ЭПР центров $Cr^{3+} - Li^+$ в синтетическом форстерите Cr, Li : Mg₂SiO₄

© И.Д. Рябов, А.В. Гайстер*, Е.В. Жариков*

Институт литосферы окраинных и внутренних морей Российской академии наук,

Москва, Россия

* Научный центр лазерных материалов и технологий Института общей физики Российской академии наук, Москва, Россия

E-mail: ryabov@ilran.ru

(Поступила в Редакцию 14 января 2002 г. В окончательной редакции 9 апреля 2002 г.)

Впервые методом ЭПР исследованы синтетические монокристаллы форстерита Cr, Li:Mg₂SiO₄, легированные хромом и литием. Помимо известных центров $Cr^{3+}(M1)$ и $Cr^{3+}(M2)$ с локальной симметрией C_i и C_s соответственно обнаружены два новых центра $Cr^{3+}(M1)'$ и $Cr^{3+}(M2)'$ с симметрией C_1 . Определены стандартные параметры в нулевом магнитном поле D и E (ZFS-параметры, в GHz) и главные значения g-reнзора: D = 31.35, E = 8.28, g = (1.9797, 1.9801, 1.9759) для $Cr^{3+}(M1)'$; D = 15.171, E = 2.283, g = (1.9747, 1.9769, 1.9710) для $Cr^{3+}(M2)'$. Установлено, что низкосимметричный эффект несовпадения главных осей ZFS- и g-reнзоров проявляется особенно сильно (достигает 19°) в случае $Cr^{3+}(M2)'$. Предложена структурная модель центров $Cr^{3+}(M1)'$ и $Cr^{3+}(M2)'$: $Cr^{3+}(M1) - Li^+(M2)$ и $Cr^{3+}(M2) - Li^+(M1)$ соответственно. Определены концентрации обоих центров и показано, что при образовании пар ионов $Cr^{3+} - Li^+$ позиция M1 оказывается для хрома в 2 раза более предпочтительной, чем M2. На основании полученных данных R_1 -линия (переход $^2E \rightarrow ^4A_2$), наблюдающаяся в спектрах люминесценции кристаллов $Cr, Li:Mg_2SiO_4$ вблизи 699.6 nm, приписана центру $Cr^{3+}(M1)'$.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (гранты № 00-15-96715, 02-02-16360, 01-05-65348).

Форстерит, легированный хромом (Cr:Mg₂SiO₄ или Сг-форстерит), нашел применение в качестве активной среды перестраиваемых лазеров ближнего ИК-диапазона [1-3]. Роль активных лазерных центров играют ионы четырехвалентного хрома. Идентификация иона Cr⁴⁺, располагающегося в тетраэдрически-координированной позиции (с локальной симметрией С_s) кремния, с помощью метода ЭПР выполнена в работах [4-9]. По данным ЭПР в Cr: Mg₂SiO₄ присутствуют также ионы Cr³⁺ и Cr²⁺ в двух структурно-неэквивалентных октаэдрически-координированных позициях М1 и М2 ионов Mg^{2+} (с локальной симметрией C_i и C_s соответственно) [10,11]. В кристаллах Cr, Al: Mg₂SiO₄ помимо изолированных ионов $Cr^{3+}(M1)$ и $Cr^{3+}(M2)$ обнаружены [12-14] пары ионов $Cr^{3+}(M1) - Al^{3+}$ и $Cr^{3+}(M2) - Al^{3+}$ (ионы Al^{3+} замещают Si^{4+} и играют роль компенсаторов заряда). Согласно [15], образование этих пар в кристаллах Cr, Al: Mg₂SiO₄ способствует тушению люминесценции ионов Cr³⁺ и возрастанию относительной интенсивности люминесценции ионов Cr4+ в ближней ИК-области, что в свою очередь ведет к улучшению лазерных свойств Cr-форстерита.

