11,01

Влияние наноразмерных эффектов на состав сосуществующих фаз в бинарной системе с искривленными границами

© М.А. Шебзухова, А.А. Шебзухов

Кабардино-Балкарский государственный университет им. Х.М. Бербекова, Нальчик, Россия

E-mail: sh-madina@mail.ru

(Поступила в Редакцию 10 ноября 2016 г. В окончательной редакции 15 декабря 2016 г.)

В рамках термодинамики фазовых равновесий с учетом поверхностных явлений получены новые соотношения в интегральной форме для бинарных систем в случае, когда одна из фаз диспергирована (до наноразмеров) внутри другой (матрицы). Полученные соотношения использованы для построения размернозависимой фазовой диаграммы состояния в бинарной системе Mo-Ru, содержащей твердые наночастицы с ОЦК- и ГПУ-структурами и жидкую фазу в условии равновесия. При проведении расчетов последовательно учтены размерные зависимости характеристик чистых компонентов и параметра межчастичного взаимодействия в фазах. Для макроскопического случая результаты расчета согласуются с экспериментальными данными.

DOI: 10.21883/FTT.2017.07.44602.410

1. Введение

Искривление поверхности, находящейся между сосуществующими фазами, влияет на основные параметры термодинамического равновесия в системе по сравнению со случаем равновесия плоского слоя с окружающими фазами [1]. За последнее время актуальность приобрели вопросы влияния искривления поверхности на характеристики самих фаз, сосуществующих в равновесных условиях. Особое внимание при этом привлекают ситуации, когда речь идет о размерах кривизны в наноразмерном диапазоне. Такой интерес, в частности, связан с эффектами по влиянию нановыделений (нанопреципитатов) на важнейшие эксплутационные характеристики промышленно значимых сплавов, в том числе на жаропрочность, механические свойства и радиационную стойкость материалов, используемых в атомной технике [2,3]. Бинарные сплавы Fe-Cr и многокомпонентные сплавы на их основе, которые используются широко для разработки перспективных типов стали, в том числе европейской стали типа EUROFER, характеризуются наличием наноразмерных фазовых выделений [4,5].

Решение подобных задач по установлению влияния наноразмерных эффектов на свойства гетерогенных систем на данном этапе сопряжено с большими трудностями. По этой причине во многих работах используют упрощенные подходы, связанные с теми или иными предположениями, в том числе при учете межфазовой сегрегации компонентов, размерной зависимости межфазного натяжения, температуры равновесия, скачка энтропии при фазовом переходе и ряда других параметров (см. например, [6]).

По нашему мнению, на данном этапе надежным фундаментом для установления влияния искривления

на основные параметры термодинамического равновесия является классическая термодинамика фазовых равновесий в системах с искривленными границами при строгом учете поверхностных явлений [1,7–9].

Целью настоящей работы является получение соотношений для определения состава фаз, расположенных по разные стороны от искривленного поверхностного слоя в бинарной системе в условиях равновесия в рамках термодинамической теории фазовых равновесий с учетом поверхностных явлений и проведение численных расчетов для бинарной системы Mo-Ru.

Основные соотношения, связывающие состав, температуру и степень дисперсности в бинарной системе

Рассмотрим бинарную систему, состоящую из двух фаз (α, β) и искривленного поверхностного (межфазного) слоя сферической формы между ними (σ), находящуюся в равновесном состоянии. Выберем в качестве переменных молярные доли компонентов в фазах $x_i^{(\alpha)}$, $x_i^{(\beta)}$, в межфазном слое $x_i^{(\sigma)}$, температуру *T*, давления $P^{(\alpha)}$ и $P^{(\beta)}$, а также радиус r, который является характеристикой степени дисперсности. В качестве разделяющей поверхности выберем поверхность натяжения Гиббса [1]. Будем считать, что фазы α и β располагаются соответственно с вогнутой и выпуклой стороны от поверхности натяжения. В ходе рассуждений будем использовать еще одну разделяющую поверхность с радиусом re, называемую эквимолекулярной разделяющей поверхностью [1] и с ее использованием введем в рассмотрение параметр Толмена $\delta = r_e - r$.

Для равновесного состояния термодинамический потенциал g двухфазной (α , β) системы имеет глобальный минимум. При этом должны выполняться соотношения

$$\frac{\partial g^{(\alpha)}}{\partial x_i^{(\alpha)}} = \frac{\partial g^{(\beta)}}{\partial x_i^{(\beta)}},\tag{1}$$

$$g^{(\alpha)} - x_i^{(\alpha)} \frac{\partial g^{(\alpha)}}{\partial x_i^{(\alpha)}} = g^{(\beta)} - x_i^{(\beta)} \frac{\partial g^{(\beta)}}{\partial x_i^{(\beta)}}, \qquad (2)$$

где $g^{(\xi)}$ — термодинамический потенциал фазы ξ (на моль), $x_i^{(\xi)}$ — молярная концентрация *i*-компонента в фазе ξ ($\xi = \alpha, \beta, i = 1, 2$).

Давления в сосуществующих фазах связаны соотношением Кондо [1]

$$P^{(\alpha)} - P^{(\beta)} = \frac{2\sigma_x}{r_x} + \left(\frac{d\sigma_x}{dr_x}\right)^*,\tag{3}$$

где звездочка указывает, что производная относится к мысленному перемещению разделяющей поверхности (не к реальному физическому процессу). При выборе в качестве разделяющей поверхности, поверхности натяжения $\left(\frac{d\sigma_x}{dr_x}\right) = 0$ будем иметь

$$dP^{(\alpha)} = dP^{(\beta)} + \frac{2}{r} d\sigma - \frac{2\sigma}{r^2} dr.$$
 (4)

Для двухкомпонентной двухфазной системы с искривленной границей, находящейся в равновесном состоянии, используя (1) и (2) с учетом (4), можно получить следующие соотношения

$$\omega_{i}d\sigma = -(s_{i}^{(\sigma)} - s_{i}^{(\alpha)})dT + (v_{i\alpha}^{(\sigma)} - v_{i}^{(\alpha)})dP^{(\alpha)} + v_{i\beta}^{(\sigma)}dP^{(\beta)} - x_{j}^{(\sigma)}g_{jj}^{(\sigma)}dx_{j}^{(\sigma)} + x_{j}^{(\alpha)}g_{jj}^{(\alpha)}dx_{j}^{(\alpha)}, \quad (5) (s_{i}^{(\beta)} - s_{i}^{(\alpha)})dT + v_{i}^{(\alpha)}dP^{(\alpha)} - v_{i}^{(\beta)}dP^{(\beta)} = x_{j}^{(\alpha)}g_{jj}^{(\alpha)}dx_{j}^{(\alpha)} - x_{j}^{(\beta)}g_{jj}^{(\beta)}dx_{j}^{(\beta)}. \quad (6)$$

В этих выражениях σ — межфазное (поверхностное) натяжение на границе фаз α и β , отнесенное к поверхности натяжения, s_i , v_i , ω_i — парциальные значения энтропии, объема и поверхности в расчете на моль для *i*-компонента соответственно, $v_{i\alpha}^{(\sigma)}$ и $v_{i\beta}^{(\sigma)}$ парциальные значения взаимно дополняющих друг друга частей среднего молярного объема поверхностного слоя для *i*-компонента $v_i^{(\sigma)}$, расположенные соответственно со стороны α - и β -фаз, $g_{jj} \equiv \frac{\partial^2 g}{(\partial x_j)^2}$.

Для описания фазового равновесия двух конденсированных фаз бинарной системы в макроскопическом случае $(r = \infty)$ довольно часто используется условие постоянства давления (P = const) и находятся уравнения, выражающие зависимость состава фаз от температуры. Таким образом теоретически строятся фазовые диаграммы состояния с линиями ликвидуса и солидуса [10,11].

Обратимся к случаю, когда фиксируется давление в фазе β ($P^{(\beta)} = \text{const}$). Описание равновесия фаз проведем для бинарной системы с заданной степенью дисперсности (с постоянным, но конечным радиусом кривизны).

