Влияние корреляции между подсистемами мелких и глубоких метастабильных уровней на экситонные спектры фотолюминесценции в *n*-типе GaAs

© В.В. Криволапчук, М.М. Мездрогина, Н.К. Полетаев

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

E-mail: vlad.krivol@pop.ioffe.rssi.ru

(Поступила в Редакцию 28 февраля 2002 г.

В окончательной редакции 19 апреля 2002 г.)

Исследованы экситонные спектры фотолюминесценции эпитаксиальных слоев GaAs. Показано, что относительное расположение мелких и глубоких центров в тетраэдрической решетке приводит к изменению кинетики затухания и формы линии излучения D^0 , x (экситон, связанный на мелком нейтральном доноре). Причиной такого изменения спектров экситонной фотолюминесценции является дисперсия энергии связи экситонов мелких доноров E_D , которая обусловлена влиянием подсистемы глубоких метастабильных дефектов в кристаллах GaAs *n*-типа.

В последние годы значительное внимание уделяется исследованию процессов упорядочения и корреляции между подсистемами мелких и глубоких дефектов. Процессы упорядочения проявляются как в изменении концентрации введенной в полупроводник примеси, так и во флуктуации состава [1,2].

Известно, что при низких температурах экситонные состояния являются конечным этапом энергетической релаксации электронных возбуждений, на которую оказывают существенное влияние процессы взаимодействия экситонов с дефектами и примесями. Характеристики спектра (наличие тех или иных линий, их форма, интенсивность, полуширина, время затухания) экситонной люминесценции достаточно полно отражают динамику неравновесных носителей заряда в кристаллах GaAs и поэтому позволяют судить о влиянии на нее процессов с участием разнообразных дефектов в материале.

Целью настоящей работы является исследование связи между подсистемами мелких и глубоких примесей и влияния этой взаимносвязанной конфигурации дефектов на особенности экситонных спектров в эпитаксиальных слоях арсенида галлия.

1. Образцы и схема эксперимента

В работе исследовались эпитаксиальные слои GaAs *n*-типа, выращенные методом хлорид-гидридной эпитаксии на арсенид-галлиевых подложках. Концентрация мелких примесей $N_{\rm eff}$ ($N_D - N_A$) в исследованных образцах, измеренная C-V методом, составляла 10^{13-14} cm⁻³. Концентрация глубоких уровней, определенная методом DLTS, не превышала концентрации мелких. При исследовании спектров фотолюминесценции (в геометрии на отражение, причем плоскость эпитаксиального слоя была нормальна к оптической оси спектрометра) образцы погружались в жидкий откачанный гелий с T = 1.8 К. Возбуждение ФЛ осуществлялось светом непрерывного Не-Nе лазера ($\lambda = 6328$ Å), сфокусированным в пятно диаметром около 150 μ m. Кинетика затухания ФЛ исследовалась при возбуждении полупроводниковым импульсным лазером ($\lambda = 7980$ Å). Регистрация спектров и кинетики ФЛ осуществлялась методом времякоррелированного счета фотонов с использованием двойного дифракционного спектрометра ДФС-52. Для корректного сравнения спектров излучения разных образцов контролируемые условия эксперимента (температура, плотность возбуждения, спектральное разрешение, угол падения лазерного луча) поддерживались постоянными.

2. Результаты измерений

При уровне возбуждения, обеспечивающем число рождаемых электронно-дырочных пар, сопоставимое с $N_{\rm eff}$, в спектре излучения эпитаксиальных слоев *n*-GaAs присутствуют следующие спектральные компоненты: поляритонное излучение свободных экситонов; линия экситона, связанного на мелком нейтральном доноре (D^0, x) ; линия, отвечающая рекомбинации электрона нейтрального донора с дыркой в валентной зоне (D^0, h) , а при увеличении степени компенсации мелкими акцепторами, и линия экситона, связанного на нейтральном акцепторе (A^0, x) (рис. 1). При этом линия (D^0, x) является самой интенсивной для всех образцов. Заметное различие спектров исследованных образцов заключается в отличающихся (на порядок) значениях интенсивности, в величине полуширины (FWHM = 0.15-0.30 meV) линии D^0 , x и ее спектральном положении (рис. 2).

