Влияние фазовых переходов в сегнетоэластике Rb₂Cdl₄ на экситонный спектр поглощения

© В.К. Милославский, О.Н. Юнакова, Е.Н. Коваленко*

Харьковский национальный университет,

61077 Харьков, Украина

* Научный физико-технологический центр Министерства образования и Национальной академии наук Украины, 61145 Харьков, Украина

E-mail: Vladimir.K.Miloslavsky@univer.kharkov.ua

(Поступила в Редакцию в окончательном виде 23 апреля 2004 г.)

На основании исследования параметров длинноволновой экситонной полосы в пленках Rb₂CdI₄ в интервале температур 90–410 К обнаружены фазовые переходы: при $T_{c1} = 380$ К (парафаза \rightarrow несоразмерная фаза), $T_{c2} = 290$ К (несоразмерная фаза \rightarrow сегнетоэластическая фаза I), $T_{c3} = 210$ К (сегнетоэластическая фаза I) \rightarrow сегнетоэластическая фаза I). Установлено, что параметры экситонной полосы, спектральное положение и полуширина существенно различаются при прямом и обратном ходе температуры, особенно в области несоразмерной фазы, где при нагревании имеет место замораживание доменных границ, а при охлаждении эффект формирования солитонов и их пиннинг приводят к фазовому переходу первого рода при T_{c2} . Обнаружен аномальный рост силы осциллятора экситонной полосы, связанный с упорядочением кристаллической решетки Rb₂CdI₄ в районе соразмерной фазы I ($T_{c3} \leq T \leq T_{c2}$).

Согласно термографическим исследованиям, в системе RbI-CdI2 образуется комплексное соединение Rb₂CdI₄ с температурой плавления 216°C [1]. По типу и симметрии кристаллической решетки Rb₂CdI₄ близок к соединениям со структурой типа β -K₂SO₄ (Cs₂CdI₄ [2,3], Rb₂ZnCl₄ [4,5], K₂ZnCl₄ [6,7] и т.д.), проявляющим сегнетоэластические свойства. Исследование фазовых переходов (ФП) в кристаллах Rb₂CdI₄ основывалось на изучении темпратурной зависимости диэлектрической проницаемости [8] и интенсивности примесных полос люминесценции ионов Mn²⁺ [9]. Полученные данные несколько противоречивы: в [8] обнаружены ФП при 150 и 210 К, причем переход при 210 К трактуется как переход первого рода. В [9] помимо ФП при 216 К обнаружены переходы при 291, 325 и 384 К и по аналогии с более изученным изоструктурным соединением Cs₂CdI₄ [2,3] в соединении Rb₂CdI₄ предполагается следующая последовательность фаз: при T > 384 K — парафаза, в интервале 384-325 К — несоразмерная фаза, ниже 325 К — соразмерные сегнетоэластические фазы. Указанные ФП при 150 и 325 К находятся в некотором противоречии с $\Phi\Pi$ в изоморфном соединении Cs₂CdI₄, где подробное исследование в интервале температур 77-400 К установило существование только трех ФП.

Экситонные спектры поглощения в перечисленных соединениях, кроме Cs_2CdI_4 [10], не изучались. В то же время представляет интерес исследование влияния ФП на оптический электронный спектр. Нами [10] разработана методика приготовления тонких пленок Rb_2CdI_4 со структурой типа β - K_2SO_4 , изоструктурных Cs_2CdI_4 , и обнаружены интенсивные экситонные полосы на краю фундаментальной полосы поглощения этого соединения. Исследование экситонной полосы в температурном интервале 90–400 К позволяет выяснить не только влияние экситон-фононного взаимодействия (ЭФВ) на спектральное положение, полуширину и силу осциллятора

полосы, но и влияние $\Phi\Pi$ на эти параметры [10,11]. Подробное обсуждение спектров поглощения в интервале 2-6 eV проводилось в [10]. В настоящей работе изучено влияние $\Phi\Pi$ на параметры наиболее длинноволновой и интенсивной A_0 -полосы.

1. Эксперимент

Тонкие пленки Rb₂CdI₄ приготавливались путем испарения в вакууме смеси чистых порошков RbI и CdI₂ стехиометрического состава на нагретые до 100°С кварцевые подложки по методике [10]. Смесь порошков предварительно расплавлялась под экраном, выпаривалась жидкая фракция расплава, а оставшийся кристаллический осадок испарялся на подложку при более высокой температуре. Затем в течение часа пленки отжигались при 100°С. При таком приготовлении образуются пленки Rb₂CdI₄ со структурой типа β -K₂SO₄ [10], что подтверждается электронографическими исследованиями. Определенные нами параметры кристаллической решетки равны $a = 10.6 \pm 0.1$ Å, $b = 8.4 \pm 0.1$ Å и $c = 14.9 \pm 0.1$ Å.

