05

Термокинетическая модель разрушения гетерогенных материалов и особенности ее численной реализации при воздействии высокочастотными электромагнитными полями

© М.Г. Менжулин,¹ Х.Ф. Махмудов^{2,¶}

 ¹ Национальный минерально-сырьевой университет "Горный", 199106 Санкт-Петербург, Россия
 ² Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия
 [¶] e-mail: h.machmoudov@mail.ioffe.ru

(Поступило в Редакцию 30 августа 2016 г. В окончательной редакции 22 декабря 2016 г.)

Теоретическими и экспериментальными методами исследованы процессы разрушения горных пород. Указана модель развития микро- и макротрещиноватости при воздействии электромагнитных полей с помощью ВЧ электродов. Расчет полей температур и полей термоупругих напряжении позволяет исследовать развитие макротрещиноватости и установить направления их развития при объемном способе их размещения. Установлены механизмы, формирующие магистральную трещину, в областях с различной величиной растягивающих напряжений. Развитие магистральной трещины может происходить в область растягивающих напряжений, меньшей предела прочности на растяжение. Показана возможность управления процессами развития магистральной трещины за счет выбора напряжений по длине образующейся трещины и времени нагрева.

DOI: 10.21883/JTF.2017.07.44675.2024

Введение

Среди разнообразных процессов, протекающих при воздействии ВЧ электромагнитных полей на горную породу, следует выделить основные:

— различные тепловые расширения минеральных компонентов при воздействии СВЧ поля. Известно [1–11], что минеральные компоненты поглощают электромагнитную энергию быстрее, чем органические, в 2–3 раза. Следовательно, происходит неодинаковое расширение различных компонентов, вызывающее ослабевание их межфазных границ и появление трещин и разломов, что затем приводит к разрушению [12–16];

— поглощение породой ВЧ энергии и формирование источников тепла, нагрев горной породы и развитие в ней термоупругих напряжений [12,14,17–26], которые приводят к развитию трещиноватости, разупрочнению и разрушению породы [27–31]. В работах [32–43] изучены основные закономерности и управления процессом разрушения материала (угля) с помощью СВЧ поля.

Микроволновое излучение приводит к существенной модификации примесно-дефектной структуры исследуемых полупроводников [44–46]. В работах [47–50] обсуждаются механизмы трансформации дефектной подсистемы монокристаллов под действием микроволновой обработки.

Показано, что изменения, которые наблюдаются в эксперименте, связаны с атермическим действием микроволнового излучения при удельной мощности 7.5 W/cm² и в большей степени при 90 W/cm².

При конкретной реализации подхода вычислительного эксперимента необходимо учитывать ряд факторов, в

значительной степени влияющих на проведение работ на каждой стадии [51–62].

Разрабатываемый подход вычислительного эксперимента заключается в том, что при некотором воздействии используется физико-математическая модель [59,63–69]. В отличие от физической среды, состояние физико-математической модели может быть проконтролировано, оценено и изменено на любой временной стадии процесса в любой пространственной точке.

Отметим степень разработанности численных методов, используемых при решении задач, допускающих расщепление по физическим процессам; возможности аналитических методов по получению результатов в предельных и частных случаях; наличие теоретических решений и экспериментальных результатов в частных случаях; наличие экспериментальных исходных данных по пределам изменения физических величин и т. д.

Методика измерений

Формирование температурных полей и полей напряжений исследовалось на основании вычислительного метода [13,14,26,33,59]. В соответствии с принципом расщепления по физическим процессам [59] алгоритм решения общей задачи естественным образом расщепляется на два этапа.

Стационарный этап включает в себя задачи нахождения в блоке скальной породы потенциала ВЧ электрического поля, создаваемого системой электродов, и нахождения поля тепловых источников. Следуя [14,59], считаем, что ВЧ электрическое поле и создаваемое им поле тепловых источников стационарны, устанавливаются мгновенно и не зависят от остальных физических процессов нагрева породы, развития термоупругих напряжений и разрушения, что и является условием выделения этапа.

Нестационарный этап включает в себя решение задач нагрева скальной породы найденными тепловыми источниками, развития в породе термоупругих напряжений [60–64], а также трещинообразования, разрушения и разупрочнения породы под воздействием термоупругих напряжений [65–72]. При этом подэтап нахождения полей термоупругих напряжений не содержит время в качестве непосредственного аргумента, а подэтапы нахождения температурного поля и разрушения непосредственно зависят от времени.

В соответствии с принципом расщепления по физическим процессам численное решение уравнений каждого из этапов и подэтапов может быть проведено своим методом независимо от других. Расчет потенциала ВЧ электрического поля и поля тепловых источников применительно к данной задаче был выполнен численным методом. Расхождение результатов расчета φ и q с данными аналитического решения, выполненного в [13,59,67], не превышает 3% в области между электродами, что свидетельствует о работоспособности разностного метода.

Решение задачи развития макротрещин в блоке скальной породы системой двух стержневых ВЧ электродов

На основе теоретических решений общей задачи ВЧ контактного способа разрушения применительно к отбойке и дроблению негабарита с использованием

Рис. 1. Схема расчетной области в задаче о двух электродах d/L = 0.4; сетка $15 \times 15 \times 10$ ячеек.

цилиндрических электродов, направленной на изыскание новых технологий в скальных горных породах на основе использования нетрадиционных способов разрушения, решалась задача о разрушении блока системой электродов, размещенных в шпурах. Два электрода длиной L = 1, с отношением диаметра к длине d/L = 0.4, располагаются в шпурах на расстоянии 2a = 2 в гранитном блоке, имеющем размеры A = 3, H = 3, B = 2. К электродам приложено ВЧ напряжение $\pm V$. Вследствие симметрии задачи расчетная область составит 1/4 блока (рис. 1).

Расчетную область разбиваем сеткой на кубические ячейки x = y = z = 0.2L, тогда при $N_x = 15$, $N_y = 15$, $N_z = 10$ общее число ячеек составит 2250. Учитывая выбранные размеры, ячейки, занимаемые электродом, будут i = 5-6; i = 11-15; k = 1. В них задаются граничные условия, обеспечивающие $\phi = 1$ на границе электрода, $\varphi_{l+1} = 2\varphi_l$, где l — номер расчетной ячейки, *l*+1 — номер примыкающей к ней фиктивной ячейки по соответствующей координате. Это обеспечивает автоматическое вычисление производных потенциала при расчете поля тепловых источников. Расчет полей температур и термоупругих напряжений осуществляется "сквозным" счетом через пространственные ячейки поля без выделения границ электрода и специальной постановки на них граничных условий [26,59,65]. Граничные условия, таким образом, ставятся только на гранях блока по описанной схеме. Такая постановка задачи с точки зрения разностного счета обладает сглаживающим эффектом, что обеспечивает устойчивый счет в окрестности границ электрода.