Существенное изменение люминесцентных свойств Сг-форстерита обнаружено также при введении примеси лития [16–19], однако только на основе данных оптической спектроскопии выяснить природу активных центров хрома в кристаллах Cr, Li: Mg₂SiO₄ до конца не удалось. В настоящей работе впервые представлены результаты детального исследования ЭПР двух новых центров Cr^{3+} , образующихся в этих кристаллах. Предварительные результаты опубликованы ранее в [20].

1. Эксперимент

Исследовались монокристаллы Cr, Li: Mg₂SiO₄ и (для сравнения) Cr: Mg₂SiO₄, выращенные из расплава методом Чохральского на установке "Кристалл-2". Шихта содержала MgO марки "ОСЧ 11-2" и высокодисперсный SiO₂ производства компании "Wacker" (чистота 99.99+%). Легирующие примеси в форме Cr₂O₃ и Li₂CO₃ вносились в иридиевый тигель (\emptyset 30 × 30 mm) непосредственно перед ростом кристаллов. Вытягивание кристаллов происходило со скоростью 3 mm/h при вращении 12 грт; рост проводился в атмосфере 100% Ar.

Из выращенных кристаллов изготавливались кубические образцы размером $5 \times 5 \times 5$ или $3 \times 3 \times 3$ mm с ребрами, направленными вдоль кристаллографических осей **a**, **b** и **c** (с точностью не хуже 1.5°); ориентация кристаллов первоначально определялась по ростовой огранке и их естественному плеохроизму (кристаллы окрашены в зеленый, синий и красный цвет при наблюдении в направлении **a**, **b** и **c** соответственно), затем ориентация уточнялась на рентгеновском дифрактометре "Дрон-2". (Здесь и далее все кристаллографические данные приводятся в установке *Pbnm*).

Измерения ЭПР выполнены на спектрометре "Varian E-115" в X-диапазоне (~ 9.5 GHz) при комнатной температуре с использованием двойного прямоугольного резонатора "E-231/E-232" (мода TE_{104}) и частоты модуляции 100 kHz. Значения постоянного магнитного поля определялись с помощью измерителя магнитной индукции "ИМИ Ш1-1" и частотомера "Ч3-38". В качестве эталона использовался образец

ДФПГ "Д 688" (ВНИИФТРИ) с g = 2.0036, содержащий 4.04×10^{16} парамагнитных центров. Поворот кристалла в резонаторе вокруг двух взаимно перпендикулярных осей осуществлялся при помощи гониометра, имеющего два круга вращения — большой горизонтальный с лимбом и нониусом (0.1°) и малый вертикальный (с лимбом). Для получения угловых зависимостей (через каждые 5°) линий ЭПР в плоскостях ab, bc и са исследуемый кристалл поворачивался горизонтальным кругом вокруг кристаллографических осей с, а и b соответственно. Ориентация образца контролировалась по спектру ЭПР и в случае необходимости слегка подправлялась (в пределах 1.5°) вертикальным кругом посредством слияния четырех (при ориентации постоянного магнитного поля $\mathbf{B}_0 \parallel \mathbf{a}, \mathbf{b}, \mathbf{c})$ или двух (при других направлениях \mathbf{B}_0 в плоскостях **ab**, **bc** и **ca**) линий ЭПР от магнитно-неэквивалентных положений парамагнитных центров с магнитной кратностью $K_m = 4$.

Концентрация парамагнитных центров в исследованных образцах определялась методом сравнения интегральных интенсивностей линий этих центров и ДФПГ; двойное интегрирование регистрируемых линий ЭПР выполнялось по стандартной методике [21].

2. Результаты

Сравнительный анализ спектров ЭПР, записанных при различных ориентациях магнитного поля \mathbf{B}_0 в кристаллографических плоскостях **ab**, **bc** и **ca**, как кристаллов Cr:Mg₂SiO₄, так и кристаллов Cr, Li:Mg₂SiO₄ (с примерно одинаковым содержанием хрома и различным содержанием лития), позволил выявить в последних четыре различных парамагнитных центра Cr³⁺ (рис. 1) — два известных центра Cr³⁺(M1) и Cr³⁺(M2) и два новых, предварительно обозначенных как Cr³⁺(M1)' и

Рис. 1. Спектр ЭПР центров Cr^{3+} в кристалле Cr, Li: Mg₂SiO₄. **B**₀ || **a**, **B**₁ || **b**; $\nu_0 = 9.52$ GHz. Показаны только наиболее интенсивные узкие линии, соответствующие переходам $1 \rightarrow 2$ и $3 \rightarrow 4$, изображенным на рис. 3 стрелками.

