11

Влияние катионного замещения в $Cs_{1-2x}Ba_xH_2PO_4$ на структурные свойства и протонную проводимость

© В.Г. Пономарева^{1,2}, И.Н. Багрянцева^{1,2}, Е.С. Шутова¹

¹ Институт химии твердого тела и механохимии СО РАН,

Новосибирск, Россия

² Новосибирский государственный университет,

Новосибирск, Россия

E-mail: ponomareva@solid.nsc.ru

(Поступила в Редакцию 29 ноября 2016 г.)

Синтезированы соединения с частичным замещением в CsH_2PO_4 катионов Cs^+ катионами Ba^{2+} . Впервые проведены исследования структурных, электротранспортных, термодинамических свойств $Cs_{1-2x}Ba_xH_2PO_4$ (x = 0-0.15) с помощью комплекса физико-химических методов: инфракрасной и импедансной спектроскопии, рентгенофазового и синхронного термического анализа. Методом импедансометрии детально исследована протонная проводимость $Cs_{1-2x}Ba_xH_2PO_4$ при 50–230°С. Показано, что в диапазоне степеней замещения x = 0-0.1 наблюдается образование твердых растворов замещения, изоструктурных CsH_2PO_4 ($P2_1/m$), с незначительным уменьшением параметров элементарной ячейки и некоторой долей аморфизации соли. Проводимость разупорядоченной $Cs_{1-2x}Ba_xH_2PO_4$ в низкотемпературной области увеличивается на два порядка величины при x = 0.02 и возрастает с ростом доли катионов бария на три-четыре порядка при x = 0.05-0.1; суперионный фазовый переход практически исчезает. При x = 0.15 образуются гетерофазные системы на основе солей, демонстрирующие высокую проводимость и дальнейшее снижение энергии активации проводимости до 0.63 eV. Проводимость высокотемпературной фазы $Cs_{1-2x}Ba_xH_2PO_4$ практически не изменяется с ростом доли заместителя.

Работа выполнена при частичной финансовой поддержке РФФИ (проект № 15-08-08961).

DOI: 10.21883/FTT.2017.07.44601.429

1. Введение

CsH₂PO₄ в суперионной фазе является одним из наиболее высокопроводящих протонных твердых электролитов семейства кислых солей $M_n H_m(XO_4)_p$, где n = 1-5, m = 1-5, p = 1-5. Протонные мембраны на основе CsH_2PO_4 с проводимостью 10^{-2} S/cm, интенсивно исследуемые и разрабатываемые в настоящее время, могут быть использованы в различных электрохимических устройствах для электрокатализа, разделения газов, сенсорах и топливных элементах (ТЭ). Изучение и разработка среднетемпературных ТЭ с протонной мембраной из CsH2PO4 проводятся чуть более 10 лет [1-5]. В настоящее время при использовании мембран толщиной до 20 µm достигнуты высокие разрядные характеристики в среднетемпературных водородных и метанольных ТЭ [4,5]. Однако имеется ряд проблем фундаментального и технологического плана, в том числе вопросов, связанных с механическими свойствами тонких мембран и нарушением высокопористой микроструктуры катода. ТЭ функционируют при температурах ~ 250°C при содержании паров воды не менее ~ 0.3 atm, что обусловлено узкой областью существования высокотемпературной (ВТ) фазы CsH₂PO₄ и необходимостью подавления процесса дегидратации соли при температурах выше точки суперионного фазового перехода при 230°С. Согласно фазовой диаграмме, CsH₂PO₄ является стабильным при температурах ниже 230°С при значительно более низких