В связи с трудностями нахождения статистической суммы раствора воспользуемся приближением ближайших соседей и введем в рассмотрение энергетический параметр, характеризующий взаимодействие частиц (энергия смешения) $Q = z N_0 (2\varepsilon_{ij} - \varepsilon_{ii} - \varepsilon_{jj})/2$, где $\varepsilon_{ij}, \varepsilon_{ii}, \varepsilon_{jj}$ — средние значения энергии парного взаимодействия соответствующих частиц, z — координационное число, N0 — число Авогадро. Для поэтапного описания термодинамических свойств фаз обратимся к разложению логарифмов коэффициентов активности компонентов f_i в ряд по степеням $\xi = Q/RT$. Если ограничиться первым членом разложения $((\ln f_i)_{\xi=0})$ будем иметь (идеальный раствор) $g_{ii} = RT/(x_i x_i)$. При удержании в этом разложении члена с первой степенью ξ (нулевое приближение теории регулярных растворов), получаем $g_{jj} = RT[(x_i x_j)^{-1} - 2Q/RT]$ (напомним, что $x_i + x_i = 1$). Вычисление этой производной в следующем приближении не представляет трудностей.

В случае перехода к однокомпонентной системе $(x_i^{(\alpha)} = x_i^{(\beta)} = x_i^{(\sigma)} = 1, x_j^{(\alpha)} = x_j^{(\beta)} = x_j^{(\sigma)} = 0)$ из (4), (5) и (6) получаются соотношения, описывающие соответствующие размерные эффекты, в том числе зависимости поверхностного (межфазного) натяжения и температуры фазового равновесия (например, температуры плавления) от размера [12,13].

Из исходных соотношений (4) и (6) в рамках модели раствора, использованной в [3] (соответствует случаю учета слагаемого $\left(\frac{\partial \ln f_i}{\partial \xi}\right)_{\xi=0} \cdot \xi$ в разложении $\ln f_i$ по степеням ξ), будем иметь

$$(s_{0i}^{(\beta)} - s_{0i}^{(\alpha)})dT + \frac{2v_{0i}^{(\alpha)}}{r}d\sigma = D(RT\ln x_i^{(\beta)}/x_i^{(\alpha)}) + 2Q^{(\alpha)}(1 - x_i^{(\alpha)})dx_i^{(\alpha)} - 2Q^{(\beta)}(1 - x_i^{(\beta)})dx_i^{(\beta)}, \quad (7)$$

где нижний индекс 0 указывает на принадлежность соответствующей величины к чистым компонентам. В первом слагаемом правой части этого выражения для обозначения дифференциала по составу при неизменных параметрах состояния, кроме состава, следуя Гиббсу, мы использовали букву *D*.

В термодинамике фазовых равновесий в бинарных и многокомпонентных системах для температур, выше температуры Дебая, в том числе в расчетах, основанных на подходе GALPHAD [6], допускается независимость от температуры скачка энтропии $\Delta s_{0i}^{(\alpha \to \beta)} = s_{0i}^{(\beta)} - s_{0i}^{(\alpha)}$ при $\alpha \to \beta$ фазовом переходе. Воспользуемся этим допущением и для конденсированных фаз вдали от критических условий предположим независимость параметра квазихимического взаимодействия Q от давления, что уже использовано во втором слагаемом в левой части (7). Отметим, что при этих допущениях сохраняются размерные зависимости энтропии, объема и поверхности чистых компонентов.

С учетом изложенного выше будем иметь первую систему из двух уравнений

$$\frac{2v_{0i}^{(\alpha)}(r)}{r} \left[\sigma - \sigma_{0i}(r, T_{0i})\right] = \left[s_{0i}^{(\beta)}(r) - s_{0i}^{(\alpha)}(r)\right] \left[T_{0i}(r) - T\right] + RT \ln \frac{x_i^{(\beta)}}{x_i^{(\alpha)}} + Q^{(\beta)}(r)(1 - x_i^{(\beta)})^2 - Q^{(\alpha)}(r)(1 - x_i^{(\alpha)})^2,$$
(8)

$$\frac{2v_{0j}^{(\alpha)}(r)}{r} \left[\sigma - \sigma_{0j}(r, T_{0j})\right] = \left[s_{0j}^{(\beta)}(r) - s_{0j}^{(\alpha)}(r)\right] \left[T_{0j}(r) - T\right]$$

$$+ RT \ln \frac{1 - x_i^{(\beta)}}{1 - x_i^{(\alpha)}} + Q^{(\beta)}(r)(x_i^{(\beta)})^2 - Q^{(\alpha)}(r)(x_i^{(\alpha)})^2, \quad (9)$$

где $T_{0i}(r)$, T_{0j} и $\sigma_{0i}(r, T_{0i})$, $\sigma_{0j}(r, T_{0j})$ — температуры равновесия α - и β -фаз для компонентов и межфазные натяжения компонентов i и j при этих температурах, которые зависят от размера.

Уравнения (8) и (9) для межфазного натяжения на границе α и β фаз не имеют аналогов для плоских поверхностей и при $r \to \infty$, они переходят в соотношения, связывающие состав сосуществующих фаз с температурой в макроскопической системе в рамках теории регулярных растворов (уравнения линий ликвидуса и солидуса) [10,11]. Если дополнительно (к условию $P^{(\beta)} = \text{const}$) зафиксировать температуру и принять независимость межфазного натяжения и молярного объема от размера в приближении идеальных растворов, из исходных соотношений аналогичным образом можно получить известную формулу Оствальда—Фройндлиха по растворимости малых кристаллов [14].

Следующую систему из двух уравнений можно получить с использованием исходных соотношений (5), (6) и (4). Предварительно преобразуем первые сомножители в первых двух слагаемых в правой части соотношения (5). Воспользуемся очевидным соотношением $v_i^{(\sigma)} = v_{0i}^{(\sigma)} = v_{0i\alpha}^{(\sigma)} + v_{0i\beta}^{(\sigma)}$ и учтем, что второе слагаемое в случае, когда поверхность имеет сферическую форму, выражается в виде [12]

$$v_{0i\beta}^{(\sigma)} = \frac{v_{0i}^{(\sigma)} - v_{0i}^{(\alpha)}}{v_{0i}^{(\beta)} - v_{0i}^{(\alpha)}} v_{0i}^{(\beta)} + \omega_{0i}\delta_{0i} \left(1 + \frac{\delta_{0i}}{r} + \frac{1}{3}\frac{\delta_{0i}^2}{r^2}\right), \quad (10)$$

где δ_{0i} — параметр Толмена для *i*-компонента. Из (5), (6) и (4) следует для однокомпонентной системы

$$s_{0i}^{(\sigma)} - s_{0i}^{(\alpha)} = -\omega_{0i} \left(\frac{d\sigma_{0i}}{dT}\right)_{P^{(\beta)}} + \left(s_{0i}^{(\beta)} - s_{0i}^{(\alpha)}\right) \\ \times \left[\frac{v_{0i}^{(\sigma)} - v_{0i}^{(\alpha)}}{v_{0i}^{(\beta)} - v_{0i}^{(\alpha)}} + \frac{\omega_{0i}\delta_{0i}}{v_{0i}^{(\alpha)}} \left(1 + \frac{\delta_{0i}}{r} + \frac{1}{3}\frac{\delta_{0i}^2}{r^2}\right)\right].$$
(11)

В макроскопической системе, как показано в [1], учет условий равновесия плоского поверхностного слоя с

прилегающими фазами равносилен выбору эквимолекулярной разделяющей поверхности $(r = r_e)$. В таком случае $\delta = r_e - r = r_e - r_e = 0$ и в квадратных скобках в (11) отличным от нуля остается первое слагаемое. При этом из (11) следует выражение для температурного коэффициента поверхностного (межфазного) натяжения в макроскопическом случае

$$\omega_{0i\infty} \frac{d\sigma_{0i\infty}}{dT} = \left(s_{0i\infty}^{(\beta)} - s_{0i\infty}^{(\alpha)}\right) \frac{v_{0i\infty}^{(\sigma)} - v_{0i\infty}^{(\alpha)}}{v_{0i\infty}^{(\beta)} - v_{0i\infty}^{(\alpha)}} - \left(s_{0i\infty}^{(\sigma)} - s_{0i\infty}^{(\alpha)}\right),\tag{12}$$

которое было получено в [1] (индекс " ∞ " указывает на условие $r = \infty$).