Рис. 2. Угловые зависимости линий ЭПР (переходы $1 \rightarrow 2$ и $3 \rightarrow 4$) от двух пар (I и II) магнитно-неэквивалентных положений центров $\operatorname{Cr}^{3+}(M1)'$ и $\operatorname{Cr}^{3+}(M2)'$ в кристаллографической плоскости **bc**. Точки — эксперимент, линии — теория ($\nu_0 = 9.5 \,\mathrm{GHz}$).

 $\operatorname{Cr}^{3+}(M2)'$. Число магнитно-неэквивалентных положений K_m для обоих новых центров оказалось равным 4. Напомним, что для центров $\operatorname{Cr}^{3+}(M1)$ и $\operatorname{Cr}^{3+}(M2)$ оно равно 4 и 2 соответственно [10].

Угловые зависимости линий ЭПР (рис. 2) центров ${}^{52}{\rm Cr}^{3+}(M1)'$ и ${}^{52}{\rm Cr}^{3+}(M2)'$ хорошо описываются спин-гамильтонианом

$$H = H_{\rm ZFS} + H_{\rm Ze},\tag{1}$$

в котором первый член характеризует расщепление в нулевом магнитном поле (Zero–Field Splitting) основного уровня (${}^{4}A_{2}$)

$$H_{\rm ZFS} = \mathbf{S} \cdot \mathbf{D} \cdot \mathbf{S} = D_X S_X^2 + D_Y S_Y^2 + D_Z S_Z^2, \qquad (2)$$

а второй член — электронное зеемановское взаимодействие

$$H_{Ze} = \beta \mathbf{B}_{0} \cdot \mathbf{g} \cdot \mathbf{S}$$

= $\beta (g_{X'} B_{X'} S_{X'} + g_{Y'} B_{Y'} S_{Y'} + g_{Z'} B_{Z'} S_{Z'}).$ (3)

Главные значения и направления главных осей Dи g-тензоров, вычисленные с использованием нелинейно-

Таблица 1. ЭПР-параметры (в скобках — среднеквадратичные ошибки в последней значащей цифре) центров $Cr^{3+} - Li^+$ в $Cr, Li: Mg_2SiO_4$

Параметры	$\operatorname{Cr}^{3+}(M1)'$	$\operatorname{Cr}^{3+}(M2)'$
D_X , GHz	-2.17 (4)	-2.774(1)
	(58.1, 55.1 51.1)	(89.2, 30.2, 59.9)
D_Y, GHz	-18.73 (5)	-7.340(1)
	(147.8, 73.2, 63.4)	(96.3, 119.9, 30.7)
D_Z , GHz	20.90 (5)	10.114 (2)
	(85.8, 140.2, 50.5)	(6.4, 93.8, 84.9)
D, GHz	31.35 (8)	15.171 (3)
E, GHz	8.28 (3)	2.283 (1)
δ , cm ⁻¹	2.300 (5)	1.0459 (2)
$g_{X'}$	1.9797 (3)	1.9747 (3)
	(54.6, 59.7, 50.3)	(81.6, 15.1, 77.6)
$g_{Y'}$	1.9801 (4)	1.9769 (3)
	(144.6, 68.3, 63.5)	(96.5, 101.5, 13.3)
$g_{Z'}$	1.9759(3)	1.9710(2)
	(90.6, 141.2, 51.2)	(10.7, 99.6, 85.4)

Примечание. Абсолютный знак ZFS-параметров не определялся. Указаны также направления (deg) главных осей D- и g-тензоров (для одного из четырех магнитно-неэквивалентных положений каждого центра) относительно кристаллографических осей (**a**, **b**, **c**).