Толщина пленок определялась методом Толанского [12]. Для измерения спектров поглощения использовались пленки толщиной 100–130 nm. Спектры поглощения регистрировались на спектрофотометре СФ-46.

Температруные измерения спектров поглощения проводились в области спектра 3.6-5.1 eV в температурном интервале 90-410 K, включающем температуры возможных ФП. В интервале температур 90-293 K измерения спектров выполнялись в вакуумном криостате, а при более высоких температурах — в обычном термостате. Поскольку при быстром охлаждении образцов возможно замораживание более высокотемпературных фаз, прослеживалось изменение формы экситонной полосы при 90 К. Обнаружено, что интенсивность A-полосы увеличивается со временем и стабилизация спектра достигается через 2-3 h после охлаждения. Измерения спектра поглощения в области экситонной полосы проводились при заданной температуре (± 5 K) в течение 20 min при нагревании образца и в течение 30 min при его охлаждении.

Параметры длинноволновой A_0 -полосы (положение E_m , полуширина Γ и сила осциллятора f) определялись по методке [13]. A_0 -полоса аппроксимировалась одноосцилляторным симметричным контуром, представляющим собой линейнную комбинацию лоренцова и гауссова контуров. Параметры экситонной полосы (E_m , Γ и f) подбирались такими, чтобы на длинноволновом склоне полосы расчетный и экспериментальный контуры согласовывались наилучшим образом.

Температурная зависимость параметров длинноволновой экситонной полосы в Rb₂Cdl₄

Спектр поглощения тонкой пленки Rb₂CdI₄ представлен на рис. 1, из которого видно, что в измеренном диапазоне энергий наблюдаются две полосы: сильная длинноволновая A_0 -полоса и примыкающая к ней более слабая A_1 -полоса. В интервале 90–200 K, охватывающем сегнетоэластическую фазу II, интенсивность A_0 -полосы несколько снижается, однако при переходе в сегнетоэластическую фазу I ($T_{c3} \cong 210$ K) наблюдается некоторое увеличение ее интенсивности. При последующем нагревании образца и переходе в несоразмерную

Рис. 1. Длинноволновые экситонные полосы поглощения в Rb₂CdI₄ при различных температурах в интервале 90–402 К. Спектры получены при нагревании образца. Толщина пленки 130 nm.

Рис. 2. Температурные зависимости положения $E_m(T)$ (*a*) и полуширины $\Gamma(T)$ (*b*) A_0 -полосы в Rb₂CdI₄, полученные при нагревании (*1*) и охлаждении (*2*) образца. *3* — усредненные зависимости $\bar{E}_m(T)$ и $\bar{\Gamma}(T)$.

 $(T_{c2} \cong 290 \,\mathrm{K})$ и парафазу $(T_{c1} \cong 380 \,\mathrm{K}) A_0$ -полоса уширяется, а ее интенсивность в максимуме падает.

Параметры А₀-полосы были определены в 22 температурных точках как при нагревании образца, так и при его охлаждении. В качестве параметров использовались положение E_m и полуширина Γ полосы, величина $\varepsilon_{2m} = (2nk)_m$ — мнимая часть диэлектрической проницаемости в максимуме полосы — и параметр α , определяющий долю гауссовой составляющей в смешанном контуре. Как следует из температурного хода $E_m(T)$ и $\Gamma(T)$ (рис. 2), эти зависимости существенно различаются при нагревании и охлаждении образца: наибольшее различие для Е_т и Г наблюдается в районе несоразмерной фазы $(T_{c2} \le T \le T_{c1})$, наименьшее — в области парафазы. Кроме того, виден общий сдвиг максимума А₀-полосы в низкочастотную область, а также увеличение Г с ростом Т. Основной причиной общих закономерностей для зависимостей $E_m(T)$ и $\Gamma(T)$ является ЭФВ. Для исключения эффектов температурной памяти мы усреднили значения Е_т и Г, полученные при нагревании и охлаждении ($\bar{E}_m = 0.5(E_{m\uparrow} + E_{m\downarrow})$ и $\bar{\Gamma} = 0.5(\Gamma_{\uparrow} + \Gamma_{\downarrow})$). Из зависимостей $\bar{E}_m(T)$ следует, что вдали от температур T_{ci} наблюдается почти линейное уменьшение \bar{E}_m с ростом *T*: $d\bar{E}_m/dT = -0.6 \cdot 10^{-4} \,\mathrm{eV/K}$ при $T < T_{c3}$, $dar{E}_m/dT = -6.7\cdot 10^{-4}\,{
m eV/K}$ при $T_{c1} > T > T_{c3}$. Эти значения типичны по порядку величины для сходных ионных кристаллов, температурный сдвиг A_0 -полосы определяется ЭФВ. В районе парафазы ($T > T_{c1}$) величина $d\bar{E}_m/dT = -2.0 \cdot 10^{-4} \text{ eV/K}$ заметно ниже, чем в низкотемпературных фазах, что, возможно, связано с близостью температур парафазы к температуре плавления. В районе ФП наблюдается отклонение от указанных зависимостей. Например, в интервале 180–210 К A_0 -полоса испытывает сдвиг в сторону больших энергий на 0.02 eV, что, по-видимому, связано с переходом кристаллической решетки из триклинной фазы при $T < T_{c3}$ в моноклинную при $T > T_{c3}$ [2,3].