С учетом изложенного выше (в случае разложения $\ln f_i$ до члена с первой степенью $\xi = Q/RT$), будем иметь

$$\omega_{0i}d\sigma = D\left\{RT\ln\left[K_{i}^{(\sigma\alpha)}/K_{i}^{(\beta\alpha)\overline{r}_{0i}}\right]\right\} + 2\left[Q^{(\sigma)}x_{j}^{(\sigma)}dx_{j}^{(\sigma)} - (1-\bar{\rho}_{0i})Q^{(\alpha)}x_{j}^{(\alpha)}dx_{j}^{(\alpha)} - Q^{(\beta)}x_{j}^{(\beta)}dx_{j}^{(\beta)}\right], (13)$$

где $K_i^{(\sigma\alpha)} = x_i^{(\sigma)} / x_i^{(\alpha)}$, $K_i^{(\beta\alpha)} = x_i^{(\beta)} / x_i^{(\alpha)}$, $K_i^{(\sigma\alpha)}$, $K_i^{(\beta\alpha)}$ — коэффициенты распределения *i*-компонента между сосуществующими фазами,

$$\overline{\rho}_{0i} = \frac{v_{0i}^{(\sigma)} - v_{0i}^{(\alpha)}}{v_{0i}^{(\beta)} - v_{0i}^{(\alpha)}} + \frac{\omega_{0i}\delta_{0i}}{v_{0i}^{(\alpha)}} \left(1 + \frac{\delta_{0i}}{r} + \frac{1}{3}\frac{\delta_{0i}^2}{r^2}\right), \quad (14)$$

Буква *D* в первом слагаемом в правой части (13) указывает на постоянство температуры при дифференцировании. Соотношение, аналогичное (13), можно записать через характеристики другого компонента. Интегрирование этих двух выражений при изменении концентраций от единицы до текущих значений $x_i^{(\alpha)}, x_i^{(\beta)}, x_i^{(\sigma)}$ для систем с заданной степенью дисперсности позволяет получить следующие уравнения

$$\sigma = \sigma_{0i}(T, r) + \frac{RT}{\omega_{0i}(r)} \left\{ \ln \frac{x_i^{(\sigma)}}{x_i^{(\alpha)}} - \overline{\rho}_{0i}(r) \ln \frac{x_i^{(\beta)}}{x_i^{(\alpha)}} + \frac{Q^{(\sigma)}(r)}{RT} (1 - x_i^{(\sigma)})^2 - [1 - \overline{\rho}_{0i}(r)] \frac{Q^{(\alpha)}(r)}{RT} (1 - x_i^{(\alpha)})^2 - \overline{\rho}_{0i}(r) \frac{Q^{(\beta)}(r)}{RT} (1 - x_i^{(\beta)})^2 \right\},$$
(15)

$$\sigma = \sigma_{0j}(T, r) + \frac{RT}{\omega_{0j}(r)} \left\{ \ln \frac{x_j^{(\sigma)}}{x_j^{(\alpha)}} - \overline{\rho}_{0j}(r) \ln \frac{x_j^{(\beta)}}{x_j^{(\alpha)}} + \frac{Q^{(\sigma)}(r)}{RT} (x_i^{(\sigma)})^2 - [1 - \overline{\rho}_{0j}(r)] \frac{Q^{(\alpha)}(r)}{RT} (x_i^{(\alpha)})^2 - \overline{\rho}_{0j}(r) \frac{Q^{(\beta)}(r)}{RT} (x_i^{(\beta)})^2 \right\},$$
(16)

где

$$\sigma_{0i}(r,T) = \sigma_{0i}(r,T_{0i}) + \left(\frac{d\sigma_{0i}}{dT}\right)_{P^{(\beta)}} \cdot [T - T_{0i}(r)], \quad (17)$$

$$\sigma_{0j}(r,T) = \sigma_{0j}(r,T_{0j}) + \left(\frac{d\sigma_{0j}}{dT}\right)_{P^{(\beta)}} \cdot [T - T_{0j}(r)], \quad (18)$$

 $\overline{\rho}_{0i}$ выражается также как (14) с заменой индекса *i* на *j*.

При $r \to \infty$ из (15) получаем следующее уравнение изобары межфазного натяжения в бинарной макроскопической системе в рамках термодинамики регулярных растворов:

$$\sigma_{\infty} = \sigma_{0i\infty}(T) + \frac{RT}{\omega_{0i\infty}} \left[\frac{x_{i\infty}^{(\sigma)}}{x_{i\infty}^{(\alpha)}} \left(\frac{x_{i\infty}^{(\alpha)}}{x_{i\infty}^{(\beta)}} \right)_{\rho^{0i\infty}} \right] \\ + \frac{Q_{\infty}^{(\sigma)}}{\omega_{0i\infty}} (1 - x_i^{(\sigma)})^2 - (1 - \rho_{0i\infty}) \frac{Q_{\infty}^{(\alpha)}}{\omega_{0i\infty}} (1 - x_i^{(\alpha)})^2 \\ - \rho_{0i\infty} \frac{Q_{\infty}^{(\beta)}}{\omega_{0i\infty}} (1 - x_i^{(\beta)})^2, \tag{19}$$

где $\sigma_{0i\infty}(T) = \sigma_{0i\infty}(T_{0i\infty}) + \frac{d\sigma_{0i\infty}}{dT}(T - T_{0i\infty}), \quad \rho_{0i\infty} = (v_{0i\infty}^{(\sigma)} - v_{0i\infty}^{(\alpha)})/(v_{0i\infty}^{(\beta)} - v_{0i\infty}^{(\alpha)}).$

Уравнения (19) внешне совпадает с уравнением изотермы межфазного натяжения на границе двух растворов [15], но необходимо иметь в виду, что в (19) фигурируют сопряженные значения температуры и состава сосуществующих фаз.

Для бинарной системы жидкость (α)-пар (β), в силу того, что $v_{0i\infty}^{(\sigma)} \ll v_{0i\infty}^{(\beta)} \gg v_{0i\infty}^{(\alpha)}$ имеем $\rho_{0i\infty} \approx 0$ и (19) переходит в уравнение

$$\sigma_{\infty} = \sigma_{0i\infty}(T) + \frac{RT}{\omega_{0i\infty}} \ln \frac{x_i^{(\sigma)}}{x_i^{(\alpha)}} + \frac{Q_{\infty}^{(\sigma)}}{\omega_{0i\infty}} (1 - x_{i\infty}^{(\sigma)})^2 - \frac{Q_{\infty}^{(\alpha)}}{\omega_{0i\infty}} (1 - x_{i\infty}^{(\alpha)})^2, \qquad (20)$$

которое совпадает с уравнением Батлера-Жуховицкого для поверхностного натяжения раствора, подчиняющегося нулевому приближению теории регулярных растворов [16].

Система четырех уравнений (8), (9) и (15), (16) позволяет определить состав сосуществующих фаз $x_i^{(\alpha)}$, $x_i^{(\beta)}$, межфазного слоя $x_i^{(\sigma)}$ и межфазное натяжение σ при разных температурах для заданного значения радиуса поверхности натяжения *r*. Настоящая работа содержит результаты расчетов для состава сосуществующих фаз, при нахождении которых на промежуточных этапах приходится рассчитывать значения $x_i^{(\sigma)}$ и σ .