парциальных давлениях паров воды [6]. Поэтому при снижении рабочих температур имеется возможность функционирования устройства при низких парциальных давлениях паров воды. Свойства солей данного семейства во многом определяются системой водородных связей, ее симметричностью, размерностью, степенью разупорядочения и энергией связи. Суперионная фаза характеризуется структурным разупорядочением системы водородных связей, где число кристаллографических позиций для протонов больше числа протонов, что создает возможность их переноса с относительно низкой энергией активации. Транспорт протонов осуществляется по механизму Гротгуса при либрации оксоаниона между эквивалентными кристаллографическими позициями и перемещении протона вдоль водородной связи к другому оксоаниону. В низкотемпературной (HT) фазе концентрация подвижных протонов зависит от наличия структурных дефектов, определяющих величину проводимости и влияющих наряду с их подвижностью на энергию активации проводимости [7]. Воздействуя на степень разупорядочения структуры путем создания дефектов в низкотемпературной фазе, можно влиять на энергетику водородных связей и изменять структурные и физико-химические свойства соединений, включая протонный транспорт, суперионные фазовые переходы и термическую стабильность. В связи с этим проводятся интенсивные исследования различных способов модифицирования CsH₂PO₄. Были показаны возможности методов гетерогенного допирования и гомогенного замещения для получения высокопроводящих твердых протонных электролитов нового класса в средне- и низкотемпературной области для семейства кислых солей щелочных металлов. Показано, что путем введения добавок в CsH₂PO₄ с помощью гетерогенного допирования высокодисперсными оксидами и гомогенного замещения в анионной и катионной подрешетках можно существенно воздействовать на механизм суперионного фазового перехода и проводимости, стабильность фаз и величину проводимости в НТ-области. Так, при гомогенном замещении катионов цезия рубидием наблюдается существование непрерывного ряда твердых растворов $Cs_{1-2x}Rb_xH_2PO_4$, изоструктурных CsH_2PO_4 , с уменьшением параметра элементарной ячейки в широком диапазоне составов (вплоть до x = 0.9) при увеличении температуры суперионного фазового перехода и росте протонной проводимости [8,9]. В то же время для систем $Cs_{1-2x}M_xH_2PO_4$ (где M = K, Na) ряд твердых растворов, изоструктурных CsH₂PO₄, существенно ограничен [10] вследствие большего различия ионных радиусов. Кроме того, при частичном замещении отмечено изменение термических свойств соединений. Показано, что при гомогенном замещении в анионной подрешетке CsH₂PO₄ при введении малых добавок гидросульфат анионов имеет место стабилизация фазы, изоструктурной суперионной высокотемпературной, при комнатных температурах с повышением проводимости до четырех порядков величины; определены условия существования замещенной ВТ-фазы при нормальных условиях [11]. Получен ряд значимых результатов по увеличению проводимости в композитах на основе CsH₂PO₄, однако некоторые композиционные электролиты типа CsH₂PO₄-A

Проблема создания новых функциональных высокопроводящих материалов на основе CsH₂PO₄ с более широким диапазоном рабочих температур в условиях низкой влажности является одной из наиболее актуальных для создания эффективных электрохимических устройств в диапазоне средних температур 150-300°С. Введение добавок с более высокой степенью окисления может значительно изменить степень разупорядочения катионной подрешетки в CsH₂PO₄ и, таким образом, воздействовать на систему водородных связей, а также на подвижность протонов в низкотемпературной фазе. Предполагается, что при иновалентном катионном замещении воздействие на степень разупорядочения структуры происходит путем создания дефектов, в данном случае за счет образования вакантных катионных позиций цезия, которое может привести к усилению переноса протона за счет облегчения вращения РО4-тетраэдров в НТ-фазе и изменению энергии водородных связей, что определяет электротранспортные свойства. Изменяя концентрацию дефектов, удается добиться существенного увеличения ионной проводимости материалов. С ростом доли замещения катионом большего заряда и меньшего размера возможны более значительные структурные изменения, которые могут приводить к

(где $A = SiO_2$, SiP_2O_7) устойчивы лишь в условиях

повышенной влажности [12–15].

частичной аморфизации соли и изменению структурных и физико-химических свойств соединений, в том числе термической стабильности и протонной проводимости.

В настоящей работе проведено частичное замещение катионов цезия в CsH_2PO_4 катионами бария, исследован фазовый состав, электротранспортные, термические свойства системы $(1 - x)CsH_2PO_4 - xBa(H_2PO_4)_2$ (далее $Cs_{1-2x}Ba_xH_2PO_4$) при степенях замещения x = 0-0.15, определена область существования твердых растворов, изоструктурных CsH_2PO_4 , выявлено наличие гетерофазных высокопроводящих систем. Изучение процессов гетеровалентного замещения в CsH_2PO_4 ранее не проводилось и представляет значительный интерес с точки зрения фундаментальных исследований новых соединений для химии твердого тела и электрохимии твердых электролитов, поскольку может стать основой для создания новых функциональных протонпроводящих материалов.

