04 Слой пространственного заряда электрического зонда с учетом столкновений

© В.И. Сысун, В.С. Игнахин

Петрозаводский государственный университет, 185910 Петрозаводск, Россия e-mail: vsysun@psu.karelia.ru

(Поступило в Редакцию 5 декабря 2016 г.)

Рассмотрен слой пространственного заряда цилиндрического зонда при средних давлениях. Получено точное решение уравнения Пуассона в приближении сильного поля с учетом столкновений с атомами. Предложены аппроксимирующее выражение для слоя пространственного заряда в цилиндрической геометрии в приближении отсутствия столкновений, дающее ошибку до 1% при $1 \le \frac{r_{sh}}{r_p} \le 200$, и упрощенное аппроксимирующее выражение для слоя пространственного заряда для промежуточных давлений, удобное для практических расчетов.

DOI: 10.21883/JTF.2017.08.44737.2126

Зондовая диагностика плазмы является достаточно простой методикой определения ее параметров. Зачастую на практике удается измерить только ионную и переходную части характеристики. Определение параметров плазмы по ионной ветви характеристики в сложных условиях (столкновения частиц, ионизация и рекомбинация в объеме и т.д.) требует выбора корректной теоретической модели, учитывающей соответствующие факторы. Одним из подходов для интерпретации ионной ветви и оценки величины области возмущения плазмы зондом является приближение слоя, когда возмущенная область разбивается на квазинейтральную плазму и слой пространственного заряда, в котором концентрации заряженных частиц сильно отличаются друг от друга. В плоском случае увеличение потенциала зонда приводит к росту толщины слоя, при этом ток на слой остается неизменным (ток насыщения). В более часто реализуемых на практике цилиндрическом и сферическом случаях рост слоя пространственного заряда приводит к увеличению собираемого ионного тока из квазинейтральной области за счет увеличения собирающей поверхности. При низких давлениях, когда толщина слоя много меньше длины свободного пробега ионов $d \ll \lambda$, слой можно рассчитывать по Ленгмюру, как для вакуумного диода [1-3]. Для толщины слоя решение уравнения Пуассона дает точное решение

$$d^2 = \frac{4\sqrt{2}\varepsilon_0}{9} \sqrt{\frac{e}{m}} \frac{U_p^{3/2}}{j_p}.$$
 (1)

Численные расчеты Ленгмюра для цилиндрического слоя можно аппроксимировать весьма близким в широком диапазоне значений $\frac{r_{sh}}{r_p}$ аналитическим выражением

$$\frac{r_{sh}}{r_p} - 1 = \sqrt{\beta^2} + 0.1112 \left(\beta^2\right)^{0.9},\tag{2}$$

где

$$\beta^2 = \frac{4\sqrt{2}\varepsilon_0}{9}\sqrt{\frac{e}{m}}\frac{U_p^{3/2}}{j_p r_p^2}.$$

В табл. 1 приведены значения $\frac{r_{sh}}{r_p}$, полученные численным решением уравнения Пуассона [1] и аналитическим приближением (2).

Приближение (2) дает ошибку до 1% при $1 \le \frac{r_{sh}}{r_p} \le 200$, что точнее, чем полиноминальные разложения для β^2 в виде ряда Маклорена по степеням $\ln \frac{r}{r_0}$, предложенные в работах [1,2].

В противоположном случае $d \gg \lambda_i$ слой рассчитывается в двух приближениях: режим сильного поля, когда скорость дрейфа ионов пропорциональна корню из напряженности электрического поля $\upsilon \sim \sqrt{E}$ (аномальный дрейф), и режим слабого поля при $\upsilon = \mu E$ (нормальный режим постоянной подвижности μ).

Режим слабого поля в слое может осуществляться при высоких давлениях. Решение уравнения Пуассона для плоской и цилиндрической геометрий соответственно имеют вид [4]:

$$d = \left(\frac{9\varepsilon_{0}\mu U_{p}^{2}}{8j_{p}}\right)^{\frac{1}{3}},$$
$$U_{p}^{2} = \frac{j_{p}r_{p}}{\mu\varepsilon_{0}} \left[\frac{r_{s}}{2}\ln\frac{r_{s} + \sqrt{r_{s}^{2} - r^{2}}}{r_{s} - \sqrt{r_{s}^{2} - r^{2}}} - \sqrt{r_{s}^{2} - r^{2}}\right]^{2}, \quad (3)$$

где r_S — радиус слоя в бесстолкновительном режиме.

Однако при высоких давлениях существенную роль играет диффузия и, как отмечено в [4], применение этих формул на практике приводит к существенным ошибкам.