Отметим, что из соотношений (5), (6) и (4) наряду с (15) и (16) можно получить следующую (вторую)

систему из двух уравнений в рамках той же модели растворов:

$$\begin{aligned} \sigma &= \sigma_{0i}(T,r) + \frac{RT}{\omega_{0i}(r)} \left[1 + \frac{2v_{0i}^{(\alpha)}(r)}{r\omega_{0i}^{(\alpha)}(r)} \bar{\rho}_{0i}(r) \right]^{-1} \\ &\times \left[\ln \frac{x_i^{(\sigma)}}{x_i^{(\alpha)}} + (1 - x_i^{(\sigma)})^2 \frac{Q^{(\sigma)}(r)}{RT} - (1 - x_i^{(\alpha)})^2 \frac{Q^{(\alpha)}(r)}{RT} \right], \end{aligned}$$

$$(21)$$

$$\sigma &= \sigma_{0j}(T,r) + \frac{RT}{\omega_{0j}(r)} \left[1 + \frac{2v_{0j}^{(\alpha)}(r)}{r\omega_{0j}^{(\alpha)}(r)} \bar{\rho}_{0j}(r) \right]^{-1} \\ &\times \left[\ln \frac{1 - x_j^{(\sigma)}}{1 - x_j^{(\alpha)}} + (x_j^{(\sigma)})^2 \frac{Q^{(\sigma)}(r)}{RT} - (x_j^{(\alpha)})^2 \frac{Q^{(\alpha)}(r)}{RT} \right]. \end{aligned}$$

$$(22)$$

В заключение этого раздела приведем уравнения, которые следуют из исходных соотношений при использовании уравнения Гиббса-Дюгема. В силу того что вторые производные термодинамического потенциала по составу берутся при постоянстве температуры и давления, будем иметь

$$\sigma = \sigma_{0\nu}(T, r) + \frac{RT}{\omega_{0\nu}(r)} \times \ln\left[\frac{\alpha_{\nu}^{(\sigma)}(r)}{\left(\alpha_{\nu}^{(\alpha)}(r)\right)^{\left(1 - \overline{\rho}_{0\nu}(r)\right)}\left(\alpha_{\nu}^{(\beta)}(r)\right)^{\left(\overline{\rho}_{0\nu}(r)\right)}}\right], \quad (23)$$
$$\sigma = \sigma_{0\nu}(T, r) + \frac{RT}{\omega_{0\nu}(r)}$$

$$\times \left[1 + \frac{2v_{0\nu}^{(\alpha)}(r)}{r\omega_{0\nu}(r)}\overline{\rho}_{0\nu}(r)\right]^{-1} \ln\left[\frac{\alpha_{\nu}^{(\sigma)}(r)}{\alpha_{\nu}^{(\alpha)}(r)}\right], \quad (24)$$

где a_{ν} — термодинамическая активность компонента ν ($\nu = i, j$), которая зависит наряду с другими параметрами состояния и от радиуса поверхности натяжения дисперсной частицы.

Размерные зависимости индивидуальных характеристик компонентов и параметра квазихимического взаимодействия частиц в растворе

3.1. Зависимость межфазного натяжения и температуры равновесия от радиуса поверхности натяжения дисперсной частицы, находящейся в матрице, в однокомпонентной системе в изобарических условиях. Для проведения численных расчетов по приведенным выше соотношениям необходимо располагать зависимостями межфазного натяжения σ_{0i} и температуры равновесия α - и β -фаз T_{0i} компонентов от размера r при постоянстве давления в фазе β . Для установления таких зависимостей обратимся к исходным соотношениям (2) и (4). Из этих выражений следует дифференциальное уравнение

$$\frac{1}{\sigma_{0i}} \left(\frac{d\sigma_{0i}}{dr}\right)_{P^{(\beta)}} = \frac{\frac{2}{r^2} \left\{ \delta_{0i} \left(1 + \frac{\delta_{0i}}{r} + \frac{1}{3} \frac{\delta_{0i}^2}{r^2}\right) + \delta_{0i}^* \right\}}{1 + \frac{2}{r} \left\{ \delta_{0i} \left(1 + \frac{\delta_{0i}}{r} + \frac{1}{3} \frac{\delta_{0i}^2}{r^2}\right) + \delta_{0i}^* \right\}},\tag{25}$$

где

$$\delta_{0i}^{*} = \frac{v_{0i}^{(\alpha)}}{\omega_{0i}} \left(\frac{v_{0i}^{(\sigma)} - v_{0i}^{(\alpha)}}{v_{0i}^{(\beta)} - v_{0i}^{(\alpha)}} - \frac{s_{0i}^{(\sigma)} - s_{0i}^{(\alpha)}}{s_{0i}^{(\beta)} - s_{0i}^{(\alpha)}} \right).$$
(26)

Соотношение (25) получено нами [17], оно является аналогом уравнения Гиббса-Толмена-Кенига-Баффа (ГТКБ) при условии постоянства давления во внешней фазе $P^{(\beta)} = \text{const.}$

При нахождении решения уравнения ГТКБ, справедливого при T = const, как правило, параметр Толмена δ_{0i} считается не зависящим от r (см., например, [1,17]). При таком предположении из полученного решения (в случае малых искривлений поверхности) следует формула Толмена.

Сохраним условие ($\delta_{0i} = \text{const}$) и дополнительно будем считать не зависящей от *r* величину δ_{0i}^* ($\delta_{0i}^* = \text{const}$). При таких предположениях из (25) можно получить, как показано в [17],

$$\sigma_{0i}(r) = A_{0i}\sigma_{0i\infty}r \frac{\exp\left[D_{0i} \operatorname{arctg}\left(\frac{2r+b_{0i}\delta_{0i}}{\delta_{0i}D_{0i}}\right)\right]}{(r+a_{0i}\delta_{0i})^{m_{0i}}(r^2+b_{0i}\delta_{0i}r+c_{0i}\delta_{0i}^2)^{n_{0i}}},$$
(27)

где $A_{0i} = \exp\left[-\sqrt{4c_0 - b_0^2} \arctan(\infty)\right], \quad b_0 = 1.4425,$ $c_0 = 1.1958, \quad D_{0i} = \sqrt{4c_{0i} - b_{0i}^2}, \quad m_{0i} = 1 - a_{0i}, \quad n_{0i} = (1 - m_{0i})/2.$ Значения a_{0i}, b_{0i} и c_{0i} зависят от $d_{0i} = 1 + \delta_{0i}^*/\delta_{0i}$ и находятся из совместного решения уравнений $a_{0i} + b_{0i} = 2d_{0i}, c_{0i} + a_{0i}b_{0i} = 2, a_{0i}c_{0i} = 2/3.$

Из системы уравнений (5), (6) и (4) при тех же предположениях можно получить выражение для размерной зависимости температуры фазового равновесия [18]

$$T_{0i}(r) = T_{0i\infty} - A_{0i} \frac{2\sigma_{0i\infty}v_{0i\infty}^{(\alpha)}}{(s_{0i\infty}^{(\beta)} - s_{0i\infty}^{(\alpha)})} \times \frac{\exp\left[D_{0i} \operatorname{arctg}\left(\frac{2r + b_{0i}\delta_{0i}}{\delta_{0i}D_{0i}}\right)\right]}{(r + a_{0i}\delta_{0i})^{(1 - 3a_{0i}/2)}(r^3 + 2d_{0i}\delta_{0i}r^2)}.$$
 (28)

При больших значениях радиуса поверхности натяжения из (28) следует формула Томсона. Результаты расчетов с использованием (28), как показано в [18], достаточно хорошо согласуются с имеющимися экспериментальными данными. 3.2. Размерные зависимости v_{0i} , ω_{0i} и $\Delta s_{0i}^{(\alpha \to \beta)} = s_{0i}^{(\beta)} - s_{0i}^{(\alpha)}$. Для установления зависимости молярного объема $v_{0i}^{(\alpha)}$ от r можно воспользоваться разложением в ряд молярной плотности $\rho_{0i}^{(\alpha)} = 1/v_{0i}^{(\alpha)}$ по кривизне R = 1/r. Если ограничиться в этом разложении первым членом по R (что справедливо для малой кривизны), будем иметь [19,20]

$$v_{0i}^{(\alpha)}(r) \approx v_{0i\infty}^{(\alpha)} / \left(1 + \frac{2\sigma_{0i\infty}^{(\alpha)}\chi_{0i\infty}^{(\alpha)}}{r}\right),$$
 (29)

где $\sigma_{0i\infty}^{(\alpha)}$ и $\chi_{0i\infty}^{(\alpha)}$ — поверхностное натяжение и изотермическая сжимаемость *i*-компонента в фазе α при $r = \infty$. При проведении численных расчетов использовалось приближенное выражение $\sigma_{0i\infty}^{(\alpha)}\chi_{0i\infty}^{(\alpha)} \approx \frac{3}{2} \frac{\alpha_{0i\infty}^{(\alpha)}T_{0i\infty}(v_{0i\infty}^{(\alpha)})^{1/3}}{N_0^{1/3}}$ [21], где $\alpha_{0i\infty}^{(\alpha)}$ — изобарический коэффициент теплового линейного расширения, N_0 — число Авогадро.

Молярная поверхность может быть выражена в виде

$$\omega_{0i}(r) = \frac{N_0^{1/3}}{n} [v_{0i}^{(\sigma)}(r)]^{2/3}, \qquad (30)$$

где *n* — число монослоев в переходном слое. Величину молярного объема в межфазном слое можно приближенно находить, сохраняя для искривленной поверхности по форме соотношение, использованное для макроскопического случая [1].