2. Эксперимент

Кристаллы дигидрофосфата цезия были выращены путем изотермического испарения из водных растворов, содержащих фосфорную кислоту (марки чда) и карбонат цезия (осч) в эквимолярных соотношениях при комнатной температуре. Содержание адсорбированной и кристаллогидратной воды в Cs₂CO₃·H₂O дополнительно определялось с помощью данных синхронного термического анализа с масс-спектрометрическим анализом выделяемых продуктов: Н₂О и СО₂. Содержание катиона Cs⁺ в образце определялось при использовании совокупности атомно-абсорбционного метода и эмиссионной пламенной фотометрии ($\lambda = 852.1 \text{ nm}$), содержание H₂PO₄⁻ — дифференциальным фотоколориметрическим методом с желтым ванадатно-молибденовым комплексом. Соотношение определяемых элементов в образце с высокой точностью (не менее 1%) соответствовало составу CsH₂PO₄. Ва(H₂PO₄)₂ был получен при взаимодействии Ba(OH)2 (осч) и фосфорной кислоты в эквимолярном соотношении 1:2. Синтезированный Ba(H₂PO₄)₂ прогревался при $T = 100^{\circ}$ С в течение 20 h, промывался ацетоном и дополнительно прогревался при ~ 150°C в течение суток для удаления остаточной влаги. Известно, что Ba(H₂PO₄)₂ кристаллизуется при комнатной температуре в стабильной орторомбической фазе *Pccn* с параметрами ячейки a = 10.273 Å, b = 7.803 Å, c = 8.566 Å, Z = 4 [16,17] и метастабильной триклинной фазе Р1 [18]. В орторомбической фазе тетраэдры РО4 соединены асимметричными водородными связями в волнистые цепочки, параллельные оси с [16,17]. Из двух известных кристаллических модификаций Ba(H₂PO₄)₂ рентгенограмма синтезированной соли с высокой точностью соответствовала литературным данным для орторомбической фазы Рссп (рис. 1) [17]. Замещенные соли состава $Cs_{1-2x}Ba_xH_2PO_4$ (где x = 0-0.15) были получены тщательным механическим перемешиванием

Рис. 1. Рентгенограммы соединений $Cs_{1-2x}Ba_xH_2PO_4$ различных составов при x = 0.03 (2), 0.05 (3), 0.075 (4), 0.1 (5), 0.15 (6) в сравнении с исходными солями CsH_2PO_4 (1) и $Ba(H_2PO_4)_2$ (7). Звездочками обозначены рефлексы фазы $Ba(H_2PO_4)_2$.

синтезированных солей $Ba(H_2PO_4)_2$ и CsH₂PO₄ с последующим прогревом при $T = 190-225^{\circ}C$ в зависимости от состава в течение 0.5 h.

Электропроводность измерялась по двухэлектродной схеме на переменном токе с помощью импедансметра Instek LCR-821 в интервале частот 12-200 kHz, а также RLC-1/2008 в диапазоне частот 1 mHz-3.3 MHz. Поликристаллические образцы прессовались в таблетки диаметром 7 mm и толщиной 1.5-3 mm с впрессованными серебряными электродами. Относительная плотность исследуемых образцов составляла 95-98% от теоретической. Измерения проводились в режиме охлаждения со скоростью 1-2°C/min на воздухе, а также в изотермическом режиме при относительной влажности воздуха RH ~ 10-15%. Данные дифференциальной сканирующей калориметрии (ДСК) и дифференциальной термогравиметрии (ТГ) получены с помощью NETZSCH STA 449CF/1/1 JUPITER в диапазоне температур 35-450°C (скорость нагрева 3°С/тіп, аргон, скорость подачи газа 40 ml/min). Рентгенофазовый анализ (РФА) выполнен на порошковом дифрактометре Bruker D8 Advance $(CuK_{\alpha_1}$ -излучение).