Таким образом, получено аналитическое решение задачи определения температурного поля и поля напряжений в блоке породы при ВЧ нагреве двумя цилиндрическими электродами, расположенными в шпурах. При определении полей напряжений использована модель, не учитывающая влияния свободных поверхностей в шпуре. При этом распределения полей температур и термонапряжений показывают, что магистральная трещина будет развиваться с наружных граней блока и почти на уровне нижнего основания электрода. Второй максимум растягивающих напряжений наблюдается в верхней части блока, где также предполагается развитие магистральной трещины.

Расчет поля температур в приэлектродной зоне

Процесс нагрева блока горной породы внутренними источниками тепла, возникающими при поглощении породой энергии электрического поля, описывается уравнением нестационарной теплопроводности с граничными условиями отсутствия теплообмена на границах блока. *y*, m

Рис. 2. Поле максимального главного напряжения σ_1 при t = 60 s; z = 0: $-1 - \sigma_1 = 55$, $0 - \sigma_1 = 0$, $1 - \sigma_1 = 55$, $2 - \sigma_2 = 110$, $3 - \sigma_1 = 220$ MPa; a -электрод.

Рис. 3. Поле температуры при t = 60 s; 1 - 240, 2 - 210, 3 - 180, 4 - 170, 5 - 160, $6 - 150^{\circ}$ С; a -электрод.

Уравнение теплопроводности [26,65]

$$c\rho \frac{\partial T}{\partial t} = a^2 \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right), \qquad (1)$$

где *c*, ρ , *a* — являются постоянными величинами, можно привести к безмерному виду с помощью использования переменных: $\overline{t} = t/t_0$, $\overline{x} = x/x_0$, $\overline{y} = y/y_0$, $\overline{z} = z/z_0$, $\overline{q} = q/q_0$, $\overline{T} = T/T_0$, $\overline{\sigma} = \sigma/\sigma_0$, q_0 — объемный источник тепла, $q_0 = \pi \varepsilon_0 f \varepsilon'(\operatorname{tg} \delta) |E|^2 = \pi \varepsilon_0 f \varepsilon'(\operatorname{tg} \delta) V_0^2/r_0^2$,

где ε_0 — диэлектрическая постоянная, ε' — диэлектрическая проницаемость породы, tg δ — тангенс угла диэлектрических потерь, f — частота, E — напряженность электрического поля, V — напряжение; T_0 — температура, $T_0 = q_0 r_0^2 / \chi$, где χ — теплопроводность породы; r_0 — радиус электрода; t_0 — время; описывается формулой $t_0 = C r_0^2 / \chi$, где C — объемная теплоемкость породы; σ_0 — напряжение; описывается формулой $\sigma_0 = \alpha_T ET(1 - \nu)$, где E — модуль Юнга; α_T — коэффициент Линейного расширения породы и ν — коэффициент Пуассона. В дальнейшем для упрощения записи черточки над переменными опускаются.

В качестве граничных условий принимается отсутствие теплообмена на границах блока [59] (рис. 2, 3)

$$\begin{aligned} \frac{\partial T}{\partial x}(A, y, z, t) &= \frac{\partial T}{\partial y}(x, H, z, t) = \frac{\partial T}{\partial z}(x, y, B, t) = 0, \end{aligned} \tag{2} \\ T(-0, y, z, t) &= T(+0, y, z, t), \end{aligned}$$

$$T(x, -0, z, t) = T(x, +0, z, t),$$
(4)

$$T(x, y, -0, t) = T(x, y, +0, t)$$
(5)

и начальное условие

$$T(x, y, z, 0) = 0.$$
 (6)

Разностная схема [14,59,66], примененная к уравнению нестационарной теплопроводности, примет вид

$$T_{i,j,k}^{n+1} = \frac{1}{2(1+\beta_x^2+\beta_z^2)} \Big[\beta_x^2 T_{i+1,j,k}^n + \beta_z^2 T_{i-1,j,k}^{n+1} + T_{i,j+1,k}^n + T_{i,j-1,k}^n + \beta_z^2 T_{i,j,k+1}^{n+1} + \beta_z^2 T_{i,j,k-1}^{n+1} + q_{i,j,k} \Delta - y^2 \Big],$$
(7)

где $\beta x = \Delta y / \Delta x$, $\beta z = \Delta y / \Delta z$;

$$\Delta t / \Delta y^2 = 1/2(1 + \beta_x^2 + \beta_z^2);$$

n = 1, N — индекс текущего псевдовременного слоя; *i*, *j*, *k* — индексы текущего временного слоя, указывающие номер счетной ячейки по соответствующей координате *x*, *y*, *z*.

Будем использовать прямоугольные расчетные области. Тогда для постановки граничных условий на границах расчетной области вводятся примыкающие к каждой из границ слои фиктивных ячеек, в которых задаются значения потенциала, обеспечивающие выполнение граничных условий. В этом случае индексы изменяются в следующих пределах: $i \in [0, N_x + 1]; j \in [0, N_y + 1]; k \in [0, N_z + 1]; где N_x, N_y, N_z$ — количество ячеек в расчетной области соответственно вдоль осей x, y, z.