Размерная зависимость скачка молярной энтропии при фазовом переходе $\alpha \rightarrow \beta$ приближенно находилась из (4) и (6) с использованием в целях упрощения формулы Толмена для $\sigma_{0i}(r)$ и формулы Томсона для $T_{0i}(r)$

$$s_{0i}^{(\beta)}(r) - s_{0i}^{(\alpha)}(r) \\ \approx \frac{s_{0i\infty}^{(\beta)} - s_{0i\infty}^{(\alpha)}}{\left(1 + \frac{2\overline{\delta}_{0i}}{r}\right)\left(1 + \frac{2\sigma_{0i\infty}^{(\alpha)}\chi_{0i\infty}^{(\alpha)}}{r}\right)} \left(1 - \frac{2\delta_{0i}^{*}}{r}\right). \quad (31)$$

В принципе можно использовать более общие выражения для σ_{0i} и T_{0i} , приведенные выше (соответственно (27) и (28)).

3.3. Размерные зависимости параметра квазихимического взаимодействия в фазах и расчет параметра Толмена. Для приближенной оценки влияния размера на параметр квазихимического взаимодействия в той или иной фазе воспользуемся выражением $Q = \overline{\xi}z$, где $\overline{\xi} = N_0(2\varepsilon_{ij} - \varepsilon_{ii} - \varepsilon_{jj})/2$. Полагая $\overline{\xi}$ не зависящим от размера, можно записать $Q(r) \approx z(r)Q_{\infty}/z_{\infty}$. В термодинамических расчетах поверхностного натяжения бинарных растворов (см., например, [16]) аналогичный прием часто используется для нахождения энергии смешения в поверхностном слое. Воспользуемся выражением для размерной зависимости координационного числа, полученным в рабо-

те [22], и запишем Q(r) в виде

$$Q(r) \approx Q_{\infty} \left[1 - \frac{3}{4} \left(\frac{r_0}{r} \right) + \frac{1}{16} \left(\frac{r_0}{r} \right)^3 \right], \qquad (32)$$

где r_0 — расстояние между ближайшими частицами.

Расчеты, проведенные в [23,24], показывают, что в случае границы твердое тело-жидкость в однокомпонентной системе для межфазного натяжения получаются значения, удовлетворительно согласующиеся с наиболее надежными данными для большого числа металлов, при условии $\delta_{0i}^{(\alpha\beta)} \approx \delta_{0i}^{(\alpha\gamma)} + \delta_{0i}^{(\beta\gamma)}$, где $\delta_{0i}^{(\alpha\gamma)}$ и $\delta_{0i}^{(\beta\gamma)}$ — параметр Толмена для фаз α и β соответственно на границе с паром (γ — пар). Значения $\delta_{0i}^{(\alpha\gamma)}$ и $\delta_{0i}^{(\beta\gamma)}$, в свою очередь, можно находить по одной из известных методик (см., например, [25,26,27]). В наших расчетах они рассчитывались в соответствии с [25] для основных кристаллических структур.

4. Результаты расчетов и их краткое обсуждение

Для апробации полученных соотношений по нахождению состава сосуществующих фаз с учетом наноразмерных эффектов проведем расчет для бинарной системы Мо-Ru. При проведении расчетов вычисляются также значения межфазного натяжения и концентрации компонентов на границе наночастицы и матрицы в зависимости от температуры.

В системе Мо-Ru сосуществуют фазы: твердый раствор с ОЦК-решеткой и жидкость (β -L), твердый раствор с ГПУ-решеткой и жидкость (ϵ -L), а также твердый раствор с ОЦК-решеткой и твердый раствор с ГПУ-решеткой (β - ϵ).

4.1. Входные данные для расчетов. Для молярных объемов компонентов в стабильных модификациях при температурах плавления $(r = \infty)$ были приняты значения $v_{Mo\infty}^{(\beta)} = 9.4 \text{ cm}^3/\text{mol}$ [28], $v_{Ru}^{(c)} = 8.4 \text{ cm}^3/\text{mol}$ [28]. Объемы в случаях нестабильных модификаций (Мо с ГПУ-структурой, Ru с ОЦК-структурой) определялись с использованием коэффициентов упаковок для ОЦК- $(\eta = 0.68)$ и ГПУ $(\eta = 0.74)$ -структур [29]. При приведении молярных объемов к соответствующим температурам принимались значения изобарических коэффициентов теплового объемного расширения, равные $\alpha_V^{Mo} = 50 \cdot 10^{-6} \text{ K}^{-1}$ [29,30] и $\alpha_V^{Ru} = 50 \cdot 10^{-6} \text{ K}^{-1}$ [29,30]. Значения r_0 находились с использованием молярных объемов.

Межфазное натяжение на плоской границе макроскопических фаз твердое тело—жидкость в однокомпонентных системах может быть рассчитано с использованием ряда соотношений (см., например, [16,23,28,31,32]). После анализа результатов таких расчетов для межфазного натяжения и его температурного коэффициента нами использованы соотношения, предложенные в [28] (как наиболее удобные). Результаты вычислений $\sigma_{0i\infty}^{(SL)}$ по методике [23] также хорошо согласуются с имеющимися экспериментальными данными (в работе [23] рассчитаны значения межфазного натяжения на границе твердое—жидкость для 50 металлов).

Для характеристик фазового равновесия β -L в системе Mo–Ru использовались значения: $T_{01\infty}$ =2900 K, $T_{02\infty}$ = = 1420 K, $s_{01\infty}^{(L)} - s_{01\infty}^{(\beta)}$ = 8.368 · 10⁷ erg/mol, $s_{02\infty}^{(L)} - s_{02\infty}^{(\beta)}$ = = 11.715 · 10⁷ erg/mol (все из [11]).

eta-модификации Для молибдена в при температуре плавления получено $\sigma_{Mo\infty} = 464 \text{ mJ/m}^2$, $\frac{d\sigma_{Mo\infty}}{dT} = 0.0303 \text{ mJ}/(\text{m}^2 \cdot \text{K}).$ При нахождении аналогичных величин для рутения в метастабильной модификации (β) использовалось соотношение между энтальпиями фазовых превращений *β*-L и є-L, приведенные в [11], а также коэффициенты упаковки для β и ε структур [33]. Найденные таким образом величины составили $\sigma_{
m Ru\infty} = 289 \, {
m mJ/m^2}$ и $\frac{d\sigma_{
m Rucc}}{dT} = 0.0476 \, {
m mJ/(m^2 \cdot K)}$ при $T_{
m Rucc}^{(\beta L)} = 1420 \, {
m K}.$

Отметим, что приведенные выше положительные значения температурных коэффициентов межфазного натяжения на границе твердое тело-жидкость не должны вызывать возражений, так как они не противоречат термодинамике поверхности (см. формулу (12)). Аналогичные результаты (т.е. $d\sigma_{0i}^{SL} > 0$) получены в рамках теории термодинамического подобия при фазовых переходах кристалл-жидкость [34]. При высоких температурах эта производная, как и на границе жидкость-пар [1], отрицательна вследствие возрастания амплитуды атомных колебаний с ростом температуры. Вычисленные нами значения параметра Толмена по методике [25] и мольных площадей с использованием соотношения при температуре равновесия твердое тело (*β*)-жидкость соответственно равны $\delta_{01} = 0.0276 \cdot 10^{-7}$ cm, $\delta_{02} = 0.0276 \cdot 10^{-7}$ cm, $\omega_{01\infty} = 19.618 \cdot 10^7 \,\mathrm{cm}^2, \, \omega_{02\infty} = 19.888 \cdot 10^7 \,\mathrm{cm}^2.$

Для характеристики фазового равновесия β - ε использованы значения: $\omega_{01\infty} = 23.628 \cdot 10^7 \text{ cm}^2$, $\omega_{02\infty} = 21.729 \cdot 10^7 \text{ cm}^2$, $\delta_{01} = 0.0347 \cdot 10^{-7} \text{ cm}$, $\delta_{01}^{(\varepsilon\beta)} = 0.0344 \cdot 10^{-7} \text{ cm}$,

Межфазное натяжение на границе полиморфных фаз для компонентов рассчитывалось нами в соответствии с рекомендациями [28]. В результате были получены следующие значения для случая равновесия фаз α и β :

$$\sigma_{01\infty} = 874 \text{ mJ/m}^2, \quad \frac{d\sigma_{01\infty}}{dT} = 0.0612 \text{ mJ/(m}^2 \cdot \text{K}),$$
$$\sigma_{02\infty} = 746 \text{ mJ/m}^2, \quad \frac{d\sigma_{02\infty}^{(\epsilon\beta)}}{dT} = 0.0588 \text{ mJ/(m}^2 \cdot \text{K})$$

при T = 2000 K.