3. Результаты и обсуждение

Данные РФА синтезированных Cs1-2xBaxH2PO4 показывают, что при x = 0.03 - 0.1 рефлексы Ва $(H_2PO_4)_2$ полностью отсутствуют и реализуется фаза, изоструктурная HT-модификации CsH₂PO₄ $(P2_1/m)$. Рефлексы, соответствующие замещенной соли Cs_{1-2x}Ba_xH₂PO₄, незначительно смещены в сторону больших углов. Это свидетельствует об образовании твердых растворов, изоструктурных CsH₂PO₄ ($P2_1/m$), при x = 0.03-0.1 с незначительным уменьшением параметров элементарной ячейки. Кроме того, наблюдается снижение интенсивности рефлексов Cs_{1-2x}Ba_xH₂PO₄ и их уширение, что, скорее, связано с частичной аморфизацией образующихся соединений при замещении катионом большего заряда и меньшего размера. Для определения параметров элементарной ячейки была проведена съемка рентгенограмм в режиме большего накопления. Расчет изменения параметров элементарной ячейки проведен по 26 независимым рефлексам с использованием программы IK [19]. Уширение рефлексов и снижение их интенсивности, связанное с частичной аморфизацией соли, очевидно, влияют на точность определения параметров элементарной ячейки. Данные по параметрам элементарной ячейки представлены на рис. 2 и таблице. Наблюдается незначительное уменьшение параметров элементарной ячейки во всех кристаллографических направлениях, причем зафиксированы несколько меньшие изменения параметра c. Известно, что в структуре CsH₂PO₄ (P21/m) цепи тетраэдров соединены водородными связями О-Н...О длиной 2.47 Å вдоль направления *с* [20].

Таким образом, в системе $Cs_{1-2x}Ba_xH_2PO_4$ наблюдается образование твердых растворов, изоструктурных CsH_2PO_4 ($P2_1/m$), при x = 0 - 0.1. Как известно, изоморфизм структур возможен при одинаковых координационных числах атомов [21], и степень совершенства структуры определяется близостью межатомных расстояний, состоянием химической связи и строением электронной оболочки атомов. При значительном отличии радиусов замещающих катионов (более 10-15%) и разнице электроотрицательностей, превышающей 0.4, возможность растворения ограничена, и структура смешанных кристаллов кислых солей, как правило, существенно отличается от структур исходных солей [22]. Если в системах $Cs_{1-2x}Ba_xH_2PO_4$ показано существование твердых растворов в широкой области составов

Изменение параметров элементарной ячейки $Cs_{1-2x}Ba_xH_2PO_4$ в зависимости от степени замещения

Степень замещения <i>х</i>	a, Å	b, Å	<i>c</i> , Å	$eta,^\circ$
0.02	7.9187(13)	6.3996(16)	4.8833(13)	107.698(16)
0.05	7.9151(10)	6.3923(13)	4.8821(20)	107.708(13)
0.075	7.9102(19)	6.3888(23)	4.8754(15)	107.697(23)
0.1	7.9091(23)	6.3809(28)	4.8739(19)	107.694(28)

Рис. 2. Параметры элементарной ячейки $Cs_{1-2x}Ba_xH_2PO_4$ в кристаллографических направлениях *a* (*a*), *b* (*b*), *c* (*c*).

x = 0-0.9, что связано с наличием у дигидрофосфата рубидия фазового перехода при $T \sim 79^{\circ}$ С в моноклинную фазу ($P2_1/a$), близкую по структуре к HT-фазе CsH₂PO₄ ($P2_1/m$) [23], и небольшим уменьшением ионных радиусов катионов (Cs⁺ — 1.74 Å, Rb⁺ — 1.61 Å [24]), то для Cs_{1-2x}Ba_xH₂PO₄ твердые растворы реализуются в ограниченном диапазоне степеней замещения [8–10]. Более узкая область существования твердых растворов Cs_{1-2x}Ba_xH₂PO₄, безусловно, связана с различием

структуры исходных фаз, зарядом замещающего катиона и его размером (1.74 Å для Cs⁺ и 1.42 Å для Ba²⁺ по шкале Шеннона [24]). При составе x = 0.15 на фоне основной фазы CsH₂PO₄ появляются слабоинтенсивные рефлексы Ba(H₂PO₄)₂ (отмечены звездочками на рис. 1) либо BaH₂P₂O₇ при более длительной термической обработке с повышением температуры до 230–240°C (1 h) и фактически образуется гетерофазная композитная система на основе двух солей.