Интересен ход $\overline{\Gamma}(T)$ во всем температурном интервале. Вдали от температур T_{ci} зависимость $\overline{\Gamma}(T)$ линейная и подчиняется закону

$$\bar{\Gamma}(T) = \bar{\Gamma}(0) + aT,$$

где константа $a = d\bar{\Gamma}/dT$ с точностью до ошибок эксперимента постоянна и равна $(9 \pm 1) \cdot 10^{-4} \text{ eV/K}$. Линейный ход $\overline{\Gamma}(T)$ свидетельствует о низкой размерности экситонов в Rb₂CdI₄ во всех трех кристаллических фазах. Как следует из теоретического анализа, линейная зависимость $\Gamma(T)$ характерна для 2D-экситонов [14]. Этот результат согласуется со строением кристаллической решетки Rb₂CdI₄, изоморфной Cs₂CdI₄ [2,3], и возможной локализацией экситонов в тетраэдрах CdI_4^{2-} , образующих слои в плоскости ab орторомбического кристалла, разделенные заметным промежутком c = 14.9 Å, заполненным ионами Rb⁺. В то же время остаточное уширение $\overline{\Gamma}(0)$, определяемое дефектностью решеток, увеличивается при переходе в более низкотемпературные фазы: $\bar{\Gamma}(0) = 0.1 \, \text{eV}$ в орторомбической фазе $(T < T_{c2})$, 0.13 eV в моноклинной $(T_{c3} < T < T_{c2})$ и 0.18 eV в триклинной фазе ($T < T_{c3}$).

Усредненные зависимости $\bar{E}_m(T)$ и $\bar{\Gamma}(T)$ передают влияние взаимодействия экситонов с фононами, однако температурный ход реальных параметров, полученный при нагревании и охлаждении образцов, заметно сложнее (рис. 2, a, b). Особенно существенно различие $E_m(T)$ и $\Gamma(T)$ в сегнетоэластической I и несоразмерной фазах. В районе 200 К ФП в моноклинную фазу при нагревании заметно растянут и кривая $E_m(T)$ в интервале от T_{c3} до T_{c2} сдвинута на 0.03 eV в сторону больших энергий по сравнению с $E_m(T)$ при охлаждении. Все это является признаком инерционности образцов и сохранения некоторой доли низкотемпературной триклинной фазы при $T > T_{c3}$. Более того, $\Phi \Pi$ при $T_{c2} \cong 290 \, \text{K}$ при нагревании не сопровождается заметным сдвигом хода $E_m(T)$ при $T > T_{c2}$ и проявляется только в виде скачка Г на 0.04 eV. По-видимому, при нагревании соразмерная фаза частично сохраняется за счет закрепления доменных границ на дефектах решетки и в области несоразмерной фазы. И только при $T_{c1} \cong 380 \,\mathrm{K}$ переход в парафазу сопровождается резким скачком Е_m на 0.06 eV. Следует отметить, что при промежуточных температурах между T_{c1} и T_{c2} небольшое охлаждение образца на 20 К не приводит к гистерезисным явлениям и ход кривых $E_m(T)$ и $\Gamma(T)$, полученных при нагревании,

Рис. 3. Температурная зависимость силы осциллятора f(T) A_0 -полосы при нагревании (1) и охлаждении (2) образца.

сохраняется. В парафазе прямой и обратный ход температуры дает совпадающие кривые $E_m(T)$. Однако при охлаждении образца при $T < T_{c1}$ ход $E_m(T)$ заметно отличается: отсутствует скачок при $T = T_{c1}$, наблюдается нелинейный рост $E_m(T)$ с ростом T. По-видимому, такой ход $E_m(T)$ свидетельствует о формировании солитонов при подходе к T_{c2} . Резкий подъем $E_m(T)$ при T_{c2} на ~ 0.05 eV свидетельствует о ФП первого рода. В этой области температур мы наблюдали характерную петлю гистерезиса.