Этот вид разностной схемы получен для максимально возможного временного шага, обеспечивающего устойчивость схемы [59]:

$$\Delta t = \frac{\Delta y^2}{2(1+\beta_x^2+\beta_z^2)},\tag{8}$$

и не может считаться удовлетворительным в общем контексте задачи о разрушении. Решение задачи нахождения поля температур является первым подэтапом нестационарного этапа, величину временного шага ΔtR , на котором задается подэтап разрушения породы. При этом $\Delta t \neq \Delta tR$. Полагаем

$$\Delta tR = m\Delta t + \Delta t',\tag{9}$$

где m = 0, 1, 2, ... — число максимальных тепловых шагов на одном шаге разрушения, такое, что $0 \le \Delta t < \Delta t'$. Для проведения расчетов разностная схема (7) должна быть представлена в виде с явным выражением для Δt :

$$T_{i,j,k}^{n+1} = T_{i,j,k} \left[1 - 2\left(1 + \beta_x^2 + \beta_z^2\right) + \frac{\Delta t}{\Delta y^2} \right] + \frac{\Delta t}{\Delta y^2} \left[\beta_x^2 T_{i+1,j,k}^n + \beta_x^2 T_{i-1,j,k}^{n+1} + T_{i,j+1,k}^n + T_{i,j-1,k}^{n+1} \right. \\ \left. + \beta_z^2 T_{i,j,k+1}^{n-1} + \beta_z^2 T_{i,j,k-1}^{n+1} + q_{i,j,k} \Delta y^2 \right].$$
(10)

В разностном виде граничные условия (3.2)–(3.5) выбранные размеры ячейки [59] (рис. 2, 3) представляются следующим образом:

$$T_{0,j,k}^{n} = T_{1,j,k}^{n}, \ T_{Nx+1,j,k}^{n} = T_{Nx,j,k}^{n}, \ T_{i,0,k}^{n} = T_{i,1,k}^{n},$$
(11)

$$T_{i,Ny+1,k}^n = T_{i,Ny,k}^n, \ T_{i,j,0}^n = T_{i,j,1}^n, \ T_{i,j,Nz+1}^n = T_{i,j,Nz}^n.$$
 (12)

Начальное условие (6) будет справедливо лишь на первом из шагов разрушения при $t_R = 0$. Начальным распределением температур на каждом из последующих временны́х шагов разрушения $T^{0,l+1}$ при $t = t_R^{0,l+1}$, где l — номер шага разрушения, будет конечное распределение температур $T^{k,l}$ на предыдущем временно́м шаге разрушения при $t = t_R^{k,l}$, т.е. с точки зрения температуры общий алгоритм нестационарного этапа является двуслойным. В итоге начальные условия могут быть записаны

$$T_{i,j,k}^{0,0} = 0, \qquad T_{i,j,k}^{0,l+1} = T_{i,j,k}^{k,l}.$$
 (13)

Для вычисления поля температур по алгоритму (7), (11)–(13) требуется массив тепловых источников $q_{i,j,k}$ (который был получен в качестве выходного массива задачи расчета потенциала электрического поля), массив температур предыдущего временного слоя нестационарного этапа и величина временного шага Δt_R , получаемая из решения задачи разрушения.

Расчет поля термоупругих напряжений в приэлектродной зоне

Разностный метод решения квазистационарной задачи термоупругости

Процесс формирования в блоке скальной породы термоупругих напряжении под воздействием неоднородного температурного поля описывается уравнениями квазистационарного приближения теории термоупругости. Используя уже сформированную выше систему безразмерных переменных, систему можно преобразовать к следующему виду [26,65]:

$$\frac{\partial^2 U}{\partial x^2} + \eta \left(\frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2} \right) + (1 - \eta) \left(\frac{\partial^2 V}{\partial x \partial y} + \frac{\partial^2 W}{\partial x \partial z} \right) - \frac{\partial T}{\partial x} = 0, \quad (14)$$

$$\frac{\partial^2 V}{\partial y^2} + \eta \left(\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial z^2} \right) + (1 - \eta) \left(\frac{\partial^2 U}{\partial x \partial y} + \frac{\partial^2 W}{\partial x \partial z} \right) - \frac{\partial T}{\partial y} = 0, \quad (15)$$

$$\frac{\partial^2 W}{\partial z^2} + \eta \left(\frac{\partial^2 W}{\partial x^2} + \frac{\partial^2 W}{\partial y^2} \right) + (1 - \eta) \left(\frac{\partial^2 U}{\partial x \partial y} + \frac{\partial^2 V}{\partial x \partial z} \right) - \frac{\partial T}{\partial z} = 0, \quad (16)$$

где U, V, W — компоненты вектора перемещений,

$$\eta = \mu/(2\mu + \lambda), \tag{17}$$

где *µ*, *λ* — параметры Ляме [65].

Система решается методом установления с помощью разностной схемы Либмана [26]. Для этого в каждое из уравнений системы вводим нестационарные члены $\partial U/\partial t$ в уравнение (14), $\partial V/\partial t$ в уравнение (15), $\partial W/\partial t$ в уравнение (16). Введение нестационарных членов обеспечивает устойчивость системы (17). В итоге разностная схема строится следующим образом [59,65]:

$$\begin{aligned} U_{i,j,k}^{n+1} &= U_{i,j,k}^{n} K_{U} + 1/\left(1 + \beta_{x}^{2} + \beta_{z}^{2}\right) \\ &\times \left\{\beta_{x}^{2}\left(U_{i+1,j,k}^{n} + U_{i-1,j,k}^{n+1}\right) + \eta\left(U_{i,j+1,k}^{n} + U_{i,j-1,k}^{n+1}\right) \right. \\ &+ \eta\beta_{z}^{2}\left(U_{i,j,k+1}^{n} + U_{i,j,k-1}^{n+1}\right) + 0.25(1 - \eta)\beta_{x} \\ &\times \left(V_{i+1,j,k}^{n} - V_{i-1,j,k}^{n+1}\right)\left(V_{i,j+1,k}^{n} - V_{i,j-1,k}^{n+1}\right) + 0.25(1 - \eta) \\ &\times \beta_{x}\beta_{z}\left(W_{i+1,j,k}^{n} - W_{i-1,j,k}^{n+1}\right)\left(W_{i,j+1,k}^{n} - W_{i,j-1,k}^{n+1}\right) \\ &- 0.5\beta_{x}\left(T_{i+1,j,k}^{n} - T_{i-1,j,k}^{n+1}\right)\Delta_{y}\right\}\Delta_{t}, \end{aligned}$$

$$V_{i,j,k}^{n+1} = V_{i,j,k}^{n} K_{V} + 1/(1 + \beta_{x}^{2} + \beta_{z}^{2})$$

$$\times \left\{ \eta \beta_{x}^{2} \left(V_{i+1,j,k}^{n} + V_{i-1,j,k}^{n+1} \right) + V_{i,j+1,k}^{n} + V_{i,j-1,k}^{n+1} \right.$$