На рис. 3 представлены данные ДСК и ТГ для соединений Cs_{1-2x}Ba_xH₂PO₄ в сравнении с данными исходных солей. Данные ТГ для синтезированного Ba(H₂PO₄)₂ показывают, что дегидратация соли начинается при $T = 210 - 220^{\circ}$ С и проходит в две стадии, суммарная потеря веса составляет 10.8%. Это с хорошей точностью согласуется с теоретической потерей веса при выделении двух молекул воды с последовательным образованием ВаH₂P₂O₇ и Ва(PO₃)₂, соответственно (10.88%). Следует отметить, что надежные данные по термодинамическим и электротранспортным свойствам Ba(H₂PO₄)₂ в литературе отсутствуют. Установлено, что энтальпия эндоэффекта дегидратации составляет -244.6 J/g [25]. Как видно из рис. 3, для $Cs_{1-2x}Ba_xH_2PO_4$ (x = 0.03-0.1) температура суперионного фазового перехода практически не изменяется. Эндоэффекты, обусловленные дегидратацией, смещаются в область более низких температур, приближаясь к фазовому переходу CsH₂PO₄ (рис. 3 *b*). Кривая потери массы в $Cs_{1-2x}Ba_xH_2PO_4$ также смещается в область более низких температур по сравнению с аналогичной кривой для CsH₂PO₄. Двухстадийность процесса дегидратации в частично замещенных соединениях $Cs_{1-2x}Ba_xH_2PO_4$ при x = 0.03-0.1 становится менее выраженной. В то же время суммарная потеря веса при нагревании до 450°C для порошкообразных образцов составляет 7.5 и 7.8% (x = 0.02 и 0.1 соответственно), что несколько меньше теоретически возможных значений (7.92 и 8.29%) при полной дегидратации солей. Этот факт свидетельствует о замедленной кинетике дегидратации из разупорядоченных соединений. С ростом x до 0.15 характер изменения веса при дегидратации соединения изменяется. Стадии дегидратации соединения разделены: первая стадия с изменением веса $\sim 2.5\%$ наблюдается до температур 230°C, вторая начинается выше 310°С, причем потеря веса ниже теоретически возможной (8.55%).

На рис. 4 приведен годограф импеданса частично замещенных образцов в сравнении с данными для исходной соли CsH_2PO_4 . Годограф импеданса представляет собой полуокружность, связанную с релаксацией носителей в электролите, и дугу при более низких частотах, относящуюся к электродным процессам. Сопротивление электролита и протонная проводимость определялись исходя из значений высокочастотной отсечки на оси абсцисс с минимальной емкостью. Видно, что протонная проводимость НТ-фазы частично замещенной соли увеличивается в зависимости от температуры и значительно возрастает по сравнению с таковой для исходной соли СsH₂PO₄. Наблюдается значительный рост протонной проводимости Cs_{1-2x}Ba_xH₂PO₄ в HT-области (рис. 4, 5) в зависимости от доли замещения катионами бария. Рост проводимости достигает двух порядков величины при x = 0.02, трех — при x = 0.05 и при дальнейшем возрастании доли Ba²⁺ проводимость увеличивается, достигая значений $5 \cdot 10^{-3}$ S/cm при $T \sim 150^{\circ}$ C

Рис. 3. Данные ДСК (a) и ТГ (b) для образцов $Cs_{1-2x}Ba_xH_2PO_4$ различных составов в сравнении с данными для исходных солей CsH_2PO_4 и $Ba(H_2PO_4)_2$.

Рис. 4. Годограф импеданса $Cs_{1-2x}Ba_xH_2PO_4$ (x = 0.05) температурах 100-220°C (a) в сравнении с данными для CsH_2PO_4 (b).

при x = 0.1 - 0.15. Суперионный фазовый переход в Cs1-2xBaxH2PO4 при малых степенях замещения становится замедленным и более размытым, смещается в низкотемпературную область и практически исчезает с ростом степени замещения до 0.075-0.1. Энергия активации НТ-проводимости изменяется от 0.95 eV для CsH₂PO₄ до 0.87 eV при x = 0.01 - 0.02, 0.72 eV при x = 0.075 - 0.1 в области температур до 130°С. Протонная проводимость Cs_{1-2x}Ba_xH₂PO₄ в высокотемпературной области практически не изменяется с ростом доли заместителя. Энергия активации ВТ-проводимости составляет 0.48 eV при температурах вплоть до 150°C для составов x = 0.075-0.15. При дальнейшем росте доли катионного замещения до x = 0.15 проводимость в НТ-области увеличивается, хотя, согласно данным РФА, твердые растворы, изоструктурные CsH₂PO₄, в этой области не образуются. При x = 0.15 образцы $Cs_{1-2x}Ba_{x}H_{2}PO_{4}$ демонстрируют высокую протонную проводимость при отсутствии суперионного фазового перехода и дальнейшее снижение энергии активации проводимости в НТ-области до 0.63 eV.