Таблица 2. Параметры, характеризующие интенсивность линий I_{int} (5) резонансных переходов $1 \rightarrow 2$ и $3 \rightarrow 4$, показанных на рис. 3 стрелками, в магнитном поле $\mathbf{B}_0 \parallel \mathbf{a} \ (\mathbf{B}_1 \parallel \mathbf{b})$ на частоте $v_0 = 9.52 \text{ GHz}$

Центр	Поле B_0 , mT	Переход $i \rightarrow j$	$ U_{ji} ^{2}$	$U_{jj} - U_{ii}$
$\operatorname{Cr}^{3+}(M1)'$	148.9	$1 \rightarrow 2$	1.11	4.55
$Cr^{3+}(MI)'$	500.6	$3 \rightarrow 4$	4.54	1.25
$Cr^{3+}(M2)'$	369.5	$1 \rightarrow 2$	2.51	1.64
$\operatorname{Cr}^{3+}(M2)'$	118.4	3 ightarrow 4	0.22	5.74

го метода наименьших квадратов Левенберга–Маркардта (Levenberg–Marquardt) [22] по 204 и 186 экспериментальным точкам для центров $\operatorname{Cr}^{3+}(M1)'$ и $\operatorname{Cr}^{3+}(M2)'$ соответственно, приведены в табл. 1. Там же даны значения стандартных ZFS-параметров $D = 3D_Z/2$ и $E = (D_X - D_Y)/2$, а также величины расщепления δ орбитального синглета ⁴ A_2 на два крамерсовских дублета $\varepsilon_{\pm 1/2}$ и $\varepsilon_{\pm 3/2}$

$$\delta = \left| \varepsilon_{\pm 3/2} - \varepsilon_{\pm 1/2} \right| = 2\sqrt{D^2 + 3E^2}.$$
 (4)

При фиксированной частоте v_0 микроволнового поля $B_1 \cos 2\pi v_0 t$ и сканировании магнитного поля B_0 интегральная интенсивность I_{int} линий ЭПР, как известно [23,24], пропорциональна

$$I_{\rm int} \propto \frac{N|U_{ji}|^2}{(2S+1)|U_{ii} - U_{ii}|}.$$
 (5)

Здесь N — концентрация парамагнитных центров в образце, *i* и *j* — номера уровней (с энергией E_i и E_j),

между которыми происходит резонансный переход

$$U_{ji} = \left\langle j | \mathbf{B}_1 \cdot \mathbf{g} \cdot \mathbf{S} | i \right\rangle / B_1, \tag{6}$$

$$U_{jj} - U_{ii} = \frac{\partial (E_j - E_i)}{\partial (\beta B_0)}$$
$$= \left(\left\langle j | \mathbf{B}_0 \cdot \mathbf{g} \cdot \mathbf{S} | j \right\rangle - \left\langle i | \mathbf{B}_0 \cdot \mathbf{g} \cdot \mathbf{S} | i \right\rangle \right) / B_0.$$
(7)

Вычисленные для центров $\operatorname{Cr}^{3+}(M1)'$ и $\operatorname{Cr}^{3+}(M2)'$ с S = 3/2 величины $|U_{ji}|^2$ и $U_{jj} - U_{ii}$ (при ориентации векторов $\mathbf{B}_0 \| \mathbf{a} \ \mathbf{u} \ \mathbf{B}_1 \| \mathbf{b}$) приведены в табл. 2; для эталона ДФПГ: S = 1/2, $|U_{21}|^2 = (g_{\text{DPPH}}/2)^2$, $U_{22} - U_{11} = g_{\text{DPPH}} = 2.0036$. Концентрация центров $\operatorname{Cr}^{3+}(M1)'$ и $\operatorname{Cr}^{3+}(M2)'$ в кристаллах Cr, Li: Mg₂SiO₄, выращенных из расплава с различным содержанием лития и примерно одинаковым содержанием хрома, определялась по линиям ЭПР переходов $1 \rightarrow 2$ и $3 \rightarrow 4$, показанных на рис. 3 стрелками, с учетом данных табл. 2; результаты нанесены на график (рис. 4). Средние значения (для темных и светлых кружков или темных и светлых квадратов на рис. 4) учитывались при аппроксимации (нелинейная регрессия) зависимостью

