03

Управление воздушным потоком вокруг цилиндрической модели с помощью вращающейся электрической дуги во внешнем магнитном поле. Часть II

© Д.С. Мунхоз,¹ И.П. Завершинский,³ А.И. Климов,¹ П.Н. Казанский,¹ Н.Е. Молевич,^{2,3} И.А. Моралев,¹ Л.Б. Поляков,¹ Д.П. Порфирьев,^{2,3} С.С. Сугак,³ Б.Н. Толкунов¹

¹ Объединенный институт высоких температур РАН, 124412 Москва, Россия ² Физический институт им. П.Н. Лебедева РАН (филиал),

443011 Самара, Россия ³ Самарский государственный аэрокосмический университет им. С.П. Королева, 443086 Самара, Россия

e-mail: dasmunhoz@yahoo.com.br

(Поступило в Редакцию 25 октября 2016 г.)

Изучено влияние закрутки пристеночного газового потока вокруг цилиндрической модели, индуцированной магнитно-плазменным актуатором, на ее обтекание внешним дозвуковым газовым потоком.

Введение

В предыдущей работе [1] были описаны результаты экспериментальных измерений по изучению структуры и динамики пристеночного завихренного газового потока вокруг цилиндрической модели, индуцированного вращающейся электрической дугой в магнитном поле, без внешнего потока. В настоящей работе изучалось влияние закрутки пристеночного газового потока вокруг цилиндрической модели, индуцированной магнитно-плазменным актуатором (МГПА), на ее обтекание внешним дозвуковым газовым потоком (M < 0.2, $Re < 9 \cdot 10^4$). В эксперименте измерялись: профиль потока вокруг цилиндра, аэродинамические силы, действующие на цилиндр (сила сопротивления и подъемная сила). Для измерения профиля скорости возмущенного потока вокруг цилиндра использовались высокоскоростная съемка, теневой и PIV-методы.

Для изучения обтекания цилиндра с работающим МГПА использовалась модель с четырьмя разрядными промежутками (рис. 1). В этой модели плазма максимально покрывала ее поверхность, что позволило измерить аэродинамические силы, действующие на эту модель.

Режим вращения дугового разряда во внешнем магнитном поле на цилиндрической модели, обтекаемой воздушным потоком

На рис. 2 показан интегральный снимок обтекания цилиндрической модели с вращающейся дугой и четырьмя разрядными промежутками. Обостритель разряда на модели располагается в положении угла атаки $\alpha = 5^{\circ}$ по отношению к направлению воздушного потока. Величина максимального импульсного тока на поверхно-

сти модели достигает значения порядка $I_{\rm max} \sim 16 \, {\rm A}$ в этом эксперименте. Длительность силового импульса составляет $T_i < 3 \, {\rm ms}$. Характерное число Рейнольдса набегающего потока Re $\approx 6 \cdot 10^3 \, (V_\infty \approx 5 \, {\rm m/s})$.

Экспериментальные данные по измерению линейной скорости вращающейся дуги по поверхности обтекаемого цилиндра, полученные в этом эксперименте, приведены на рис. 3. Из рисунка следует, что максимальная достигнутая скорость дуги составляет $V_i \approx 20$ m/s при величине максимального импульсного тока порядка 16 А. Обнаружено, что значение скорости вращения дуги без внешнего потока и с ним близки друг другу.

PIV-измерения поля течения вокруг обтекаемой модели с работающим МГПА

Усредненное поле скоростей вокруг цилиндрической модели с работающим МГПА обтекаемым внешним потоком со скоростью $V_{\infty} \approx 6 \,\mathrm{m/s}~(\mathrm{Re} \approx 7.4 \cdot 10^3)$, показано на рис. 4. В этих экспериментах использовался источник питания с постоянным током $I_d = 0.64 \,\mathrm{A}$. Из рисунка следует, что в этом эксперименте реализуется значительное изменение положения точки отрыва потока на модели. Смещение точки отрыва потока может достигать угла $\Delta \theta = 40^\circ$.

Для того чтобы изучить влияние МГПА на отрыв потока, на модели использовался режим внешней синхронизации видеосъемки и PIV-установки. Измеренная частота вращения дугового разряда в этом эксперименте составляла $F_r \approx 290$ Hz. В этом эксперименте использовался импульсно-периодический разряд со следующими характеристиками: $F_i = 7$ Hz, $U_{\text{max}} < 15$ kV, $I_{\text{max}} < 30$ A, $P_{\text{max}} < 70$ kW, $P_{\text{med}} = 200$ W. На рис. 5 показаны типичные сигналы напряжения и тока, измеренные на разрядном промежутке МГПА. Скорость воздушного

Рис. 1. Общий вид и схема цилиндрической модели с многозвенным МГД актуатором: *1* — кварцевая трубка, *2* — медное кольцо, *3* — обостритель, *4* — диэлектрическая гайка и шпилька из полиамида, *5* — Nd–Fe–B-магниты, *6* — соединяющая перемычка между электродными кольцами.