Частичное катионное замещение цезия барием приводит к изменениям в ИК-спектрах солей (рис. 6). ИК-спектр исходных солей CsH₂PO₄ и Ba(H₂PO₄)₂ по положению полос поглощения (ПП) соответствует литературным данным [26,27]. В Cs_{1-2x}Ba_xH₂PO₄ наблюдается сдвиг ПП $2650\,\mathrm{cm}^{-1}$, соответствующей валентным колебаниям $OH^-(v_{OH})$ в CsH₂PO₄, в область более высоких частот (2695 cm⁻¹). ПП 1707 cm⁻¹, относящаяся к деформационным колебаниям ОН--групп, смещается в область более низких частот до 1687 ст-1. Проявляется также смещение ПП 2315 cm⁻¹, соответствующей обертонам деформационных колебаний ОНгрупп, до 2301 ст⁻¹. В области валентных колебаний Р-О наблюдается увеличение интенсивности, уширение и небольшой сдвиг в область больших частот, ПП 1060 и 927 cm⁻¹ смещаются до значений 1071 и 936 cm⁻¹ соответственно. Это, вероятно, связано с незначительным увеличением длины Р-О...Н, усилением связи Р-О, увеличением разупорядочения и повышением симметрии РО₄-тетраэдров при частичном ослаблении системы водородных связей. Эти изменения согласуются

Рис. 5. Температурные зависимости проводимости $Cs_{1-2x}Ba_xH_2PO_4$ различных составов в сравнении с данными для CsH_2PO_4 (режим охлаждения, $1-2^{\circ}C/min$, воздух, RH = 15%).

Рис. 6. ИК-спектры CsH_2PO_4 (1), $Cs_{1-2x}Ba_xH_2PO_4$ (x = 0.01) (2) и $Ba(H_2PO_4)_2$ (3) в области валентных и деформационных колебаний: водородных связей (a) и PO₄-тетраэдров (b).

с увеличением протонной проводимости соединений $Cs_{1-2x}Ba_xH_2PO_4$ с ростом доли катионного замещения.

Можно предположить, что при гетеровалентном замещении цезия в дигидрофосфате двухзарядными катионами Ba²⁺ при малых степенях замещения происходит разупорядочение структуры в соответствии с квазихимическим уравнением

$$\operatorname{Ba}(\operatorname{H_2PO_4})_2 \to \operatorname{Ba}^{ullet}_{\operatorname{Cs}'} + V_{\operatorname{Cs}'} + \operatorname{H_2PO_4}^{\times} \operatorname{H_2PO_4}$$

Уменьшение параметров элементарной ячейки $Cs_{1-2x}Ba_xH_2PO_4$ с ростом доли Ba^{2+} подтверждает,

что катионы Ba²⁺ действительно входят в структуру, занимая места цезия в кристаллической решетке и образуя твердые растворы замещения. В результате структурного разупорядочения появляются вакантные кристаллографические позиции, занимаемые ранее цезием. Вероятно, протекание обменного процесса облегчается из-за наличия незначительных количеств адсорбированной воды на поверхности дигидрофосфата бария. Для ряда твердых электролитов при небольшой степени замещения проводимость изменяется пропорционально концентрации допанта вследствие образования дефектов либо вакансий [28]. В случае протонных проводников наличие дефектов в виде межузельных ионов либо вакантных позиций в одной из подрешеток может опосредованно воздействовать на систему водородных связей, приводя к изменению подвижности и концентрации дефектов. Несмотря на то что водородная связь является достаточно слабой по сравнению с другими типами связей, она существенно влияет на свойства солей данного типа. Вероятно, вследствие этих факторов и наблюдаемой частичной аморфизации соли зависимость протонной проводимости в системах Cs1-2xBaxH2PO4 изменяется нелинейно с долей добавки при некотором снижении энергии активации с ростом содержания допанта. В отличие от случая замещения однозарядными и близкими по размеру катионами рубидия протонная проводимость этих систем в исследуемом интервале температур значительно выше [8,9].