Режим сильного поля осуществляется при средних давлениях, когда на длине пробега ион набирает скорость, превышающую тепловую. Решение для толщины слоя пространственного заряда получено только в плоской геометрии [4,5]

$$d = B \left(\frac{U_p^3 \lambda_i}{j_p^2}\right)^{\frac{1}{5}}, \quad \text{где} \quad B = \frac{1}{3} \left(\frac{10^3 \varepsilon_0^2 e}{\pi M}\right)^{\frac{1}{5}}.$$
 (4)

Таблица 1. Сравнение результатов, полученных численным решением уравнения Пуассона [1] и аналитическим приближением (2)

β^2	0.0098	0.0385	0.1485	0.8554	9.89	36.98	115.65	214.42	582	1175
$\frac{r_{sh}}{r_p}$ [1]	1.1	1.2	1.4	2.0	5.0	10.0	20	30	60	100
$\frac{r_{sh}}{r_p}$ (2)	1.101	1.202	1.405	2.015	5.025	9.97	19.81	29.7	59.6	100.2

Таблица 2. Сравнение результатов, полученных точным решением (12) и аналитическим приближением (13)

U'	0.001 670	0.052 308	0.16 194	0.6990	3.74 586	18.1069	49.894	127.86	215.359	310.133	409.96
$\frac{r_s}{r_p}$ (12)	1.1	1.2	1.4	2.0	4.0	10.0	20	40	60	80	100
$\frac{r_s}{r_p}$ (13)	1.105	1.204	1.41	2.029	4.07	10.07	19.95	39.76	59.75	79.91	100.17

Здесь M и λ_i — масса и длина пробега тока; j_p , U_p — плотность ионного тока на зонд и напряжение между зондом и границей слоя.

Для цилиндрического и сферического слоев аналитическое решение отсутствует и в [6] предлагается приближенная оценка:

$$\frac{r_s}{r_p} \approx \left(1 + \frac{d}{r_p}\right) \left(1 + \alpha \frac{d}{r_p}\right),\tag{5}$$

где $\alpha = 0$ — для плоского, $\alpha = 0.05$ — для цилиндрического и $\alpha = 0.075$ — для сферического слоев.

В настоящей работе получено точное решение уравнения Пуассона для слоя пространственного заряда в режиме сильного поля цилиндрического зонда, наиболее часто применяемого на практике. Запишем уравнение Пуассона для цилиндрической геометрии

$$\frac{1}{r}\frac{d}{dr}\left(r\frac{dU}{dr}\right) = -\frac{\rho}{\varepsilon_0} = -\frac{j_p r_p}{\varepsilon_0 \upsilon r}.$$
(6)

Здесь j_p — плотность ионного тока на зонд, v — дрейфовая скорость ионов.

Согласно [7], в сильных полях

$$\upsilon = \sqrt{\frac{2e\lambda_i E}{\pi M}} = K\sqrt{E}.$$
(7)

Подставив значение скорости в (6), будем иметь

$$\left(r\frac{dU}{dr}\right)^{\frac{1}{2}}\frac{d}{dr}\left(r\frac{dU}{dr}\right) = -\frac{j_p r_p r^{1/2}}{K\varepsilon_0},\tag{8}$$

$$\left(r\frac{dU}{dr}\right)^{\frac{1}{2}} = \frac{j_p r_p}{K\varepsilon_0} \left(r_s^{3/2} - r^{3/2}\right). \tag{9}$$

При интегрировании в (8) использовано условие равенства нулю напряженности поля на границе слоя. Выделяя $\frac{dU}{dr}$ в (9) и интегрируя при начальных условиях $r = r_S$, U = 0, получим

$$U = -\left(\frac{j_{p}r_{p}}{\varepsilon_{0}K}\right)^{\frac{2}{3}} \int_{r}^{r_{\text{layer.}}} \frac{\left(r_{S}^{3/2} - r^{3/2}\right)^{\frac{2}{3}}}{r} dr.$$
(10)

Введя замену переменных

$$r_{s}^{3/2} - r^{3/2} = r_{s}^{3/2} y^{3}, \quad y = \frac{\left(r_{s}^{3/2} - r^{3/2}\right)^{\frac{1}{3}}}{r_{s}^{1/2}}, \quad \frac{dr}{r} = \frac{2y^{2}dy}{y^{3} - 1}$$

получим

$$U = -2r_S \left(\frac{j_p r_p}{\varepsilon_0 K}\right)^{\frac{2}{3}} \int_0^y \frac{y^4 dy}{1 - y^3}.$$
 (11)

Далее используем табличные значения интегралов [8]:

$$\int \frac{y^4 dy}{1 - y^3} = -\frac{y^2}{2} + \int \frac{y dy}{1 - y^3},$$
$$\int \frac{y dy}{1 - y^3} = -\frac{1}{6} \ln \frac{(1 - y)^2}{1 + y + y^2} - \frac{1}{\sqrt{3}} \operatorname{arctg} \frac{2y + 1}{\sqrt{3}}$$

Интеграл в (11) будет равен

$$\frac{-y^2}{2} - \frac{1}{6} \ln \frac{(1-y)^2}{1+y+y^2} - \frac{1}{\sqrt{3}} \arctan \frac{2y+1}{\sqrt{3}} + \frac{1}{\sqrt{3}} \arctan \frac{1}{\sqrt{3}}$$