$$+ \eta \beta_{z}^{2} \left(V_{i,j,k+1}^{n} + V_{i,j,k-1}^{n+1} \right) + 0.25(1 - \eta)\beta_{x}$$

$$\times \left(U_{i+1,j,k}^{n} - U_{i-1,j,k}^{n+1} \right) \left(U_{i,j+1,k}^{n} - U_{i,j-1,k}^{n+1} \right) \right.$$

$$+ 0.25(1 - \eta)\beta_{z} \left(W_{i,j+1,k}^{n} - W_{i,j-1,k}^{n+1} \right) ,$$

$$\left(W_{i,j,k+1}^{n-1} - W_{i,j,k-1}^{n+1} \right) - 0.5\beta_{y} \left(T_{i,j+1,k}^{n} - T_{i,j-1,k}^{n+1} \right) \Delta y \right\} \Delta t,$$

$$\left(19 \right)$$

$$W_{i,j,k}^{n+1} = W_{i,j,k}^{n} K_{W} + 1/(1 + \beta_{x}^{2} + \beta_{z}^{2})$$

$$\times \left\{ \eta \beta_{x}^{2} \left(W_{i+1,j,k}^{n} + W_{i-1,j,k}^{n+1} \right) + \eta \left(W_{i,j+1,k}^{n} + W_{i,j-1,k}^{n+1} \right) \right.$$

$$\left. + \beta_{z}^{2} \left(W_{i,j,k+1}^{n} + W_{i,j,k-1}^{n+1} \right) + 0.25(1 - \eta)\beta_{x}\beta_{z}$$

$$\times \left(U_{i+1,j,k}^{n} - U_{i-1,j,k}^{n+1} \right) \left(U_{i,j,k+1}^{n} - U_{i,j,k-1}^{n+1} \right) \right.$$

$$\left. + 0.25(1 - \eta)\beta_{z} \left(V_{i,j+1,k}^{n} - V_{i,j-1,k}^{n+1} \right) \left(V_{i,j,k+1}^{n} - V_{i,j,k-1}^{n+1} \right) \right.$$

$$\left. - 0.5\beta_{z} \left(T_{i,j,k+1}^{n} - T_{i,j,k-1}^{n+1} \right) \Delta y \right\} \Delta t,$$

$$(20)$$

Γ,

$$\begin{split} K_{U} &= (1 - \eta) \left(1 + \beta_{z}^{2} \right) / \left(1 + \beta_{x}^{2} + \beta_{z}^{2} \right), \\ K_{V} &= (1 - \eta) \left(1 + \beta_{z}^{2} \right) / \left(1 + \beta_{x}^{2} + \beta_{z}^{2} \right), \\ K_{W} &= (1 - \eta) \left(1 + \beta_{z}^{2} \right) / \left(1 + \beta_{x}^{2} + \beta_{z}^{2} \right). \end{split}$$
(21)

Соотношение между перемещениями, напряжениями и деформациями в этом случае в разностной форме принимают вид

$$\varepsilon_{xi,j,k}^{n+1} = \left(U_{i+1,j,k}^{n+1} - U_{i-1,j,k}^{n+1}\right) / \Delta x,$$

$$\varepsilon_{yi,j,k}^{n+1} = \left(U_{i,j+1,k}^{n+1} - U_{i,j-1,k}^{n+1}\right) / \Delta y,$$

$$\varepsilon_{zi,j,k}^{n+1} = \left(U_{i,j,k+1}^{n+1} - U_{i,j,k-1}^{n+1}\right) / \Delta z,$$
(22)
$$\varepsilon_{xzi,j,k}^{n+1} = 0.5 \left(V_{i,j,k+1}^{n+1} - V_{i,j,k-1}^{n+1}\right) / \Delta z$$

$$+ 0.5 \left(W_{i,j+1,k}^{n+1} - W_{i,j-1,k}^{n+1} \right) / \Delta y,$$

$$\varepsilon_{zzi,j,k}^{n+1} = 0.5 \left(W_{i+1,j,k}^{n+1} - W_{i-1,j,k}^{n+1} \right) / \Delta x$$

$$+ 0.5 \left(U_{i,j,k+1}^{n+1} - U_{i,j,k-1}^{n+1} \right) / \Delta z, \qquad (23)$$

$$\sigma_{x,i,j,k}^{n+1} = \varepsilon_{x,i,j,k}^{n+1} + \left[\nu e - (1-2\nu)T_{i,j,k}^{n+1}/(1-2\nu) \right],$$

$$\sigma_{y,i,j,k}^{n+1} = \varepsilon_{y,i,j,k}^{n+1} + \left[\nu e - (1-2\nu)T_{i,j,k}^{n+1}/(1-2\nu) \right],$$

$$\sigma_{z,i,j,k}^{n+1} = \varepsilon_{z,i,j,k}^{n+1} + \left[\nu e - (1-2\nu)T_{i,j,k}^{n+1}/(1-2\nu) \right] \quad (24)$$

$$\sigma_{xy,i,j,k}^{n+1} = \varepsilon_{xy,i,j,k}^{n+1}, \sigma_{yz,i,j,k}^{n+1} = \varepsilon_{yz,i,j,k}^{n+1}, \sigma_{zx,i,j,k}^{n+1} = \varepsilon_{zx,i,j,k}^{n+1},$$
(25)

$$e = \varepsilon_{x_{i,j,k}}^{n+1} + \varepsilon_{y_{i,j,k}}^{n+1} + \varepsilon_{z_{i,j,k}}^{n+1},$$
(26)

где βx , βz , Δt — вычисляются в соответствии с (3).