Таким образом, высокие значения протонной проводимости Cs_{1-2x}Ba_xH₂PO₄ в области существования твердых растворов с x = 0-0.1, изоструктурных CsH₂PO₄, связаны со структурным разупорядочением (появлением вакантных кристаллографических позиций в подрешетке цезия), ослаблением системы водородных связей, облегчающим реориентацию фосфатных тетраэдров, и образованием фазы с некоторой долей аморфизации с ростом х. Можно предположить, что незначительные количества адсорбированной воды на границах зерен Ва(H₂PO₄)₂ либо выделившейся в процессе синтеза систем $Cs_{1-2x}Ba_xH_2PO_4$, могут вносить вклад в перенос протонов в частично замещенных фазах с ростом доли добавки. Однако специально проведенные эксперименты по выдержке плотных спрессованных таблетированных образцов с x = 0.1 в течение длительного времени при 210°C не показывают значимой потери массы (она составляет не более $\sim 0.1\%$) в условиях, контролируемых кинетическими затруднениями, в отличие от экспериментов для порошкообразных образцов (рис. 3, b) и свидетельствуют о постоянстве величин проводимости. Зависимости проводимости были неоднократно воспроизведены при многократных циклах нагрев-охлаждение, причем в условиях различной относительной влажности атмосферы, изменяющейся в пределах 10-45%. Эти факты позволяют отдать предпочтение механизму увеличения проводимости за счет структурного разупорядочения.

Как указывалось выше, при x = 0.15 на рентгенограммах появляются рефлексы Ba(H₂PO₄)₂. Дальнейшее повышение протонной проводимости в пределах 0.5 порядка величины при росте степени замещения до x = 0.15связано с образованием гетерофазной системы — своего рода композиционного электролита на основе двух солей. Для исследуемой системы имеет место переход от гетеровалентного замещения при малых степенях замещения (фактически дефектообразования) и образования твердых растворов к гетерофазным системам на основе солей различного химического и фазового состава, так называемым структурным композитам. Исходные соли в композите имеют низкие значения протонной проводимости в области температур до 200-230°С. Значительное влияние на процесс протонного транспорта оказывает интерфейсное взаимодействие компонентов, подобное имеющему место в композиционных системах ионная соль-оксид [29-32]. В то же время в этих системах с ростом доли $Ba(H_2PO_4)_2$ снижается температура дегидратации в системе (1 - x)CsH₂PO₄-xBa(H₂PO₄)₂, и с ростом доли замещения при x > 0.10 в процессе переноса протонов наиболее вероятно участие протонов воды, адсорбированной на границе раздела фаз, что приводит к дальнейшему увеличению проводимости. Соответствующие гетерофазные системы представляют интерес для дальнейших более детальных исследований механизма проводимости протонных проводников и будут рассмотрены в последующих работах.

4. Заключение

Показаны возможности метода гетеровалентного замещения в CsH₂PO₄ катионов цезия катионами бария для получения нового класса высокопроводящих твердых протонных электролитов в средне- и низкотемпературной области в семействе кислых солей щелочных металлов. Синтезированы соединения с частичным замещением $Cs^+ \rightarrow Ba^{2+} - Cs_{1-2x}Ba_xH_2PO_4$ (x = 0-0.15) и детально исследованы их электротранспортные свойства в диапазоне температур 50-230°С. Показано, что при x = 0 - 0.1 в $Cs_{1-2x}Ba_xH_2PO_4$ наблюдается образование твердых растворов замещения, изоструктурных $C_{sH_2}PO_4$ ($P2_1/m$) с уменьшенными параметрами элементарной ячейки. Структурное разупорядочение с образованием катионных вакансий в подрешетке цезия в твердых растворах приводит к незначительному ослаблению водородных связей и усилению связи Р-О, что делает возможным реориентацию фосфатных тетраэдров при более низких температурах, чем температура суперионного фазового перехода в CsH₂PO₄. Протонная проводимость НТ-фазы Cs1-2xBaxH2PO4 увеличивается на два порядка величины при x = 0.02 и возрастает далее с ростом доли введенных катионов бария. С ростом доли добавки увеличение проводимости составляет тричетыре порядка величины (x = 0.05 - 0.1), суперионный фазовый переход практически исчезает; создается возможность частичной аморфизации соли, также способствующей повышению протонной проводимости.