Окончательно для напряжения на зонде получим

$$U_{p} = -\left(\frac{j_{p}}{\varepsilon_{0}K}\right)^{\frac{2}{3}} r_{p}^{5/3} \frac{r_{s}}{r_{p}} \times \left[-y_{p}^{2} - \frac{1}{3} \ln \frac{(1 - y_{p})^{2}}{1 + y_{p} + y_{p}^{2}} - \frac{2}{\sqrt{3}} \operatorname{arctg}\left(\frac{\sqrt{3}y_{p}}{2 + y_{p}}\right)\right],$$
$$y_{p} = \left[1 - \left(\frac{r_{p}}{r_{s}}\right)^{\frac{2}{3}}\right]^{\frac{1}{3}}.$$
(12)

Результаты расчета по формуле (12) зависимости $\frac{r_S}{r_p}$ от относительной величины

$$U' = -\frac{U_p}{r_p^{5/3} \left(\frac{j_p}{\varepsilon_0 K}\right)^{\frac{2}{3}}}$$

приведены на рисунке и в табл. 2.

1259

Журнал технической физики, 2017, том 87, вып. 8

В табл. 2 также приведены значения по аппроксимирующей формуле

$$\frac{r_s}{r_p} - 1 = \frac{U'^{0.6}}{0.865} + 0.138U' = \frac{d}{r_p} + 0.1084 \left(\frac{d}{r_p}\right)^{\frac{5}{3}},$$
(13)

где *d* определяется по (4). Как видно из табл. 1, приближение (13) весьма точное для принятых значений $\frac{r_s}{r_p} \leq 100$. На рисунке кривые, рассчитанные по (12) и (13), неразличимы. Осуществим переход в (12) к плоской геометрии при $r_S - r_p$, т. е $y \ll 1$.

Раскладывая логарифм и арктангенс в ряд при малых значениях y и ограничиваясь членами до y^5 включительно, из (12) получается формула (4) при $d = r_S - r_p$.

Сравнивая полученные численным расчетом результаты с формулой (5), можно отметить, что коэффициент α для цилиндрического слоя близок к 0.036 до $\frac{r_s}{r_p} \leq 40$. Однако более точные значения дает формула (13).

Приближения (12) и (13) применимы также для любых разрядных промежутков с носителями заряда одного знака при наличии столкновений с атомами.

Толщина слоя пространственного заряда уменьшается с увеличением зондового тока, определяемого концентрацией плазмы, и для слоя может выполняться режим промежуточных давлений $d \sim \lambda_i$ даже при $r_p \gg \lambda_i$. В работе [9] для плоского слоя численно решалась система уравнений Пуассона и движения ионов. Полученные результаты аппроксимировались достаточно точным приближением

$$\frac{d}{d_L} \approx \left(0.3 \frac{d_L}{\lambda_i} + 1\right)^{-1/5},\tag{14}$$

где d_L — толщина слоя по Ленгмюру (1). По сути формула (14) есть результат сложения обратных величин d_L и d_S в пятой степени

$$d^{-5} = d_L^{-5} + d_S^{-5}, (15)$$

где d_S — толщина плоского слоя при средних давлениях (4). Для цилиндрического слоя такое же приближение

дает формула

$$\frac{r_{sh}}{r_p} - 1 = \left[\left(\frac{r_{sh}}{r_p} - 1 \right)^{-5} + \left(\frac{r_s}{r_p} - 1 \right)^{-5} \right]^{-1/5}.$$
 (16)

Здесь $\frac{r_{sh}}{r_p} - 1$ и $\frac{r_s}{r_p} - 1$ даются формулами (2) и (13).

Список литературы

- Langmuir I., Blodgett K.B. // Phys. Rev. 1923. Vol. 22. N 4. P. 347–357.
- [2] Беллюстин С.В. // ЖЭТФ. 1939. Т. 9. С. 840-856.
- [3] Сысун В.И., Игнахин В.С. // ЖТФ. 2012. Т. 82. Вып. 7. С. 60–65.
- [4] Грановский В.Л. Электрический ток в газе: Установившийся ток. М.: Наука, 1971. 543 с.
- [5] Дроздов В.И. // ЖТФ. 1946. Т. 16. Вып. 16. С. 407-412.
- [6] Захарова В.М., Каган Ю.М., Мустафин К.С., Перель В.И. // ЖТФ. 1960. Т. 30. Вып. 4. С. 442–449.
- [7] Мак Даниель И., Мезон Э. Подвижность и диффузия ионов в газах / Пер. с англ. М.: Мир, 1976. 422 с.
- [8] Рыжик И.М., Градитейн И.С. Таблицы интегралов, сумм, рядов и произведений. М.-Л.: Гостехиздат, 1963. 462 с.
- [9] Сысун В.И. Зондовые методы диагностики плазмы. Петрозаводск: Изд-во Петрозаводского у-та, 1997. 60 с.