Граничные условия для квазистационарной задачи термоупругости заданы условиями свободного перемещения граней блока и отсутствием нормальных перемещений в плоскостях симметрии:

$$\partial U/\partial x(A, y, z) = 0, \qquad \partial V/\partial x(A, y, z) = 0,$$

$$\partial W/\partial x(A, y, z) = 0, \qquad \partial U/\partial y(x, a, z) = 0,$$

$$\partial V/\partial y(x, a, z) = 0, \qquad \partial W/\partial y(x, a, z) = 0,$$

$$\partial U/\partial z(x, y, B) = 0, \qquad \partial V/\partial z(x, y, B) = 0,$$

$$\partial W/\partial x(x, y, B) = 0, \qquad (27)$$

$$U(0, y, z) = 0, \qquad V(0, y, z) = 0, \qquad W(0, y, z),$$

$$U(x, 0, z) = 0, \quad V(x, 0, z) = 0, \quad W(x, 0, z),$$

 $U(x, y, 0) = 0, \quad V(x, y, 0) = 0, \quad W(x, y, 0).$ (28)

В разностном виде эти граничные условия примут вид

$$U_{0,j,k} = -U_{1,j,k}, \quad V_{0,j,k} = -V_{1,j,k}, \quad W_{0,j,k} = -W_{1,j,k},$$

$$U_{i,0,k} = -U_{i,l,k}, \quad V_{i,0,k} = -V_{i,l,k}, \quad W_{i,0,k} = -W_{i,l,k},$$

$$U_{i,j,0} = -U_{i,j,l}, \quad V_{i,j,0} = -V_{i,j,l}, \quad W_{i,j,0} = -W_{i,j,l},$$

$$(29)$$

$$U_{Nx+1,j,k} = U_{Nx,j,k}, \quad V_{Nx+1,j,k} = V_{Nx,j,k},$$

$$W_{Nx+1,j,k} = W_{Nx,j,k}, \quad U_{i,Ny+1,k} = U_{i,Ny,k},$$

$$V_{i,Ny+1,k} = V_{i,Ny,k}, \quad W_{i,Ny+1,k} = W_{i,Ny,k},$$

$$U_{i,j,Nz+1} = U_{i,j,Nz}, \quad V_{i,j,Nz+1} = V_{i,j,Nz},$$

$$W_{i,j,Nz} = W_{i,j,Nz}. \quad (30)$$

Эти граничные условия дополняются граничными условиями по температуре (11). В качестве начальных условий по напряжения задаются условия отсутствия перемещений в блоке $U_{i,j,k}^0 = 0$, $V_{i,j,k}^0 = 0$, $W_{i,j,k}^0 = 0$, а по температуре — условия (12) и (13).

Подпрограмма вычислений полей термоупругих напряжений была включена в цепочку программ, осуществляющих расчет всех этапов разрушения по схеме обмена информацией с другими подпрограммами [59]. В качестве выходных данных расчета рассмотрено поле максимальных напряжений σ_1 , поскольку оно является необходимым (рис. 2, 3).

Журнал технической физики, 2017, том 87, вып. 7

Приведение результатов расчета к размерному виду

При определении термоупругих напряжений надо знать в конечном счете распределение температур, что, в свою очередь, требует знания распределения тепловых источников, а это возможно лишь после нахождения потенциала электрического поля. Для этого рассмотрим случай электрода радиуса $r_0 = 0.02$ m, к которому приложено напряжение V = 10 kV, частота f = 5.28 MHz. Для гранита $\varepsilon' = 6$ и tg $\delta = 0.02$. Тогда $q_0 = 36.5$ MW/m³ и $T_0 = 4896$ K, $T = \overline{T} T_0 + T_H = 440$ °C. Введем размерную величину напряжений $\sigma_0 = 2740$ MPa при E = 70 GPa, $\nu = 0.25$, $\alpha_T = 6 \cdot 10^{-6}$ K⁻¹, тогда размерное главное напряжение при $\overline{\sigma} = 0.08$ равно $\sigma = \overline{\sigma}\sigma_0 = 219$ MPa.

Таким образом, получено аналитическое решение задачи определения температурного поля (рис. 3) и поля напряжений в блоке породы при ВЧ нагреве двумя цилиндрическими электродами, расположенными в шпурах. При определении полей напряжений использована модель, не учитывающая влияния свободных поверхностей в шпуре.

Полученные численным моделированием картины распределения полей температур и термонапряжений показывают, что магистральная трещина будет развиваться с наружных граней блока и почти на уровне нижнего основания электрода. Второй максимум растягивающих напряжений наблюдается в верхней части блока, где также предполагается развитие магистральной трещины.

Механизмы развития магистральных трещин

Для методической отладки алгоритма была выбрана модельная задача о прорастании магистральной трещины между двумя шпурами в породе типа гранита. Шпуры радиусом $R_{\rm sp} = 21$ mm располагались на расстоянии $d = 10R_{\rm sp}$ перпендикулярно расчетной плоскости. Радиус шпура разбивался на 4 счетные ячейки. $\Delta_x = \Delta_y = R_{\rm sp} = 5.25$ mm. При $l_0 = 0.146$ mm характерному размеру ячейки соответствует трещина второго иерархического уровня $l_2 = 5.25$ mm, при этом $l_1 = 0.875$ mm. По линии шпуров задавалось симметричное, постоянное во времени распределение напряжений σ_y приведены на рис. 4.

Расчеты проводились для следующих значений прочностных и термокинетических параметров породы: $\sigma_{\rm comp} = 120 \text{ MPa}$, $\sigma_{\rm tens} = 10 \text{ MPa}$, $\nu = 0.3$, $U_j = 10^5 \text{ J/mol}$, $\gamma = 9.375 \cdot 10^{-3} \text{ m}^3/\text{mol}$, T = 300 K.

Результаты расчета распространения фронта разрушения породы от времени по линии шпуров представлены на рис. 5.

В рассматриваемой постановке задачи время установления поля напряжений полагается мгновенным. В связи

Рис. 4. Геометрия модельной задачи и три варианта распределения напряжений σ_y по оси между шпурами. x = (N) 5 ячеек.

Рис. 5. Зависимость расстояния распространения фронта разрушения от времени для трех вариантов распределения напряжений σ_y по оси между шпурами. x = (N) 5 ячеек.

с этим в случае нагрузки с распределением напряжений по линии, ограниченной расстоянием $x = 2.25R_{sp}$ происходят зарождение, накопление и слияние микротрещин и трещин первого уровня. В результате образуются трещины второго уровня с характерным размером, равным характерному размеру счетной ячейки. Тем самым достигается разрушение породы в ячейках указанной области. Размер этой области соответствует уровню напряжений, равному пределу прочности на растяжение.