2900

2800

2600

2200

2000

1800

0

20

2691.3

⊻ 2400 H

Для параметров квазихимического взаимодействия в сосуществующих фазах (L, β , ε) использовались различные значения, в том числе приведенные в [11], которые имеют отрицательные значения $Q_{\infty}^{(L)} = -23690 \cdot 10^7 \text{ erg/mol}, Q_{\infty}^{(\beta)} = -23937 \cdot 10^7 \text{ erg/mol}, Q_{\infty}^{(\varepsilon)} = -30967 \cdot 10^7 \text{ erg/mol}. Аналогичный параметр для$ межфазного слоя приближенно может быть рассчитанс учетом числа атомных связей в пограничном слое,замыкающихся на прилегающие фазы [33]. Отметим,что находимые таким образом (в результате достаточно $громоздких вычислений) значения <math>Q_{\infty}^{(\sigma)}$ для соответствующих межфазных границ в наших расчетах занимали промежуточное (близкое к среднему) положение по сравнению со значениями в сосуществующих фазах.

4.2. Результаты численных расчетов и их краткое обсуждение. На рис. 1,2 и в табл. 1 и 2 приведены результаты наших расчетов. Аналогичные данные получены нами для границ (ε -L) и растворимости рутения в твердой фазе ε (ГПУ).

На первом этапе расчеты проводились для случая, когда химические потенциалы компонентов во всех фазах в бинарной системе Мо-Ru пропорциональны логарифмам концентраций ($\mu_i \sim \ln x_i$). В этом случае удается получить в аналитическом виде выражения для всех неизвестных величин ($x_i^{(\alpha)}, x_i^{(\beta)}, x_i^{(\sigma)}, \sigma$) в зависимости от радиуса поверхности натяжения.

Результаты наших расчетов состава сосуществующих макроскопических фаз $(r = \infty)$ и в двухфазной системе, содержащей наночастицы сферической формы с радиусом поверхности натяжения r = 5 nm, в зависимости от температуры приведены на рис. 1. При этом вычисления проведены для случаев равновесия твердой фазы с ОЦК-решеткой (фаза β) и жидкости, твердой фазы с ГПУ-решеткой (фаза ε) и жидкости, а также двух твердых фаз с ОЦК- и ГПУ-структурами (β - ε). Этих данных достаточно для построения фазовой диаграммы состояния макроскопических фаз и с учетом

Рис. 1. Диаграммы состояния для системы Mo-Ru $1 - \infty$, 2 - r = 5 nm (расчет).

*x*₂, %

60

80

40

2550

100

2395.7

Рис. 2. Размерная зависимость координат эвтектической точки на диаграмме состояния в системе Mo-Ru.

наноразмерных эффектов. При $r = \infty$ результаты расчетов, несмотря на принятые допущения, достаточно хорошо согласуются с экспериментальными данными. Так, по результатам вычислений для случая, когда $\mu_i \sim \ln x_i$, диаграмма состояния относится к эвтектическому типу с твердыми растворами, что совпадает с экспериментальными данными [35–37]. Температура и состав в эвтектической точке, вычисленные нами в этом приближении, составляют соответственно $T_e = 2228$ K, $x_{Rue}^{(L)} \approx 0.470$ и они близки к экспериментальным данным в [35] ($T_e = 2228$ K, $x_{Rue}^{(L)} \approx 0.420$) и в [37] ($T_e = 2218$ K, $x_{Rue}^{(L)} \approx 0.416$).

Эксперименты [35-37] показывают, что в бинарной системе Mo-Ru на всем температурном интервале ниже эвтектической температуры для твердых растворов на основе молибдена $dx_{\mathrm{Rue}}^{(\beta)}/dT>0$. По нашим расчетам, эта производная имеет такой знак при T < 1400 K и меняет знак $(dx_{\mathrm{Ru}\infty}^{(\beta)}/dT < 0)$ при переходе к более высоким температурам. Эта связано, видимо, с тем, что в области температур от 1416 до 2228 К в этой системе существует, как показывают эксперименты [35,36], промежуточная фаза (σ -фаза) Мо₅Ru₃, которая нами не принималась во внимание при проведении расчетов. При температурах ниже температуры стабильности σ-фазы (T < 1416 K [35]) наши расчетные данные показывают, возрастание растворимости рутения в молибдене в твердом состоянии с ростом температуры. Растворимость молибдена в рутении по нашим расчетам во всем температурном интервале в твердом состоянии ($T < T_e$) растет с температурой, что соответствует экспериментам [35-37].

По найденным значениям координат эвтектической точки на диаграмме состояния можно также (второй вариант) построить кривые растворимости в твердом состоянии. Для этого из условий равновесия фаз β и

	x ₂ ^(β) ,%					x2 ^(L) ,%				
Τ,Κ	<i>T</i> ,K <i>r</i> ,nm									
	∞	15	10	5	2	∞	15	10	5	2
2900	0					0				
2830	2.5	0				4.7	0			
2800	3.6	1.1				6.7	2.1			
2796	3.7	1.22	0			6.9	2.4	0		
2700	7.6	4.9	3.6			13.2	8.9	6.6		
2691	8.0	5.3	3.9	0		13.7	9.5	7.2	0	
2600	12.0	9.2	7.8	3.6		19.6	15.5	13.3	6.6	
2500	16.8	13.8	12.4	8.0		25.9	22.0	20.0	13.6	
2400	22.0	19.0	17.4	12.8		32.4	28.6	26.6	20.5	
2378	23.2	20.1	18.6	14.0	0	33.8	30.1	28.1	22.0	0
2300	27.5	24.5	22.9	18.2	3.5	38.9	35.2	33.1	27.4	6.4
2230	28.1	28.6	27.0	22.2	7.1	43.2	40.0	38.1	32.4	12.0
2200		30.4	28.8	24.0	8.7		42.0	40.2	34.4	14.4
2189		31.1	29.5	24.7	9.31		42.8	40.9	35.3	15.3
2165			31.0	26.2	10.7			42.5	36.7	17.2
2100				30.3	14.5				41.6	22.4
2097				30.5	14.7				41.9	22.6
2000					21.0					30.4
1890					28.8					39.4

Таблица 1. Состав сосуществующих фаз $(\beta - L)$ в зависимости от температуры в системе Мо–Ru в макроскопическом случае $(r = \infty)$ и с учетом наноразмерных $(r \neq \infty)$ эффектов (расчет при $Q_{\infty}^{(L)} = -23.69$ kJ/mol, $Q_{\infty}^{(\beta)} = -23.937$ kJ/mol)

Таблица 2. Растворимость рутения в твердой фазе β (ОЦК) при разных температурах в системе Mo-Ru в макроскопическом случае ($r = \infty$) и с учетом наноразмерных эффектов (расчет по формулам (33) и (34))