Рис. 3. Уровни энергии и резонансные переходы в магнитном поле (mT): a - 148.9 и 500.6 для $Cr^{3+}(M1)'$; b - 118.4, 369.5, 447.7, 666.7, 792.8 и 1318.6 для $Cr^{3+}(M2)'$. $\nu_0 = 9.52$ GHz, **B**₀ || **a**.

Рис. 4. Концентрация центров $Cr^{3+}(M1)'$ и $Cr^{3+}(M2)'$ в кристаллах Cr, Li: Mg₂SiO₄ (в единицах 4.04 · 10¹⁶ ions/mg) в зависимости от содержания лития в расплаве; концентрация хрома в расплаве ~ 0.05–0.06 wt.%

(линии на рис. 4)

$$N_C = A \left[1 - \exp(-BN_{\rm Li}) \right],\tag{8}$$

где N_C — концентрация центра (в единицах $N_0 = 4.04 \times 10^{16}$ ions/mg), $N_{\rm Li}$ — концентрация лития в расплаве (wt.%). Для центра ${\rm Cr}^{3+}(M1)'$ $A = (0.093 \pm 0.003) \times N_0$, $B = 15 \pm 2$ wt.%⁻¹, для центра ${\rm Cr}^{3+}(M2)'$ $A = (0.043 \pm 0.002) \times N_0$, $B = 16 \pm 3$ wt.%⁻¹.

3. Обсуждение

Один из двух новых центров сначала был обозначен $Cr^{3+}(M1)'$, как поскольку он характеризуется параметрами спин-гамильтониана, направлениями главных ZFS-осей (табл. 1) и угловыми зависимостями линий ЭПР (рис. 2), довольно близкими к аналогичным характеристикам [10,12-14] для центра $Cr^{3+}(M1)$. Приведем здесь для сравнения параметры последнего центра, взятые из работ [12,14]: $D = 30.6 \pm 0.2 \,\text{GHz}$, $E = 8.48 \pm 0.05 \text{ GHz}, \quad g_X = g_Y = 1.980 \pm 0.002, \quad g_Z = 0.$ $= 1.974 \pm 0.002$. Поскольку новый центр $Cr^{3+}(M1)'$ обнаруживается только в образцах Сг-форстерита, содержащих литий, разумно предположить образование пары ионов $Cr^{3+}(M1) - Li^+$. Ранее пары ионов $Cr^{3+} - Li^+$ были выявлены методом ЭПР, например, в кристаллах Cr, Li: Cs₂CdCl₄ [25] и Cr, Li: A_2MF_4 (A = K, Rb, Cs; M = Zn, Cd) [26,27] (см. также теоретические работы [28,29]). В этих кристаллах два примесных иона — трехвалентный (Cr³⁺) и одновалентный (Li⁺) замещают два ближайших одинаковых двухвалентных иона M^{2+} ; тем самым сохраняется баланс электрического заряда. Нечто похожее, т.е. одновременное замещение двух изовалентных ионов Mg²⁺ двумя разновалентными ионами Cr³⁺ и Li⁺, происходит и в Cr, Li-форстерите.

Подобными соображениями мы руководствовались и при идентификации другого центра $Cr^{3+}(M2) - Li^+$, вначале обозначенного как $Cr^{3+}(M2)'$. Этот центр является аналогом известного центра $Cr^{3+}(M2)$ параметрами спин-гамильтониана [12,14]: D = c $= 21.1 \pm 0.4 \,\text{GHz}, \quad E = 2.60 \pm 0.05 \,\text{GHz}, \quad g_X = g_Z =$ $= 1.970 \pm 0.002$, $g_{\gamma} = 1.979 \pm 0.002$. На центре $Cr^{3+}(M2) - Li^{+}$ гораздо заметнее, чем на центре $Cr^{3+}(M1) - Li^{+}$, влияние близлежащего иона Li⁺, которое проявляется в заметном уменьшении абсолютных значений ZFS-параметров (табл. 1), увеличении магнитной кратности до $K_m = 4$, а также в повороте ZFS-осей X и Y на угол $\sim 30^\circ$ относительно аналогичных осей центра Cr³⁺(*M2*) [13,14].