В более удаленных ячейках, где нагрузка падает ниже предела прочности на растяжение, скорость разрушения

механизмом роста концентрации микротрещин падает, и начиная с моментов времени $t = 10^{-6}$ s разрушение происходит механизмом прорастания магистральной трещины. В случае нагрузки с распределением напряжений по кривой 2 (рис. 4) характер разрушения сохраняется (кривая 2 на рис. 5). Поскольку нагружающие напряжения ниже, чем в первом случае, уменьшается размер области, разрушаемой в результате роста концентрации микротрещин, и увеличивается роль механизма магистральной трещины. В этих случаях магистральная трещина прорастает до плоскости симметрии, что обеспечивает разрушение породы между двумя шпурами с образованием магистральной трещины между ними.

Механизм разрушения ростом концентрации микротрещин обеспечивает разрушение породы вплоть до областей, в которых величина максимальных растягивающих напряжений становится равной $\sigma \approx 0.7 [\sigma_{\text{tens}}]$, а механизм роста магистральной трещины — до уровня напряжений (рис. 4, 5) $\sigma \approx 0.7 [\sigma_{\text{tens}}]$, т.е. в областях, не отвечающих критерию максимальных растягивающих напряжений. Нагрузка с распределением напряжений по кривой 3 (рис. 4) отличается тем, что при $x = 2.75 R_{sp}$ напряжения становятся сжимающими. В этом случае разрушение вплоть до уровня нагрузок $\sigma \approx 0.7 [\sigma_{\text{tens}}]$ сохраняет все указанные выше закономерности. Включающийся затем механизм роста магистральной трещины обеспечивает ее прорастание только лишь до границы области растягивающих напряжений, и разрушения области сжимающих напряжений не происходит даже при временах нагружения, превышающих 10³ s (кривая 3 на рис. 5). Отсюда следует, что границу области растягивающих напряжений можно трактовать как границу области, за которую разрушение, начавшееся в области больших растягивающих напряжений, проникнуть не может.

Теоретическое исследование комплекса этих процессов традиционными аналитическими методами представляет собой весьма сложную задачу [73–80].

В дальнейших работах будут изложены материалы исследования и подробно будет изложено развитие магистральной трещины в области растягивающих напряжений при применении метода акустико-эмиссионного прогнозирования механического разрушения и кинетическая модель микротрещинообразования твердых тел [81–91] с одновременной регистрацией электростатических полей [92–97].

Выводы

Научная значимость исследований состоит в разработке модели развития микро- и макротрещиноватости при воздействии электромагнитных полей с помощью ВЧ электродов.

Полученные численным моделированием картины распределения полей температур и термонапряжений

показывают, что магистральная трещина будет развиваться с наружных граней блока и почти на уровне нижнего основания электрода. Второй максимум растягивающих напряжений наблюдается в верхней части блока, где также предполагается развитие магистральной трещины.

Предложена методика численного расчета развития магистральной трещины в одномерном поле растягивающих напряжений, сформированном в результате электромагнитного нагрева. Методика позволяет определить длину образующей трещины в зависимости от распределения растягивающих напряжений в породе и времени нагрева.

Список литературы

- Саломатов Вл.В., Пащенко С.Э., Сладков С.О., Саломатов В.В. // Инженерно-физический журн. 2016. Т. 89. № 1. С. 49.
- Meadows D.H., Meadows D.L., Rangers J., Beh-rens W.W. The Limits to Growths. NY: University Books, 1972. P. 70-77.
- [3] Rhodes M. Introduction to particle technology, Monash University, Australia. 2nd Edition, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, 2008.
- [4] Singh Kedar Prasad, Kakati Mohan Chandra // Res. and Ind. 1994. Vol. 39. № 3. C. 198–201.
- [5] Данилов О.С., Михеев В.А., Москаленко Т.В. // Горн. информ.-аналит. бюллетень. 2010. № 3. С. 203–208.
- [6] Данилов О.С., Михеев В.А., Москаленко Т.В. // Изв. Самарского НЦ РАН. 2011. Т. 13. № 1 (5). С. 1264—1267.
- [7] Marland S., Han B., Merchant A., Rowson N. // Fuel. 2000.
 Vol. 79. P. 1283–1288.
- [8] Marland S., Merchant A., Rowson N. // Fuel. 2001. Vol. 80.
 P. 1839–1849.
- [9] Данилов О.С., Михеев В.А., Москаленко Т.В. // Горн. информ.-аналит. бюллетень. Региональное приложение. Дальний Восток. 1. 2009. Вып. 4. С. 285–289.
- [10] Lichao Ge, Yanwei Zhang, Zhihua Wang, Junhu Zhou, Kefa Cen // Energy Conversion and Management. 2013. Vol. 71. P. 84–91.
- [11] Lester E., Kingman S. // Fuel. 2004. Vol. 83. P. 1941-1947.
- [12] Красновский С.С. // Горный информ.-аналит. бюллетень. 1999. № 3. С. 163.
- [13] Образцов А.П., Уваров А.П., Максименко А.Г. // Сб. Термомеханические методы разрушения горных пород. Киев: Наукова думка, 1976. С. 149.
- [14] Автореф. канд. дис. Красновский С.С. Исследование взаимодействия электромагнитных полей ВЧ и СВЧ с горными породами для разработки способов и средств их разрушения: М., 1999. 46 с.
- [15] Долголаптев А.В., Вороновский Ю.Д., Красновский С.С., Нистратов В.Ф., Образцов А.П. // Горный информ.аналит. бюллетень. 2000. Т. 10. С. 99–101.
- [16] *Mohindar S.* // Department of Physics. West Virginia University, United States, 2011. P. 164–168.
- [17] Пат. № 2514826. Способ СВЧ-градиентной активации угольного топлива с использованием защитной пленки / Пащенко С.Э., Алексеенко С.В., Пащенко С.С., Коляда В.В., Саломатов В.В. 2012. Бюл. № 13.