3. Обсуждение

Для понимания взаимосвязи между подсистемами мелких и глубоких уровней рассмотрим, каким образом спектр излучения связанных и свободных экситонов (поляритонов) в кристалле зависит от наличия дефектов.

Рис. 1. Характерный вид спектра фотолюминесценции *n*-GaAs в экситонной области при T = 1.8 K.

Рис. 2. Сдвинутые как целое спектры фотолюминесценции двух разных образцов *n*-GaAs, полученные при одинаковых условиях возбуждения и регистрации.

В самом общем случае интенсивность излучения (I_r) при уровне возбуждения $g = f(I_{ex})$ зависит от полного времени жизни неравновесных носителей (экситонов) τ .

В свою очередь полное время жизни определяется временем излучательной (τ_r) и безызлучательной (τ_{nr}) гибели экситонов (носителей): $1/\tau = 1/\tau_r + 1/\tau_{nr}$. В результате выражение для интенсивности излучения принимает вид $I_r = g/(1 + \tau_r/\tau_{nr})$.

Поскольку для данного материала (GaAs) и наших условий эксперимента $\tau_r = \text{const}$, интенсивность зависит от τ_{nr} . Безызлучательное время гибели τ_{nr} определяется захватом (сечение захвата — σ_i) экситонов в глубокие состояния (с концентрацией — N_i), существование которых обусловлено наличием разнообразных дефектов: $1/\tau_{nr} = \sum_i v \sigma_i N_i^{NR}$ (здесь v — тепловая скорость, а i — тип дефекта). Отсюда следует, что при одинаковых условиях эксперимента образцы с разной интенсивностью ФЛ отличаются, прежде всего, концентрацией центров безызлучательной рекомбинации, которым отвечают глубокие уровни. Чем меньше концентрация центров (глубоких уровней) безызлучательной гибели, тем больше интегральная интенсивность спектра ФЛ и наоборот.

В дальнейшем основное внимание будет уделяться анализу спектра излучения экситонов, связанных на мелких донорах (D^0, x) . Из изложенного выше следует, что интенсивность излучения с участием мелких центров должна зависеть от концентрации мелких и глубоких центров, их взаимного расположения в решетке и, кроме того, от транспорта свободных экситонов к центрам захвата (мелким и глубоким). Поэтому необходимо рассмотреть, чем определяется относительный вклад в наблюдаемый спектр излучения свободных и связанных экситонов.

Интенсивность спектра излучения свободных экситонов (поляритонов) в упрощенном виде можно представить в виде [3]

$$I(E) \approx \sum_{r} T_r(E) F(x, E)_{x=0},$$

где $T_r(E)$ — коэффициент преобразования поляритонов во внешнее излучение на границе кристалла (коэффициент пропускания); F(x, E) — функция пространственно-энергетического распределения поляритонов в кристалле. Отсюда следует, что для данного материала поляритонная люминесценция определяется в основном функцией пространственно-энергетического распределения F(x, E). В первом приближении функцию пространственно-энергетического распределения можно записать в факторизованном виде — $F(x, E) = f(E)^{*}C(X)$. Для описания спектра ФЛ необходимо определить вид F(x, E) в каждом конкретном случае, что является очень трудной задачей. Однако для дальнейшего анализа спектров излучения GaAs достаточно заметить, что как f(E), так и C(X) определяются величиной полного времени жизни экситонов — τ . По мере увеличения времени жизни т изменяется не только энергетическая, но и пространственная функция распределения. При этом максимум энергетической