Известно [30], что в кристаллах с пространственной группой *Pbnm* (D_{2h}^{16}) могут существовать активные центры только с локальной симметрией C_s , C_i и C_1 . При симметрии C_i (как для центра $\operatorname{Cr}^{3+}(MI)$) или C_1 число магнитно-неэквивалентных положений центра $K_m = 4$, и выделенных направлений нет [30]. При симметрии C_s ,

Рис. 5. Структурная модель центра $Cr^{3+}(M2) - Li^{+}(M1)$.

как в случае центров $Cr^{3+}(M2)$ и $Cr^{3+}(M2) - Al^{3+}$ в форстерите, число магнитно-неэквивалентных положений центра $K_m = 2$, и существует одно выделенное направление (главная ось Y [13,14]) вдоль оси с. Понятно, что при локализации иона Cr^{3+} в позиции M2 (в зеркальной плоскости) по соседству с ионом Li⁺, не располагающимся в этой плоскости, происходит образование центра $Cr^{3+}(M2) - Li^+$ не с симметрией C_s , а с более низкой симметрией C_1 . Аналогично при стабилизации пары ионов $Cr^{3+}(M1) - Li^+$ происходит понижение симметрии от C_i до C_1 (образование тройки ионов $Li^+ - Cr^{3+}(M1) - Li^+$ с симметрией C_i представляется нам маловероятным).

Наши расчеты (по структурным данным работы [31]) различных межатомных расстояний и соответствующих направлений в элементарной ячейке форстерита показали, что вектор М2-М1 с направляющими косинусами (0.0126, 0.8842, 0.4669) и длиной 0.3202 nm весьма близок по ориентации к главной X-оси D-тензора для центра $Cr^{3+}(M2)'$ (табл. 1); угол между двумя направлениями равен 3.1°. Это дает веское основание предположить, что ионы Cr³⁺ и Li⁺ располагаются в соседних позициях M2 и M1 (рис. 5). Таким образом, предлагаемая структурная модель центра $Cr^{3+}(M2)'$: $Cr^{3+}(M2) - Li^{+}(M1)$. Что касается центра $Cr^{3+}(M1)'$, то можно отметить, что и в этом случае из всех векторов **M1**–**Mj** (j = 1, 2) в элементарной ячейке форстерита вектор М1-М2 с указанной выше длиной и противоположным направлением ближе всего (угол составляет 12.3°) к одной из ZFS-осей, а именно Z, для одного из четырех магнитно-неэквивалентных положений этого центра, если не считать позиций М1 и M2, удаленных друг от друга на расстоянии 0.8632 nm (соответствующий угол равен 9.2°). Таким образом, мы предполагаем, что при образовании центра $Cr^{3+}(M1)'$, как и в случае центра $Cr^{3+}(M2)'$, те же самые ближайшие Mg^{2+} -позиции M2 и M1 заняты ионами Cr^{3+} и Li^+ , но только в обратном порядке, т.е. структурная модель центра $\operatorname{Cr}^{3+}(M1)'$: $\operatorname{Cr}^{3+}(M1) - \operatorname{Li}^{+}(M2)$.

Полученные данные по концентрациям центров (см. рис. 4 и ср. значения констант A для центров $Cr^{3+}(M1)'$ и $Cr^{3+}(M2)'$, приведенные в тексте после формулы (8)) свидетельствуют о том, что при образовании пар ионов $Cr^{3+} - Li^+$ в Cr, Li-форстерите позиция M1 оказывается для хрома примерно в 2 раза более предпочтительной, чем M2. Для изолированных ионов $Cr^{3+}(M1)$ и $Cr^{3+}(M2)$ аналогичное соотношение составляло по разным данным от 3:2 [10] до 4:1 [32].