Журнал технической физики, 2017, том 87, вып. 7

- [18] Старовойт А.Г., Малый Е.И., Чемеринский М.С. // Кокс и химия. 2010. № 9. С. 2-4.
- [19] Lester E., Kingman S., Dodds C., Patrick J. // Fuel. 2006.
 Vol. 85. P. 2057–2063.
- [20] Ruisànchez E., Arenillas A., Juàrez-Pèrez E.J., Menèndez J.A. // Fuel. 2012. Vol. 102. P. 65–71.
- [21] Menèndez J.A., Arenillas A., Fidalgo B., Fernàndez Y., Zubizarreta L., Calvo E.G., Bermàdez J.M. // Fuel Proc. Technol. 2010. Vol. 91. P. 1–8.
- [22] Menèndez J.A., Juàrez-Pérez E.J., Ruisànchez E., Bermàdez J.M., Arenillas A. // Carbon. 2010. Vol. 49. P. 346–349.
- [23] Kanilo P.M., Kazantsev V.I., Rasyuk N.I., Schünemann K., Varviv D.M. // Fuel. 2003. Vol. 82. N 2. P. 187–193.
- [24] Varviv D.M., Kazantsev V.I., Kanilo P.M., Rasyuk N.I., Schünemann K., Crytsayenko S.V. // Telecommunication and Radio Engineer. 2004. Vol. 61. N 8. P. 650–662.
- [25] Hardgrove R.M. // Trans. Am. Soc. Mech. Eng. 1932. Vol. 54. P. 37–46.
- [26] Серго Е.Е. Дробление, измельчение и грохочение полезных ископаемых: Учебник для вузов. М.: Недра, 1985.
- [27] Austin L.G., Bagga P., Celik M. // Powder Technol. 1981. Vol. 28. P. 235–240.
- [28] Kingman S.W., Rowson N.A. // Mineral Engineer. 1998. Vol. 11 (11). P. 1081–1088.
- [29] Delibalta M.S., Toraman O.Y. // Energy Sci. Technol. 2012. Vol. 3. No 2. P. 46–49.
- [30] Sahoo B.K., Dea S., Meikap B.C. // Fuel. Proc. Technol. 2011. Vol. 92. P. 1920–1928.
- [31] Sahoo B.K., De S., Carsky M., Meikap B.C. // Ind. Eng. Chem. Res. 2010. Vol. 49. P. 3015–3021.
- [32] *Kingman S.* Microwave pre-treatment of coal and coal blends to improve milling performance. BCURA Project B76, Final Report-January 2006.
- [33] Диденко А.Н. СВЧ энергетика теория и практика. М.: Наука, 2003.
- [34] Samanli S. // Fuel. 2011. Vol. 90. P. 659-664.
- [35] Toraman O.Y. // Energy Sources. Part A. 2010. Vol. 32.
 P. 1794–1800.
- [36] Delibalta M.S., Toraman O.Y. // Energy Sci. Technol. 2012.
 Vol. 3. N 2. P. 46–49.
- [37] Altiner M., Yildirim M., Vapur H. Effects of Microwave and Conventional Drying Methods on Grinding Characteristics of Afsin-Elbistan Lignite. XIII Intern. Mineral Proc. Sympos. 2012. Bodrum, Turkey. P. 737–747.
- [38] Marland S., Han B., Rowson N.A., Merchant A.J. // Acta Montanistica Slovaca Ročnuk. 1998. Vol. 3. N 3. P. 351–355.
- [39] Lester E., Kingman S. // Energy and Fuel. 2004. N 18. P. 140–147.
- [40] Lester E., Kingman S., Dodds C. // Fuel. 2005. Vol. 84. Pp. 423–427.
- [41] Sahoo B.K., Dea S., Meikap B.C. // Fuel Proc. Technol. 2011.
 Vol. 92. P. 1920–1928.
- [42] Kumar H., Lester E., Kingman S., Bourne R., Avila C., Jones A., Robinson J., Halleck P.M., Mathews J.P. // Intern. J. Coal Geology. 2011. Vol. 88. P. 75–82.
- [43] Ruisànchez E., Arenillas A., Juàrez-Pèrez E.J., Menèndez J.A. // Fuel. 2012. Vol. 102. P. 65–71
- [44] Takanashi T., Watanabe S. IEEE Trans. Nucl. Sci. 2001. Vol. 48. P. 950.
- [45] Беляев А.А., Беляев А.Е., Ермолович И.Б. и др. // ЖТФ. 1998. Т. 68. С. 49.
- [46] Редько Р.А., Будзуляк С.И., Корбутяк Д.В., Лоцько А.П., Вахняк Н.Д., Демчина Л.А., Калитчук С.М., Конакова Р.В., Миленин В.В., Быков Ю.В., Егоров С.В., Еремеев А.Г. // ФТП. 2015. Т. 49. № 7. С. 916