<i>Т</i> ,К	${\cal Q}_{\infty}^{(eta)}={\cal Q}_{\infty}^{(arepsilon)}={f 0}$					$egin{aligned} Q^{(eta)}_{\infty} &= -23.937 ext{kJ/mol},\ Q^{(arepsilon)}_{\infty} &= -23.0 ext{kJ/mol}, \end{aligned}$					
	$x_2^{(\beta)},\%$					$x_2^{(eta)},\%$					
	Радиус наночастицы r, nm										
	∞	15	10	5	2	∞	15	10	5	2	
600	11.6	11.9	12.1	12.8	15.3	20.2	22.9	23.0	22.9	22.6	
700	13.8	14.0	14.3	14.9	17.3	21.0	23.7	23.8	23.7	23.3	
800	15.7	15.9	16.1	16.7	19.0	21.7	24.4	24.5	24.4	23.9	
900	17.3	17.5	17.7	18.3	20.3	22.4	25.1	25.1	25.0	22.6	
1000	18.7	18.9	19.1	19.6	21.5	23.0	25.7	25.8	25.6	23.3	
1100	20.0	20.1	20.3	20.8	22.5	23.6	26.3	26.3	26.2	23.9	
1200	22.1	21.2	21.4	21.9	23.4	24.1	26.9	25.9	26.7	24.5	
1300	22.1	22.2	22.4	22.8	24.2	24.6	27.4	27.4	27.2	25.1	
1400	23.0	23.1	23.3	23.7	24.9	25.1	27.9	27.9	27.7	25.6	
1500	23.8	23.9	24.1	24.4	25.5	25.5	28.4	28.4	28.1	26.1	
1600	24.6	24.7	24.8	25.1	26.1	26.0	28.8	28.8	28.6	26.6	
1700	25.3	25.3	25.5	25.9	26.6	26.3	29.2	29.2	29.0	27.0	
1800	25.9	26.0	26.1	26.1	26.4	27.1	26.7	29.7	29.7	27.4	
1890	26.5	26.5	26.6	26.9	27.5	27.0	30.0	30.0	29.7	28.1	
2000	27.1	27.1	27.2	27.4	28.0	27.4	30.4	30.4	30.2	28.7	
2097	27.6	27.6	27.7	27.9	28.3	27.7	30.8	30.7	30.5	28.8	
2189	28.0	28.0	28.0	28.3	28.7	28.0	31.1	31.1	30.8	29.6	
2230	28.2	28.2	28.3	28.5	28.8	28.1	31.2	31.2	31.0	29.7	

є можно найти следующие соотношения

$$\left(s_{01\infty}^{(\beta)} - s_{01\infty}^{(\varepsilon)}\right) \left(T - T_{e\infty}\right) = RT \ln \frac{1 - x_{2}^{(\beta)}}{1 - x_{2}^{(\varepsilon)}} - RT \ln \frac{1 - x_{2e}^{(\beta)}}{1 - x_{2e}^{(\varepsilon)}} + Q_{\infty}^{(\beta)} \left[\left(x_{2}^{(\beta)}\right)^{2} - \left(x_{2e}^{(\beta)}\right)^{2} \right] - Q_{\infty}^{(\varepsilon)} \left[\left(x_{2}^{(\varepsilon)}\right)^{2} - \left(x_{2e}^{(\varepsilon)}\right)^{2} \right],$$
(33)
$$\left(s_{02\infty}^{(\beta)} - s_{02\infty}^{(\varepsilon)}\right) (T - T_{e\infty}) = RT \ln \frac{x_{2}^{(\beta)}}{x_{2}^{(\varepsilon)}} - RT \ln \frac{x_{2e}^{(\beta)}}{x_{2e}^{(\varepsilon)}} + Q_{\infty}^{(\beta)} \left[\left(1 - x_{2}^{(\beta)}\right)^{2} - \left(1 - x_{2e}^{(\beta)}\right)^{2} \right] - Q_{\infty}^{(\varepsilon)} \left[\left(1 - x_{2}^{(\varepsilon)}\right)^{2} - \left(1 - x_{2e}^{(\varepsilon)}\right)^{2} \right],$$
(34)

где $x_{2e}^{(\beta)}$ и $x_{2e}^{(\varepsilon)}$ — концентрации второго компонента при эвтектической температуре T_e в фазах β и ε соответственно.

Разности энтропий ГПУ (ε)- и ОЦК (β)-модификацией компонентов, входящие в (33) и (34), можно определить с использованием аппроксимации, предложенной в [11], для параметров стабильности металлов, которые равны $\Delta s_{01\infty}^{(\beta \to \varepsilon)} \approx -0.38 \text{ cal/(mol·deg)}$ и $\Delta s_{02\infty}^{(\beta \to \varepsilon)} \approx 0.80 \text{ cal/(mol·deg)}$. Результаты вычислений $x_{2\infty}^{(\beta)}$ и $x_{2\infty}^{(\varepsilon)}$ при $T < T_e$ по такой методике при $Q_{\infty}^{(\beta)} = Q_{\infty}^{(\varepsilon)} = 0$ имеют меньшие значения по сравнению с аналогичными данными на рис. 1 и лучше согласуются с экспериментальными данными [35], а производные от этих концентраций по температуре имеют правильные знаки.

Учет межчастичных взаимодействий в рамках концепции регулярных растворов для макроскопических фаз (табл. 1, 2) приводит к изменению положений линий ликвидуса и солидуса по сравнению со случаем идеальности в соответствии с закономерностями для фаз с отрицательным знаком параметра квазихимического взаимодействия в сосуществующих фазах. При этом принятые нами значения $Q_{\infty}^{(L)}$, $Q_{\infty}^{(\beta)}$ и $Q_{\infty}^{(\varepsilon)}$ (они сравнительно невелики по абсолютным значениям) приводят к уменьшению концентрации рутения и небольшому возрастанию температуры в эвтектической точке. Более заметные изменения имеют место по взаимной растворимости в твердом состоянии, где наблюдается увеличение растворимости рутения в молибдене и молибдена в рутении.

Расчеты по приведенным выше соотношениям с использованием указанных входных данных показывают, что при учете наноразмерных эффектов в данной системе сохраняется тип фазовой диаграммы состояния (эвтектической с ограниченной растворимостью в твердом состоянии) (рис. 1). При этом меняется положение линий ликвидуса и солидуса, а также растворимости в твердом состоянии по сравнению с макроскопическим случаем. Диаграмма состояния смещается вниз по температурной шкале и наблюдается расширение области существования жидкой фазы. Имеет место увеличение растворимости в твердом состоянии с ростом степени дисперсности.

Изменяются также координаты эвтектической точки (температура и состав) на фазовой диаграмме (рис. 2). Подобные результаты были получены и в ряде других работ (см., например, [38,6,39-41]). При этом, как отмечено в этих работах, может иметь место изменение типа диаграммы по сравнению с фазовой диаграммой для массивных образцов. Подобное качественное изменение в рассматриваемой нами системе Mo-Ru не наблюдалось, но имели место заметные изменения в составах сосуществующих фаз. Так, при диспергировании в жидком молибдене твердого рутения на частицы сферической формы с радиусом поверхности натяжения $r = 5 \, \mathrm{nm}$ при температуре $T = 2300 \, \text{K}$ концентрация рутения в твердых наночастицах с ОЦК-решеткой по сравнению с массивными матрицами $(x_2^{(\beta)} < x_{2\infty}^{(\beta)})$ уменьшалась более чем в 1.5 раза. В то же время для случая є-L равновесия при той же температуре концентрация рутения в твердой наночастице с ГПУ-решеткой с таким же радиусом кривизны возросла в 1.4 раза по сравнению с макроскопическим случаем $(x_2^{(L)} < x_{2\infty}^{(L)}).$

Аналогичное изменение концентрации имеет место и во второй фазе (жидкости).

В случае равновесия двух твердых фаз с ОЦК- и ГПУ-структурами в системе Мо-Ru с увеличением степени дисперсности имеет место сближение состава фаз, что в соответствии с [42], рассматривается в пользу флуктуационного характера зарождения частиц второй фазы.

Отметим, что указанные выше изменения концентраций в фазах, сосуществующих в равновесных условиях при разных радиусах поверхности натяжения, полученные в наших расчетах, зависят от знака и численных значений параметра Толмена на границе наночастицы и матрицы для каждого типа фазового равновесия (β-L, ε -L, β - ε). Использованные нами значения этого параметра во всех случаях достаточно малы и составляют сотые доли нанометра. В подавляющем числе работ, посвященных расчету зависимости поверхностного натяжения от размера на границе с паром для δ_{0i} , используются значения, которые лежат в интервале от десятых долей до нескольких единиц нанометра [38,42]. По нашим оценкам [23] значения этого параметра для границы раздела двух конденсированных фаз должны быть выше по сравнению с границами этих фаз с паром. При принятии больших значений для параметра Толмена наши расчеты дают более значительные изменения в составах сосуществующих фаз в высокодисперсных системах.