В анализе экспериментальных данных мы не исходили априори из предположения о совпадении главных осей D- и g-тензоров, в отличие от всех авторов упомянутых во введении работ, посвященных изучению ЭПР ионов хрома в Cr-форстерите. Данное предположение, вообще говоря, некорректно, поскольку при локальной симметрии центров C_s , C_i и C_1 могут проявляться эффекты низкой симметрии [30]. Низкосимметричный эффект несовпадения указанных выше осей особенно заметен в случае центра $Cr^{3+}(M2) - Li^+(M1)$ (табл. 1) расхождение главных осей X и X', также как Y и Y', достигает приблизительно 19°.

В оптических спектрах люминесценции кристаллов $Cr:Mg_2SiO_4$ центрам $Cr^{3+}(M1)$ при достаточно низкой температуре соответствует R_1 -линия 692.7 nm [33,34]. Близость ZFS-параметров для центров $Cr^{3+}(M1)$ [12,14] и $Cr^{3+}(M1)'$ (табл. 1), по-видимому, свидетельствует о слабом возмущении ионами Li+ кристаллического поля, в котором находятся соседние ионы $Cr^{3+}(M1)$. Как следствие, при сосуществовании центров $Cr^{3+}(M1)$ и $Cr^{3+}(M1)'$ в кристаллах Cr, Li: Mg₂SiO₄ следует ожидать появления в спектрах люминесценции этих кристаллов двух R_1 -линий (переход ${}^2E \rightarrow {}^4A_2$), примерно одинаково расщепленных ($\delta \approx 2.3 \, \mathrm{cm}^{-1}$) при достаточно низких температурах. Действительно, при T = 77 K в спектрах люминесценции кристаллов Cr, Li: Mg₂SiO₄ мы наблюдали [19] две узкие R₁-линии вблизи 692.7 и 699.6 nm. На основании полученных в данной работе результатов мы впервые приписываем R₁-линию 699.6 nm центру $Cr^{3+}(M1) - Li^{+}(M2)$.

Авторы выражают благодарность Л.Д. Исхаковой и А.Г. Макаревичу (НЦВО при ИОФАН) за помощь в изготовлении ориентированных образцов.

Список литературы

- V. Petricevic, S.K. Gayen, R.R. Alfano. Appl. Phys. Lett. 53, 26, 2590 (1988).
- [2] H.R. Verdun, L.M. Thomas, D.M. Andrauskas, T. McCollum, A. Pinto. Appl. Phys. Lett. 53, 26, 2593 (1988).
- [3] В.Г. Барышевский, М.В. Коржик, А.Е. Кимаев, М.Г. Лившиц, В.Б. Павленко, М.Л. Мейльман, Б.И. Минков. ЖПС 53, 1, 7 (1990).
- [4] V.G. Baryshevski, M.V. Korzhik, M.G. Livshitz, A.A. Tarasov, A.E. Kimaev, I.I. Mishkel, M.L. Meilman, B.J. Minkov, A.P. Shkadarevich. OSA Proceedings on Advanced Solid-State Lasers 10, 26 (1991).