Рис. 2. Интегральный кадр обтекания модели с вращающейся дугой с четырьмя разрядными промежутками (*a*). Скорость воздушного потока порядка Re $\sim 6.2 \cdot 10^3 (V_{\infty} \sim 5 \text{ m/s})$. Схема расположения обострителей на цилиндрической модели в позиции $\alpha = 5^{\circ}$ или $\alpha = 90^{\circ}$ по отношению к направлению воздушного потока (*b*).

потока составляла $\mathrm{Re} = 8 \cdot 10^3~(V_\infty = 6.5~\mathrm{m/s}).$ Обостритель находился в положении $\alpha = 5^{\circ}$. Поле скоростей вблизи обтекаемой цилиндрической модели с работающим МГПА во внешнем потоке в этом режиме показано на рис. 6. Количество измерений для усреднения каждой РІV-картины — 70. При этих условиях обнаружено значительное влияние вращающейся дуги на обтекание 6 показано поле течения самой модели. На рис. вокруг обтекаемой модели с МГПА при завершении второго оборота дуги вокруг модели. В этом режиме возмущается все поле скоростей вокруг модели, в том числе в ее головной части и донной частях. На рисунке имеется также синхронное видеоизображение вращающегося разряда в соответствующий момент времени. Из анализа этого рисунка также следует, что изменение циркуляции потока вокруг модели происходит как в головной части дугового разряда (1), так и в его хво-

стовой части (2). Отметим, что зона стимулированной циркуляции пристеночного потока имеется и в донной области модели. При этом практически отсутствует отрыв потока в этой области вплоть до углов $\theta \approx 260^{\circ}$. Этот результат позволяет определить усредненное поле индуцированной завихренности вокруг модели в данном эксперименте. Анализ теневых снимков, температуры дуги [2–5] и PIV-кадров позволяет сделать вывод, что во всем слое пристеночного потока вокруг цилиндра, за исключением зоны вблизи электрической дуги, реализуется режим слабо сжимаемого течения (имеются малые изменения плотности, $\delta \rho / \rho_0 \ll 1$, где ρ_0 — плотность воздуха, и мало изменение скорости индукционного потока, $\delta V / V_0 \ll 1$, где V_0 — скорость потока).

Оценим стимулированную циркуляцию потока вблизи цилиндра с работающим МГПА в этом эксперименте (рис. 6). Величина стимулированной циркуляции Г

Рис. 3. Зависимость линейной скорости вращающейся дуги V_d на поверхности от величины разрядного тока I_d .

вблизи поверхности цилиндра определялась с помощью следующего выражения [1]:

$$\Gamma = \int \int_{S} (\nabla \times V) dS$$

=
$$\int_{0}^{2\pi} \int_{R_{0}}^{(R_{0}+h)} (\nabla \times V) R_{0} d\theta dr \approx 0.095 \,\mathrm{m}^{2}/\mathrm{s}, \qquad (1)$$

где $R_0 = 10 \text{ mm}$ и h = 4 mm.

Значение стимулированной завихренности потока вокруг модели ([1], (2)) получилось равной $\xi \approx 2000 \, {\rm s}^{-1}$, где

$$\xi = \nabla \times V = \operatorname{Rot} V = 2\omega. \tag{2}$$

Такое большое значение завихренности ξ по сравнению с работой [1] было получено вследствие использования разряда с высокой величиной импульсного тока в эксперименте.

Измерение силовых характеристик модели

Измерения аэродинамических характеристик цилиндрической модели с работающим МГПА проводились на аэродинамической трубе АДТ-2 [1]. На этой модели размещались четыре разрядных промежутка. Параметры настоящих экспериментов были следующие: импульсный ток $I_{\rm max} \approx 30$ А, длительность импульса $T_i < 1$ ms, частота повторения импульсов $F_i < 1200$ Hz, напряжение разряда $U_d < 4.4$. kV, скорость воздушного потока изменялась от 10 до 74 m/s, инициатор разряда располагался в положениях $\alpha = 5^{\circ}$ или 90°.

Было обнаружено, что:

1. Подъемная сила была практически равной нулю, когда МГПА не был включен.