- [47] Ключник А.В. // ЖТФ. 1992. Т. 69. С. 99.
- [48] Корбутяк Д.В., Лоцько А.П., Вахняк Н.Д. и др. // ФТП. 2011. Т. 45. С. 1175.
- [49] Ермолович И.Б., Конакова Р.В., Миленин В.В. и др. // Физика и химия твердого тела. 2006. Т. 7. С. 763.
- [50] Ермолович И.Б., Миленин Г.В., Миленин В.В. и др. // ЖТФ. 2007. Т. 77. С. 71.
- [51] Журков С.Н., Куксенко В.С., Махмудов Х.Ф., Пономарев А.В. // ДАН. 1997. Т. 35. Вып. 4. С. 470–472.
- [52] Куксенко В.С., Томилин Н.Г., Махмудов Х.Ф., Бенин А.В. // Письма в ЖТФ. 2007. Т. 33. Вып. 2. С. 31–35.
- [53] Куксенко В.С., Махмудов Х.Ф., Ильинов М.Д., Абдурахмонов З.М. Вестник Инженерной школы Дальневосточного федерального ун-та. 2014. № 3 (20). С. 98–108.
- [54] Куксенко В.С., Махмудов Х.Ф., Мансуров В.А., Султонов У., Рустамова М.З. // ФТПРПИ. 2009. № 4. С. 55–59.
- [55] Махмудов Х.Ф. // Деформация и разрушение материалов. 2012. № 8. С. 41-45.
- [56] Махмудов Х.Ф., Куксенко В.С. // ФТТ. 2005. Т. 47. Вып. 5. С. 856–859.
- [57] Махмудов Х.Ф., Куксенко В.С., Томилин Н.Г., Бенин А.В. // Вестник Тамбовского ун-та. Сер. Естественные и технические науки. 2013. Т. 18. № 4–2. С. 1909–1910.
- [58] Менжулин М.Г., Махмудов Х.Ф., Куксенко В.С., Султонов У. // Вестник Тамбовского ун-та. Сер. Естественные и технические науки. 2013. Т. 18. № 4–2. С. 1667–1668.
- [59] Менжулин М.Г., Махмудов Х.Ф., Щербаков И.П. LAMBERT Academic Publishing, 2014. С. 68.
- [60] Менжулин М.Г., Махмудов Х.Ф., Щербаков И.П. Наука сегодня: теория, практика, инновации. Ростов-на-Дону, 2014. С. 159–187.
- [61] Махмудов Х.Ф., Менжулин М.Г., Захарян М.В., Султонов У., Абдурахманов З.М. // ЖТФ. 2015. Т. 85. Вып. 11. С. 79-85.
- [62] Менжулин М.Г., Махмудов Х.Ф., Томилин Н.Г., Бенин А.В., Султонов У., Абдурахманов З.М. // Научное обозрение. 2015. № 24. С. 37-46.
- [63] Rui Yao, Song Yi Liao, Chang Lu Dai, Yu Chen Liu, Xiao Yu Chen, Feng Zheng // International J. Heat and Mass Transfer. 1994. Vol. 37. N 6. P. 1013–1027.
- [64] Li W., Ebadian M.A., White T.L., Grubb R.G., Foster D. // Chem. Engineer. Sci. 2011. Vol. 66. N 23. P. 5832–5851.
- [65] Дмитриев А.П., Гончаров С.А. Термическое и комбинированное разрушение горных пород. М.: Недра, 1978.
- [66] Менжулин М.Г., Шишов А.Н., Серышев С.В. // ВНИМИ. 1995. С. 59–65.
- [67] Мисник Ю.М., Хоминский В.А. Разрушение горных пород электрофизическими методами Л.: ЛГИ, 1984. С. 65-85.
- [68] Красновский С.С., Образцов А.П. Расчет поля температур в породе и комплексной нагрузки генератора при высокочастотном контактном разрушении горных пород. Физика горных пород и процессов / Тез. докл. Всесоюзн. конф. ВУЗов с участием НИИ. М., 1971. С. 174–175.
- [69] Красновский С.С. // Науч. сообщ. ИГД им. А.А. Скочинского. М., 1989. С. 101–108.
- [70] Красновский С.С., Эпштейн Е.Ф., Образцов А.П. // Науч. сообщ. ИГД им. А.А. Скочинского. Вып. 54. М., 1968. С. 96–99.
- [71] Красновский С.С., Арш Э.И., Друкованный М.Ф. // Известия ДГИ. Т. 40. Днепропетровск, 1961. С. 124–130.
- [72] Красновский С.С., Захаров Ю.Н. Новые возможности высокочастотного контактного способа разрушения горных пород. Тез. докл. Неделя горняка. М.: МГГУ, 1994. С. 193.

- [73] Литвиненко В.С., Богуславский Э.И., Коржавых П.В. // Записки Горного института. 2012. Т. 195. С. 115–119.
- [74] Завьялов А.Д. // ФТТ. 2005. Т. 47. Вып. 6. С. 1000–1008.
- [75] Опарин В.Н., Востриков В.И., Усольцева О.М., Цой П.А., Семенов В.Н. // Физико-технические проблемы разработки полезных ископаемых. 2015. № 3. С. 180–191.
- [76] Соболев Г.А., Веттегрень В.И., Ружич В.В., Киреенкова С.М., Смульская А.И., Мамалимов Р.И., Кулик В.Б. // Геофизические исследования. 2015. Т. 16. № 4. С. 5–14.
- [77] Мельников Н.Н., Козырев А.А. // Горный информационно-аналит. бюллетень (Научно-технический журнал). Спец. выпуск 56. 2015. С. 7–23.
- [78] Адушкин В.В., Кочарян Г.Г., Остапчук А.А. // ДАН. 2016. Т. 467. № 1. С. 86.
- [79] Веттегрень В.И., Куксенко В.С., Щербаков И.П. // ЖТФ. 2011. Т. 81. Вып. 4. С. 148.
- [80] Веттегрень В.И., Куксенко В.С., Щербаков И.П. // ФТТ. 20012. Т. 54. С. 1342.
- [81] Nosov V.V. // Russian J. Nondestructive Testing. 2016. Vol. 52. N 7. P. 386–399.
- [82] Куксенко В.С., Ляшков А.И., Савельев В.Н. // Дефектоскопия. 1980. № 6. С. 57-63.
- [83] Ляшков А.И., Инжеваткин И.Е., Савельев В.Н. // Дефектоскопия. 1980. № 6. С. 98–101.
- [84] Носов В.В. // Дефектоскопия. 2014. № 12. С. 24-35.
- [85] Носов В.В., Бураков И.Н. // Дефектоскопия. 2004. № 2. С. 53-61.
- [86] *Носов В.В., Ельчанинов Г.С.* // Дефектоскопия. 2011. № 12. С. 55-66.
- [87] *Носов В.В., Лаврин В.Г.* // Дефектоскопия. 2012. № 3. С. 18-26.
- [88] Nosov V.V., Lachova T.N. // Russian J. Nondestructive Testing. 2012. Vol. 48. N 2. P. 75–84.
- [89] Stanchits S., Burghardt J., Surdi A. // Rock. Mech. Rock. Eng. 2015. Vol. 48. P. 2513–2527.
- [90] Lacidogna G., Carpinteri A., Manuello A., Durin G., Schiavi A., Niccolini G., Agosto A. // Strain. 2011. Vol. 47. (SUPPL. 2). P. 144–152.
- [91] Nosov V.V., Potapov A.I. //Russian J. Nondestructive Testing. 2015. Vol. 51. N 1. P. 50–58.
- [92] Lockner D.A., Byerlee J.D., Kuksenko V.S., Ponomarev A.V. // Pure Appl. Geophys. PAGEOPH. 1986. Vol. 124. N 3. P. 601–608.
- [93] Lockner D.A., Stanchits S.A. // J. Geophys. Research. B: Sol. Earth. 2002. Vol. 107. N 12. P. ETG 13-1–13-14.
- [94] Soloviev S.P., Spivak A.A. // Izvestiya Phys. Sol. Earth. 2009. Vol. 45. N 4. P. 347–355.
- [95] Махмудов Х.Ф. // ЖТФ. 2011. Т. 81. Вып. 1. С. 76.
- [96] Куксенко В.С., Махмудов Х.Ф. // Письма в ЖТФ. 2004. Т. 30. Вып. 14. С. 82–88.
- [97] Махмудов Х.Ф. // Современные наукоемкие технологии. 2015. № 12-3. С. 426-428.