- [5] M.H. Garrett, V.H. Chan, H.P. Jenssen, M.H. Whitmore, A. Sacra, D.J. Singel, D.J. Simkin. OSA Proceedings on Advanced Solid-State Lasers 10, 76 (1991).
- [6] K.R. Hoffman, J. Casas-Gonzalez, S.M. Jacobsen, W.M. Yen. Phys. Rev. B 44, 22, 12589 (1991).
- [7] M.L. Meilman, M.G. Livshitz. OSA Proceedings on Advanced Solid-State Lasers 13, 39 (1992).
- [8] M.H. Whitmore, A. Sacra, D.J. Singel. J. Chem. Phys. 98, 5, 3656 (1993).
- [9] D.E. Budil, D.G. Park, J.M. Burlitch, R.F. Geray, R. Dieckmann, J.H. Freed. J. Chem. Phys. **101**, *5*, 3538 (1994).
- [10] H. Rager. Phys. Chem. Minerals 1, 4, 371 (1977).
- [11] В.Ф. Тарасов, Г.С. Шакуров, А.Н. Гавриленко. ФТТ 37, 2, 499 (1995).
- [12] Л.В. Бершов, Р.М. Минеева, А.В. Сперанский, С. Хафнер. ДАН СССР 260, *1*, 191 (1981).
- [13] Л.В. Бершов, Р.М. Минеева, А.В. Сперанский, С. Хафнер. Менарал. журн. 3, 62 (1981).
- [14] L.V. Bershov, J.-M. Gaite, S.S. Hafner, H. Rager. Phys. Chem. Minerals 9, 3–4, 95 (1983).
- [15] J.L. Mass, J.M. Burlitch, D.E. Budil, J.H. Freed, D.B. Barber, C.R. Pollock, M. Higuchi, R. Dieckmann. Chem. Mater. 7, 5, 1008 (1995).
- [16] N. Nishide, Y. Segawa, P.H. Kim, S. Namba, A. Masuyama. Resa Kagaku Kenkyu 7, 89 (1985).
- [17] N. Nishide, Y. Segawa, P.H. Kim, S. Namba. Resa Kagaku Kenkyu 8, 97 (1986).
- [18] A. Sugimoto, Y. Nobe, T. Yamazaki, Y. Yamaguchi, K. Yamagishi, Y. Segawa, H. Takei. Phys. Chem. Minerals 24, 5, 333 (1997).
- [19] A.V. Gaister, V.A. Smirnov, E.V. Zharikov. Proc. Fourth Int. Conf. "Single crystal growth and heat & mass transfer". SSC RF IPPE, Obninsk (2001). V. 2. P. 272.
- [20] I.D. Ryabov, A.V. Gaister, E.V. Zharikov. Bull. Liaison S.F.M.C. (Société Française de Minéralogie et de Cristallographie) 13, 3, 106 (2001).
- [21] T.-T. Chang. Magn. Reson. Rev. 9, 1-3, 65 (1984).
- [22] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling. Numerical Recipes. The Art of Scientific Computing. Cambridge University, Cambridge (1986). P. 523.
- [23] T.-T. Chang, D. Foster, A.H. Kahn. J. Res. Natl. Bur. Stand. 83, 2, 133 (1978).
- [24] C.E. Forbes. J. Chem. Phys. 79, 6, 2590 (1983).
- [25] D. Kay, G.L. McPherson. J. Phys. C: Solid State Phys. 14, 22, 3247 (1981).
- [26] H. Takeuchi, M. Arakawa. J. Phys. Soc. Jpn. 52, 1, 279 (1983).
- [27] M. Arakawa, H. Ebisu, H. Takeuchi. J. Phys. Soc. Jpn. 55, 8, 2853 (1986).
- [28] M.-L. Du, M.-G. Zhao. Solid State Commun. 76, 4, 565 (1990).
- [29] S.-Y. Wu, W.-C. Zheng. Physica **B262**, 1–2, 84 (1999).
- [30] М.Л. Мейльман, М.И. Самойлович. Введение в спектроскопию ЭПР активированных монокристаллов. Атомиздат, М. (1977).
- [31] J.R. Smyth, R.M. Hazen. Amer. Mineral. 58, 7-8, 588 (1973).
- [32] J.L. Mass, J.M. Burlitch, D.E. Budil, J.H. Freed, D.B. Barber, C.R. Pollock, M. Higuchi, R. Dieckmann. Chem. Mater. 7, 5, 1008 (1995).
- [33] W. Jia, H. Liu, S. Jaffe, W.M. Yen, B. Denker. Phys. Rev. B 43, 7, 5234 (1991).
- [34] T.J. Glynn, G.F. Imbusch, G. Walker. J. Lumin. 48-49, 2, 541 (1991).