2. Сила сопротивления не изменялась при включении МГПА (с точностью до 10%).

3. Подъемная сила достигала бо́льших значений L = 0.37 N при включении МГПА.

Типичные сигналы с датчика подъемной силы показаны на рис. 7, a. Обнаружено, что величина подъемной силы L для модели с работающим МГПА всегда отлична от нуля. Ее величина зависит от величины стимулированной циркуляции пристеночного потока на модели.

При положении инициатора на цилиндре $\alpha = 90^{\circ}$ величина подъемной силы увеличивалась до L = 0.45 N.

Оценим величину безразмерного коэффициента подъемной силы

$$C_{L,\exp} = L/(\rho_{\infty}V_{\infty}^2 w d/2) \approx 0.3, \qquad (3)$$

где размер плазменной зоны между четырьмя электродными промежутками на цилиндре w = 40 mm, диаметр модели d = 20 mm, величина измеренной подъемной силы L = 0.37 N и $V_{\infty} = 52$ m/s (Re $\approx 6.4 \cdot 10^4$).

При положении инициатора на цилиндре $\alpha = 90^{\circ}$ оценка величины C_L достигает величины 0.6.

Обсуждение полученных результатов

На рис. 6 отчетливо видно, что имеется несимметричное обтекание цилиндра, вызванное индуцированной циркуляцией потока вокруг модели, созданного вращающейся электрической дугой. Такое несимметричное обтекание модели внешним газовым потоком может привести к возникновению боковой подъемной силы цилиндра. Практическое отсутствие отрыва потока на модели и слабо сжимаемый режим течения пристеночного газа в этом эксперименте [1] позволяют сделать упрощенные оценки величины подъемной силы (модифицированной силы Жуковского) и величины коэффициента подъемной силы $C_{l,t}$ за счет создания стимулированной циркуляции Γ на основании формулы из работы [6]:

$$C_{L,t}(t) = 2\Gamma(t)/(V_{\infty}d) + \{2R[d\Gamma(t)/dt]\}/(V_{\infty}^2) + C_{lw}^{(v)},$$
(4)

где первый член — квазистационарный коэффициент подъемной силы $C_{L,u}$, второй — нестационарная сила и третий — вихревая сила. Будем считать, что $C_{L,u}$ можно рассматривать как первое приближение для определения полного коэффициента подъема силы цилиндрической модели. Его величина достигает значения

$$C_{L,u} = 2\Gamma/(V_{\infty}d) \approx 0.2, \tag{5}$$

где $\Gamma = 0.095 \, {
m m^2/s} \; (3), \, V_\infty = 42 \, {
m m/s} \; ({
m Re} \approx 5.2 \cdot 10^4)$

Рис. 4. Среднее поле скоростей вокруг цилиндрической модели, измеренное PIV-методом. $a - \text{Re} \approx 7.4 \cdot 10^3 \ (V_{\infty} \approx 6 \text{ m/s}); b -$ режим с работающим МГПА, разряд постоянного тока $I_d \approx 0.64 \text{ A}.$

Рис. 5. Импульсный ток I_d (1) и напряжение U_d (2) в МГПА.

Удивительно, что величина расчетного значения $C_{L,u}$ вычисленная по формуле (5) оказалась близкой к экспериментальному значению $C_{L,exp} \approx 0.3$. Их близкие значения позволяют предположить, что наши допущения, используемые при оценке $C_{L,u}$, являются правдоподобными. Детальное изучение этого вопроса будет проведено в наших следующих работах.

Можно оценить величину безразмерного коэффициента числа Струхаля в этом эксперименте

$$St^* = fD/V = 0.4$$
 (6)

при размере плазменной зоны между четырьмя электродными промежутками на цилиндре w = 40 mm, диаметре модели D = 20 mm, положении инициатора разряда $\alpha = 5^{\circ}$, величине подъемной силы L = 0.37 N, частоте повторения разрядных импульсов $F_i \approx 1$ kHz и Re $\approx 6.4 \cdot 10^4$. ($V_{\infty} = 52$ m/s).

При положении инициатора $\alpha = 90^{\circ}$ и величине $C_L \approx 0.6$ число Струхаля достигает St^{*} = 0.25.

Отсюда следует, что экспериментальные значения чисел Струхаля $St^* = 0.25 - 0.4$ близки к нижнему кри-

Рис. 6. Усредненная PIV-картина поля скоростей вокруг цилиндра с вращающейся плазменной дугой. Характерное число Рейнольдса набегающего потока $\text{Re} = 8 \cdot 10^3 \ (V_{\infty} \approx 6.5 \text{ m/s})$. Время задержки после включения разряда $T_2 = 4 \text{ ms}$.