5. Заключение

В рамках термодинамики фазовых равновесий в бинарных макро- и наносистемах при строгом учете поверхностных (межфазных) явлений получена замкнутая система уравнений в интегральной форме, позволяющая находить основные параметры термодинамического равновесия двухфазной системы с заданной степенью дисперсности (включая область наноразмеров). Новые соотношения, полученные для случая постоянства давления в матрице, в которой находятся дисперсные частицы сферической формы, позволяют учесть влияние наноразмерных эффектов на состав сосуществующих фаз и переходного слоя между ними, а также межфазное натяжение в зависимости от температуры. Описание фазовых равновесий проведено для случаев, когда химические потенциалы компонентов пропорциональны концентрациям и в рамках теории регулярных растворов. Переход на более сложные модели не представляет принципиальных трудностей и может быть осуществлен в рамках принятой схемы.

При устремлении радиуса кривизны (радиуса поверхности натяжения) к бесконечности эти соотношения позволяют строить фазовые диаграммы состояния в бинарных системах с макроскопическими фазами и находить межфазное натяжение и состав межфазного слоя на границах раздела для изобарического разреза зависимостей температуры, давления и концентраций $(T, P, \{x_i\})$. При устремлении концентрации одного из компонентов к нулю полученные соотношения определяют размерные зависимости температуры равновесия, межфазного натяжения и скачка энтропии при фазовом переходе в однокомпонентных системах. Для случая малой кривизны из них следует известное соотношение Томсона для температуры плавления и формула Толмена для поверхностного (межфазного) натяжения. При соответствующих предположениях из них также следует формула Оствальда-Фройндлиха (ее называют также формулой Гиббса-Томсона) для растворимости малых частиц.

Численные расчеты проведены для системы Mo-Ru, где имеются фазовые равновесия с участием твердых растворов с ОЦК (β)- и ГЦК (ε)-структурами и жидкости. При переходе к макроскопическим размерам, результаты расчетов согласуются с экспериментальной диаграммой состояния. Показано, что учет наноразмерных эффектов (изменения молярных объемов и площадей, скачка энтропий при фазовом переходе, температуры равновесия, межфазного натяжения и параметра квазихимического взаимодействия) приводит к смещению положений линий ликвидуса и солидуса, а также растворимости в твердом состоянии и координат эвтектической точки (состав, температура). Диаграмма состояния смещается вниз по температурной шкале с ростом степени диспергирования одной фазы в другой сосуществующей фазе (матрице).

Список литературы

9

- А.И. Русанов. Фазовые равновесия и поверхностные явления. Химия, Л. (1967). 388 с.
- [2] В.К. Григорович. Жаропрочность и диаграмма состояния. Металлургия, М. (1969). 324 с.

- [3] П.Е. Львов, В.В. Светухин, А.В. Обухов. ФТТ 53, 2, 394 (2011).
- [4] А.Л. Удовский. Металлы 5, 121 (2011).
- [5] А.Л. Удовский, Д.А. Васильев. Вестн. Новгородского гос. ун-та, 2, 73, 51, (2013).
- $[6]\;$ T. Tanaka. Mater. Sci. Forum 653, 55 (2010).
- [7] А.И. Русанов. Лекции по термодинамике поверхностей. Лань, СПб. (2013). 240 с.
- [8] А.Г. Морачевский. Физическая химия. Поверхностные явления и дисперсные системы. Лань, СПб (2015), 160 с.
- [9] Г. Реза Вакили-Неджаад. Нанотермодинамика. В кн.: Нанонаука и нанотехнологии. EOLS, Магистр-Пресс, М. (2010). С. 78.
- [10] А.А. Смирнов. Молекулярно-кинетическая теория металлов. Наука, М. (1966), 488 с.
- [11] Л. Кауфман, Х. Бернстейн. Расчет диаграмм состояния с помощью ЭВМ. Мир, М. (1972), 326 с.
- [12] З.А. Шебзухов, М.А. Шебзухова, А.А. Шебзухов. Поверхность. Синхротронные и нейтронные исследования 11, 102 (2009).
- [13] З.А. Шебзухов, М.А. Шебзухова, А.А. Шебзухов. Поверхность. Синхротронные и нейтронные исследования 12, 94 (2009).
- [14] М.А. Шебзухова, А.А. Шебзухов. Изв. РАН. Сер. физ. 80, 6, 789 (2016).
- [15] А.А. Шебзухов, А.М. Карачаев. Поверхность. Физика, химия, механика 58, 5, 58 (1984).
- [16] С.И. Попель. Поверхностные явления в расплавах. Металлургия, М. (1994). 440 с.
- [17] З.А. Шебзухов, М.А. Шебзухова, А.А. Шебзухов. Изв. Кабардино-Балкарского гос. ун-та им. Х.М. Бербекова 1, 17 (2010).
- [18] М.А. Шебзухова, А.А. Шебзухов. Изв. РАН. Сер. физ. 76, 7, 863 (2012).
- [19] А.И. Русанов. Коллоидный журн. XLIX, 5, 932 (1987).
- [20] Zhu Ru-Zeng, Wang Xiao-Song. Chin. Phys. B 19, 7, 076801 (2010).
- [21] В.В. Байдов, Л.Л. Кунин. В сб.: Поверхностные явления в расплавах и возникающих из них твердых фазах. / Под ред. С.Н. Задумкина. Кабардино-Балкарское книжн. изд-во, Нальчик (1965). С. 79.
- [22] A.I. Frenkel, A. Yevick, Ch. Cooper, R. Vasic. Ann. Rev. Anal. Chem. 4, 23, (2011).
- [23] М.А. Шебзухова, А.А. Шебзухов. ФТТ 54, 1, 173 (2012).
- [24] М.А. Шебзухова, З.А. Шебзухов, А.А. Шебзухов. Изв. Кабардино-Балкарского гос. ун-та им. Х.М. Бербекова. 1, 3, 83 (2011).
- [25] М.А. Шебзухова, З.А. Шебзухов, А.А. Шебзухов. Изв. РАН. Сер. физ. **74**, *5*, 751 (2010).
- [26] Дж. Роулинсон, Б. Уидом. Молекулярная теория капиллярности. Мир, М. (1986). 375 с.
- [27] W. Vogelsberger, G. Marx. Z. Phys. Chem. 257, 3, 580 (1976).
- [28] Q. Jiang, H.M. Li. Surf. Sci. Rep. 63, 427 (2008).
- [29] С.И. Новикова. Тепловое расширение твердых тел. Наука, М. (1974). 294 с.
- [30] В.Е. Зиновьев, Е.Н. Келина, Л.И. Комарова. Плотность и термическое расширение переходных металлов при высоких температурах. Обзор по теплофизическим свойствам веществ. ИВТАН СССР, М. 3, 71 (1988). 100 с.
- [31] С.Н. Задумкин. Физика металлов и металловедение **13**, 24 (1962).
- [32] L.A. Girifalco, R.I. Cood. J. Phys. Chem. 61, 904 (1957).

- [33] С.И. Попель, М.А. Спиридонов, Л.А. Жукова. Атомное упорядочение в расплавленных и аморфных металлах. УГТУ, Екатеринбург (1997). 384 с.
- [34] В.П. Скрипов, М.З. Файзуллин. Фазовые переходы кристалл-жидкость-пар и термодинамическое подобие. Физматлит, М. (2003). 160 с.
- [35] H. Kleykamp. J. Less-Common Met. 136, 271 (1988).
- [36] R.Gürler. J. Alloys Comp. 285, 133 (1999).
- [37] Диаграмма состояния двойных металлических систем / Под ред. Н.П. Лякишева. Машиностроение, М. (2001). Т. 3. Кн. 1. 872 с.
- [38] Н.Т. Гладких, С.В. Дукаров, А.П. Крышталь, В.И. Ларин, В.Н. Сухов, С.И. Богатыренко. В сб.: Поверхностные явления и фазовые превращения в конденсированных пленках / Под ред. Н.Т. Гладких. ХНУ им. В.Н. Каразина, Харьков (2004). 276 с.
- [39] J. Sopousek, J. Vrestal, J. Pinkas, P. Broz, J. Bursik, A. Styskalik, D. Skoda, O. Zobac, J. Lee. Calphad 45, 33 (2014).
- [40] A. Roshanghias, J. Vrestal, A. Yakymovgech, K. Richter, H. Ipser. Calphad 49, 101 (2015).
- [41] S. Bajaj, M.G. Haverty, R. Arroyave, W.A. Goddard, S. Shankare. Nanoscale 7, 9868 (2015).
- [42] П.Е. Львов, В.В. Светухин. Письма в ЖТФ **35**, 22, 33 (2009).