функции распределения поляритонов f(E) сдвигается в область резонанса (E_{LT}) , а максимум пространственной функции C(x) смещается в глубину кристалла в силу увеличения диффузионной длины как свободных экситонов $L = (1/3 \langle v \rangle^2 \tau_k \tau)^{1/3}$, так и носителей [4]. Это приводит к тому, что при большем τ (и, следовательно, *L*) увеличивается объем образца, занятый свободными экситонами, который содержит большее число нейтральных доноров D^0 . В результате захвата свободных экситонов на мелкие нейтральные доноры D^0 формируется линия излучения D^0, x , интенсивность которой определяется количеством нейтральных доноров. Относительная интенсивность спектральных линий свободных и связанных экситонов определяется эффектом пленения излучения, роль которого в образцах с большим временем жизни значительно повышается [5]. Из этого следует, что интенсивности спектров фотолюминесценции образцов с различной величиной полного времени жизни т существенно различаются между собой, поэтому интенсивность излучения линии D^0 , x (для образцов с концентрацией мелких доноров 10¹³⁻¹⁴ сm⁻³) можно в грубом приближении рассматривать в качестве одного из параметров, отражающих концентрацию центров безызлучательной гибели экситонов N_i^{NR} в образце.

Важными спектральными характеристиками являются энергетическое положение и полуширина (полная ширина на полувысоте — FWHM) линии излучения D^0 , *x*. В исследованных образцах полуширина линии D^0 , *x* изменялась от 0.12 до 0.31 meV.

Известно, что линия излучения D^0 , x является неоднородно уширенной. Неоднородное уширение возникает вследствие того, что длины волн излучения экситонов, связанных на разных донорах D^0 , несколько различны. Причиной этого различия является дисперсия энергии термоактивации мелких доноров Е_{DT} (и, следовательно, связанных на них экситонов). В свою очередь причина дисперсии Е_{DT} кроется в различных значениях локального потенциала V_{loc} в местах расположения донорных примесей. Это означает, что разнообразные дефекты, близко расположенные к мелким донорам D⁰, изменяют величину внутрикристаллического поля. Предположение, что роль таких дефектов могут играть как глубокие центры безызлучательной гибели, так и мелкие акцепторы, не подтвердилось. Действительно, анализ спектров образцов с отличающимися более чем на порядок интенсивностями линии излучения D^0 , *x*, а значит, различающихся концентрацией глубоких центров безызлучательной гибели N_i^{NR}, показал независимость полуширины линии D^0 , x от концентрации N_i^{NR} . Полуширина также не зависит и от концентрации мелких акцепторов. (Заметим, что на большую концентрацию мелких акцепторов указывает наличие интенсивной линии A^0 , x). Из этого следует, что доминирующее влияние на дисперсию Е_{DT} оказывают не центры безызлучательной гибели и мелкие акцепторы, а подсистема дефектов иной природы, порождающих глубокие уровни.

Ключом к пониманию причины возникновения дисперсии $E_{\rm DT}$ (уширение линии D^0, x) является различие в спектральном положении этой линии и кинетики затухания излучения линии D^0, x в разных образцах. Как было показано ранее [6], медленное затухание ($\tau \approx 10^{-6}$ s) линии D^0, x обусловлено существованием локальных

Рис. 3. Кинетика затухания линии излучения D^0 , *x* для двух образцов GaAs с величиной FWHM = 0.14 (2) и 0.31 meV (1). Заштрихована область интегрирования с пределами t_i и t_f . Цифры соответствуют спектрам, приведенным на рис. 2.

Рис. 4. Соотношение между интегралом $(B_{\rm MS})$ под кривой затухания излучения линии D^0, x и полушириной (FWHM) этой линии в разных образцах *n*-GaAs.

Рис. 5. Зависимость спектрального положения линии излучения D^0 , *x* от полуширины (FWHM) этой линии.