Список литературы

- [1] T. Uda, D.A. Boysen, C.R.I. Chisholm, S.M. Haile. Electrochem. Solid State Lett. 9, A261 (2006).
- [2] D.A. Boysen, T. Uda, C.R.I. Chisholm, S.M. Haile. Science 303, 68 (2004).
- [3] T. Uda, S.M. Haile. Electrochem. Solid State Lett. 8, A245 (2005).
- [4] S.M. Haile, C.R.I. Chisholm, K. Sasaki, D.A. Boysen, T. Uda. Faraday Discuss. 134, 17 (2007).
- [5] C.R.I. Chisholm, D.A. Boysen, A.B. Papandrew, S. Zecevic, S.Y. Cha, K.A. Sasaki, A. Varga, K.P. Giapis, S.M. Haile. Electrochem. Soc. Interface 18, *3*, 53 (2009).
- [6] J. Otomo, N. Minagawa, C.-J. Wen, K. Eguchi, H. Takahashi. Solid State Ion. 156, 357 (2003).
- [7] А.И. Баранов. Кристаллография 48, 6, 1081 (2003).
- [8] В.Г. Пономарева, В.В. Марцинкевич, Ю.А. Чесалов. Электрохимия 47, 5, 645 (2011).
- [9] V.V. Martsinkevich, V.G. Ponomareva. Solid State Ion. 225, 236 (2012).
- [10] A. Ikeda, D.A. Kitchaev, S.M. Haile. J. Mater. Chem. A 2, 204 (2014).
- [11] В.Г. Пономарева, И.Н. Багрянцева. Неорган. материалы 48, 2, 231 (2012).
- [12] V.G. Ponomareva, E.S. Shutova. Solid State Ion. 178, 729 (2007).
- [13] A. Ikeda, S.M. Haile. Solid State Ion. 213, 63 (2012).
- [14] T. Matsui, T. Kukino, R. Kikuchi, K. Eguchi. J. Electrochem. Soc. 153, 2, A339 (2006).
- [15] В.Г. Пономарева, Е.С. Шутова, Г.В. Лаврова. Неорган. материалы. 44, 9, 1131 (2008).
- [16] J.D. Gilbert, P.G. Lenhert, L.K. Wilson. Acta Cryst. B 33, 3533 (1977).
- [17] В.М. Агре, И.А. Кроль, В.К. Трунов, Г.М. Серебреникова. Кристаллография 21, 4, 722 (1976).
- [18] J.D. Gilbert, P.G. Lenhert. Acta Cryst. B 34, 3309 (1978).
- [19] Л.П. Соловьева, С.В. Цыбуля, В.А. Заболотный. Поликристалл — система программ для структурных расчетов. ИК СО РАН, Новосибирск (1988). 122 с.
- [20] Y. Uesu, J. Kobayashi. Phys. Status Solidi A 34, 475 (1976).
- [21] А. Вест. Химия твердого тела. Мир, М. (1988). Т. 1. 558 с.
- [22] C.R.I. Chisholm, L.A. Cowan, S.M. Haile, W.T. Klooster. Chem. Mater. 13, 2574 (2001).
- [23] C.E. Botez, H. Martinez, R.J. Tackett, R.R. Chianelli, J. Zhang, Y. Zhao. J. Phys.: Condens. Matter 21, 325401 (2009).
- [24] R.D. Shannon, C.T. Prewitt. Acta Cryst. 26, 925 (1969).
- [25] V. Ponomareva, V. Martsinkevich. In: Abstr. Int. Conf. "Ion transport in organic and inorganic membranes". Krasnodar– Sochi (2015). P. 236.
- [26] Атлас инфракрасных спектров фосфатов. Ортофосфаты / Под ред. И.В. Тананаева. Наука, М. (1981). 248 с.
- [27] B. Marchon, A. Novak. J. Chem. Phys. 78, 5, 2105 (1983).
- [28] А.К. Иванов-Шиц, И.В. Мурин. Ионика твердого тела. СПбГУ, СПб. (2010). Т. 2. 1000 с.
- [29] Н.Ф. Уваров. Композиционные твердые электролиты. Издво СО РАН, Новосибирск (2008). 258 с.
- [30] А.Б. Ярославцев. Успехи химии 78, 1094 (2009).
- [31] В.Г. Пономарева. В кн.: Мембраны и мембранные технологии / Под ред. А.Б. Ярославцева. Научный мир, М. (2013). С. 169.
- [32] V.G. Ponomareva, G.V. Lavrova. J. Solid State Electrochem. 15, 213 (2011).