на параметры СП состояния ($Pb_{0.7}Sn_{0.3}$)_{0.95}In_{0.05}Te. Было обнаружено, что СП параметры материала слабо меняются с давлением, что связывалось авторами с незначительным изменением положения уровня Ферми E_F вблизи максимума плотности состояний примесной полосы

Рис. 3. Температурные зависимости удельного сопротивления образца $(Pb_{0.05}Sn_{0.95})_{0.95}In_{0.05}$ Те в области СП перехода при различном давлении *P*, кбар: *I* — 0.001, *2* — 1.35, *3* — 3.1, *4* — 4.28, *5* — 6.35, *6* — 6.8.

Рис. 4. Зависимость сопротивления $(Pb_{0.05}Sn_{0.95})_{0.95}In_{0.05}Te$ от магнитного поля $\mu_0 H$ при различных температурах ниже критической $T_c = 1.72$ К в условиях гидростатического сжатия P, кбар (T, K): I = 0.001 (1.51), 2 = 1.35 (1.38), 3 = 3.1 (1.34), 4 = 4.28 (1.32).

In под давлением до $P = 9 \, \text{кбар. B}$ твердом растворе с меньшим содержанием свинца $(Pb_{0.05}Sn_{0.95})_{0.95}In_{0.05}$ Те повышение давления до $P > 1.35 \, \text{кбар}$ приводит к исчезновению СП перехода при экспериментально достижимых температурах.

При интерпретации полученных данных необходимо учитывать следующие обстоятельства. Значения параметров СП перехода (и сама возможность реализации СП состояния с T_c в гелиевой области температур) определяются плотностью состояний на уровне Ферми, которая, в свою очередь, складывается из плотности зонных состояний *L*- и Σ -валентных зон и из плотности примесных состояний In. Всестороннее сжатие изменяет энергетическое расстояние между краями зон и квазилокальными состояниями индия E_{In}, влияя тем самым на суммарную плотность зонных состояний. При этом изменяется степень заполнения примесной полосы носителями и соответственно положение уровня Ферми $E_{\rm F}$. Как следует из полученных экспериментальных данных, СП состояние материала исчезает уже при P > 1.35 кбар. Принимая во внимание данные работы [6], следует сделать вывод, что приложение гидростатического давления сдвигает квазилокальный уровень In вглубь валентной зоны. Это приводит, с одной стороны, к увеличению плотности состояний зонных дырок на уровне Ферми. При этом, однако, плотность квазилокальных состояний существенно падает из-за перехода электронов из заполненных зонных состояний на примесные состояния, что приближает уровень Ферми дырок к краю примесной полосы E_{In}, где плотность примесных состояний существенно ниже. В результате действия обоих факторов гидростатическое сжатие приводит к уменьшению суммарной плотности состояний на уровне Ферми и исчезновению сверхпроводимости.

4. Заключение

Таким образом, в изученном твердом растворе наблюдается существенное влияние гидростатического сжатия на температурные и магнитополевые зависимости удельного сопротивления (Pb_{0.05}Sn_{0.95})_{0.95}In_{0.05}Te во всей области температур от комнатных до гелиевых. Увеличение степени гидростатического сжатия приводит к уменьшению критической температуры СП перехода и критических магнитных полей Н_c, и при увеличении давления *P* > 1.35 кбар сверхпроводимость исчезает. Полученные результаты интерпретируются как барическое смещение примесной полосы квазилокальных состояний In вглубь валентной зоны, что приводит к выходу уровня Ферми дырок из пика примесных состояний индия с высокой плотностью, уменьшению суммарной плотности состояний на уровне Ферми и исчезновению СП состояния материала в исследованной области температур T > 1.35 K.

Список литературы

- G. Balakrishnan, L. Bawden, S. Cavendish, M.R. Lees. Phys. Rev. B, 140507(R) (2013).
- [2] Р.В. Парфеньев, Д.В. Шамшур, С.А. Немов. ФТТ, 43, 1772 (2001).
- [3] Г.С. Бушмарина, И.А. Драбкин, В.В. Компанеец, Р.В. Парфеньев, Д.В. Шамшур, М.А. Шахов. ФТТ, 28, 1094 (1986).
- [4] А.В. Березин, С.А. Немов, Р.В. Парфеньев, Д.В. Шамшур. ФТТ, 35, 53 (1993).
- [5] В.И. Козуб, Р.В. Парфеньев, Д.В. Шамшур, Д.В. Шакура, А.В. Черняев, С.А. Немов. Письма ЖЭТФ, 84, 37 (2006).
- [6] Г.О. Андрианов, С.А. Немов, Р.В. Парфеньев, Д.В. Шамшур, А.В. Черняев. ФТТ, 52, 1688 (2010).

- [7] Р.В. Парфеньев, В.И. Козуб, Г.О. Андрианов, Д.В. Шамшур, А.В. Черняев, Н.Ю. Михайлин, С.А. Немов. Физика низких температур, **41**, 147 (2015).
- [8] Р.В. Парфеньев, Д.В. Шамшур, С.А. Немов. ФТТ, 41, 2132 (1999).
- [9] М.А. Шубников. Приборы и техника эксперимента, 5, 178 (1981).
- [10] Г.О. Андрианов, В.И. Козуб, Н.Ю. Михайлин, Р.В. Парфеньев, Д.В. Шамшур, А.В. Черняев. *Тез. докл. XII Росс. конф. по физике полупроводников* (Звенигород, 21–25 сентября 2015) с. 219.

Редактор А.Н. Смирнов

Superconducting properties of (Pb_{0.05}Sn_{0.95})Te doped with indium under hydrostatic pressure

N.Yu. Mikhailin, R.V. Parfeniev, A.V. Chernyaev, D.V. Shamshur, G.O. Andrianov

loffe Institute, 194021 St. Petersburg, Russia

Abstract Superconducting properties of a semiconductor alloy $Pb_{0.05}Sn_{0.95}Te$ doped by 5 at% of In were studied at hydrostatic pressure *P* up to 7 kbar. It was found that at *P* > 1.35 kbar and $T \ge 1.3$ K superconducting transition isn't observed in temperature and magnetic field dependencies of resistivity $\rho(T)$ and $\rho(H)$. Such behavior indicates that pressure increase leads to a decrease of density of states on the Fermi level, which can be interpreted as a pressure-induced shift of indium level deep into the valence band. Obtained data clarify and supplement results of other works on pressure dependencies of critical parameters of superconducting transition in $(Pb_z Sn_{1-z})_{0.95} In_{0.05} Te$ with various lead concentration.