метастабильных центров, поставляющих дырки в валентную зону. Количество этих центров находит отражение в величине интеграла $B_{\rm MS}$ под кривой затухания $\Phi\Pi$ линии D^0 , x [7,8] (рис. 3). Оказалось, что долговременное затухание отсутствует в некомпенсированных образцах, которые имеют полуширину линии D^0, x меньше 0.12 meV. На рис. 4 приведены значения $B_{\rm MS}$ и FWHM для ряда образцов с большой интенсивностью излучения (большое τ). Из этого рисунка видно, что между этими величинами существует заметная корреляция. Поскольку неоднородная полуширина обусловлена дисперсией $E_{\rm DT}$ мелких доноров, а интеграл $B_{\rm MS}$ отражает количество глубоких метастабильных состояний, эта корреляция указывает на существование связи между подсистемами мелких и глубоких уровней. Существующий разброс (в диапазоне 1.5143–1.5158 eV) энергетического положения максимума излучения линии D^0, x , спектральное положение которой изменяется от образца к образцу, обусловлен существованием в каждом конкретном образце напряжений разной величины [9], вследствие чего спектры ФЛ сдвинуты как целое относительно друг друга (рис. 2). На рис. 5 представлена зависимость отклонения спектрального положения линии D^0 , x от реперного значения в различных образцах и от величины FWHM для каждого из них. (Приведенная зависимость получена следующим образом: в качестве репера было взято положение линии D^0 , x в образце с минимальной величиной FWHM (0.12 meV), который имеет минимальное значение дисперсии Е_{DT}). Таким образом, спектральное положение, полуширина линии излучения D^0 , x и величина интеграла $B_{\rm MS}$ оказались взаимосвязанными, что может быть обусловлено реконструкцией тетраэдрической решетки [10] и формированием глубоких центров вследствие перехода примесных ионов из узлов решетки в позиции тетраэдрических междоузлий [11–14]. Такая реконструкция возможна в случае существования напряжений в образцах, на наличие которых указывает разброс спектрального положения линии D^0 , x.

Таким образом, анализ изменения экситонных спектров фотолюминесценции в сочетании с исследованием кинетики их затухания позволяет предложить замкнутую интерпретацию взаимодействия между подсистемами глубоких и мелких дефектов в арсениде галлия *n*-типа.

Авторы благодарны В.М. Ботнарюку и Л.М. Федорову за предоставленные образцы.

Список литературы

- [1] М.М. Мездрогина, Т.И. Мосина, Е.И. Теруков, И.Н. Трапезникова. ФТП **35**, (2001).
- [2] V.A. Shchukin, A.N. Starodubtsev. Proc. of 8th Int. Symp. "Nanostructures: Physics and technology". Ioffe Institute, St.-Petersburg, Russia (2000). C. 137.
- [3] Toyozava Y. Prog. Theor. Phys. 20, 53 (1958).
- [4] В.В. Криволапчук, С.А. Пермогоров, В.В. Травников. ФТТ 23, 606 (1981); В.В. Травников, В.В. Криволапчук. ФТТ 24, 961 (1982).
- [5] В.В. Травников, В.В. Криволапчук. Письма в ЖЭТФ 37, 419 (1983).
- [6] А.В. Акимов, А.А. Каплянский, В.В. Криволапчук, Е.С. Москаленко. Письма в ЖЭТФ 46, 35 (1987).
- [7] А.В. Акимов, В.В. Криволапчук, Н.К. Полетаев, В.Г. Шофман. ФТП 27, 310 (1993).
- [8] В.В. Криволапчук, Н.К. Полетаев, Л.М. Федоров. ФТП 28, 310 (1994).
- [9] Г.Л. Бир, Г.Е. Пикус. Симметрия и деформационные эффекты в полупроводниках. Наука, М. (1972). Гл. 7. С. 524, 545.
- [10] Д.Е. Онопко, Н.Т. Баграев, А.И. Рыскин. ФТТ 30, 142 (1996).
- [11] P.M. Moony. J. Appl. Phys., 67, R1 (1990).
- [12] D.J. Chadi, K.J. Chang. Phys. Rev. B 39, 10063 (1989).
- [13] T.N. Morgan. Matter., Sci. Forum 38-41, 1079 (1989).
- [14] D.J. Chadi, K.J. Chang. Phys. Rev. Lett. 61, 873 (1988).