Рис. 7. Подъемная сила *L* на цилиндрической модели при включении МПА (t < 3.5 s и t > 9 s) и его выключении (5.5 s < t < 7 s) и $V_{\infty} = 42$ m/s (*a*). Зависимость коэффициента подъемной силы C_L от числа Струхаля St^{*} импульсно-периодического разряда (*b*).

тическому его значению $St^* = 0.3 - 0.5$, при котором происходит отрыв потока на цилиндре и формирование крупномасштабных вихревых возмущений [7]. Поэтому в наших экспериментах с работающим МГПА наблюдается формирование несимметричных крупномасштабных вихрей за обтекаемым цилиндром, которые могут приводить к несимметричному обтеканию самой модели (рис. 4, 6).

Сравнение полученных результатов с численным расчетом

В работе [4] были проведены теоретические расчеты обтекания цилиндра с цилиндрической зоной энерго-

выделения малого диаметра, вращающейся вдоль ее поверхности, при условиях близких к настоящей работе, а именно числах Маха набегающего потока M = 0.15 и 0.21 и погонной мощности 100 W/cm. При этом движущаяся электрическая дуга во внешнем магнитном поле моделировалась этой зоной теплового энерговыделения. Из расчетов следует, что область энерговыделения приводит к нарушению симметрии обтекания цилиндрической модели, появлению стимулированной циркуляции вокруг модели и подъемной силы. Там же было получено значение усредненной по времени стимулированной циркуляции потока вблизи модели.

Анализ наших экспериментальных результатов и теоретических результатов [8] показывает, что они качественно близки друг другу, но имеются количественные различия между ними. Эти различия могут быть обусловлены разными причинами, в том числе трехмерным характером структуры электрической дуги во внешнем потоке, упрощенным моделированием канала электрической дуги и его движением во внешнем магнитном поле.

В заключении можно отметить, что созданный МГПА способен создавать вихревой пристеночный поток вокруг цилиндрической модели, который влияет на ее обтекание внешним дозвуковым потоком (M < 0.2, Re $< 9 \cdot 10^4$). Это утверждение подтверждается результатами прямых измерений с помощью PIV и теневого методов, весовыми измерениями, а также результатами теоретического расчета [4]. Обнаружено что появление подъемной силы цилиндра происходит за счет создания стимулированной циркуляции потока вокруг него [4]. Величина подъемной силы в эксперименте достигала максимальных значений порядка L = 0.37 - 0.45 N. При этом величина коэффициента подъемной силы C_L достигала 0.3 - 0.6.

Работа поддержана Международным фондом CNPq, Conselho Nacional de Desenvolvimento Cienífico e Tecnológico (Бразилия), в рамках Программы "Наука без границ", 2012–2015 гг., грант CNPq 200205/2012-9.

Список литературы

- Мунхоз Д.С., Битюрин В.А., Климов А.И., Казанский П.Н., Моралев И.А., Поляков Л.Б., Толкунов Б.Н. // ЖТФ. 2017. Т. 83. Вып. 7.
- [2] Автореф. канд. дис. Моралев И.А. // Взаимодействие газоразрядной плазмы с закрученными течениями, кандидатская диссертация. ОИВТ РАН. 2010.
- [3] Автореф. канд. дис. Бочаров А.Н. // Физические и численные модели магнитоплазменной аэродинамики. ОИВТ РАН, 2011.
- [4] Битюрин В.А., Завершинский И.П., Климов А.И., Молевич Н.Е., Моралев И.А., Мунхоз Д.С., Поляков Л.Б., Порфирьев Д.П., Судак С.С. // ТВТ. 2016. Т. 54. № 4. С. 1–4.
- [5] Bityurin V., Bocharov A. // Proc. of the 39th Aerospace Sciences Meeting and Exhibit Reno. USA, AIAA-2001-0793.
- [6] Yuan J.K., Olinger D.J. // Circulation methods for unsteady aerodynamics flows, 20th AIAA Applied Aerodynamics Conf. Sessions of Unsteady Aerodynamics. St. Louis, 2002. AIAA-2002–3057.
- [7] Автореф. канд. дис. Казанский П.Н. // Управление потоком вблизи аэродинамических тел с помощью плазменного высокочастотного актуатора. МЭИ 2012.
- [8] Leroy A., Podlinski J., Devinant P., Aubrun S. // Proc of the Abstract 6th European Conf. for Aeronautics and Space Sciences (EUCASS). Krakow. 2015.