При подходе к T_{c2} со стороны высоких температур наблюдается также замедление хода $\Gamma(T)$ (рис. 2, *b*), что, видимо, связано с частичным пиннингом солитонов на дефектах пленки. Пиннинг, по-видимому, снимается при переходе в соразмерную фазу, так как величина Γ при T_{c2} уменьшается на 0.04 eV. Однако более высокое значение $\Gamma(T)$ при $T < T_{c2}$ по сравнению с $\Gamma(T)$ при нагревании свидетельствует о частичном сохранении пиннинга солитонов и в соразмерной фазе.

Существенную роль в термической памяти играют дефекты кристаллической решетки [15,16]. Искажения несоразмерной фазы за счет пиннинга солитонов должны больше проявляться в тонких пленках, где в качестве дефектов выступают границы кристаллических зерен и дислокации несоответствия на границе пленка–подложка. Другими словами, в тонких пленках должны увеличиваться времена релаксации метастабильных состояний и более выражен аномальный термический гистерезис. Этим, по-видимому, объясняется существенное различие в зависимостях $E_m(T)$ и $\Gamma(T)$ в районе несоразмерной фазы Rb₂CdI₄.

Сила осциллятора A₀-полосы определялась по формуле

$$f = \frac{mv}{4\pi e^2\hbar^2} \,\varepsilon_{2m} E_m \,\Gamma \left[1 - 0.322\alpha\right],$$

где v — объем, приходящийся на молекулу (в элементарной ячейке четыре молекулы), α — доля гауссовой составляющей в смешанном контуре A_0 -полосы. Как видно (рис. 3), общая тенденция зависимости f(T)заключается в уменьшении силы осциллятора с ростом температуры: $\bar{f}(T)$ убывает от 0.28 при 90 К до 0.20 при 420 К.

Уменьшение f(T) указывает на бесфононный характер А₀-полосы, так как сила осциллятора бесфононных полос понижается за счет фактора Дебая-Валлера [17]. Однако в районе соразмерной моноклинной фазы (200-290 K) наблюдается необычный подъем $\bar{f}(T)$ до значения 0.285. Такой подъем виден и из измеренных спектров оптической плотности (рис. 1). Более того, в районе соразмерной фазы I (200-290 K) доля гауссовой составляющей в смешанном контуре уменьшается по сравнению с низкотемпературной фазой II ($T < 200 \, {\rm K}$). Причиной возникновения гауссовой составляющей в исходном лоренцовом контуре экситонной полосы является разупорядочение кристаллической решетки за счет дефектов [11], а также температурный рост динамического неоднородного уширения за счет повышения концентрации фононов с ростом температуры и их взаимодействия [18,19]. Отсюда можно сделать вывод о наибольшем структурном упорядочении кристаллической решетки пленки Rb₂CdI₄ в районе соразмерной моноклинной фазы. Этот вывод согласуется с существенным уменьшением $\overline{\Gamma}(0)$ при переходе из триклинной в моноклинную фазу (рис. 2). Сходный всплеск f(T) в интервале $T_{c3} \leq T \leq T_{c2}$ наблюдался нами в Cs₂CdI₄ [10].

Различие в термической памяти при нагревании и охлаждении Rb_2CdI_4 также сказывается в различии f(T) при прямом и обратном ходе температуры. Так, при охлаждении значение f(T) меньше в несоразмерной фазе и существенно меньше в соразмерной фазе I, несмотря на большее значение $\Gamma(T)$ в двух фазах. Возможной причиной уменьшения f(T) является пиннинг солитонов на дефектах решетки, сохраняющийся при $T < T_{c2}$ и препятствующий упорядочению доменных границ в соразмерной фазе. На температурной зависимости f(T) также сказываются ФП первого рода при переходе из несоразмерной в парафазу при нагревании и из несоразмерной в соразмерную фазу при охлаждении.

Таким образом, исследование температурной зависимости параметров узких экситонных полос позволяет выявить ФП и явления термической памяти в сегнетоэластиках. Эта методика применима для изучения ФП и в других классах веществ, имеющих в спектре поглощения узкие экситонные линии.

Список литературы

- И.Н. Беляев, Е.А. Шургинов, Н.С. Кудряшов. ЖНХ 17, 10, 2812 (1972).
- [2] K.S. Aleksandrov, S.V. Melnikova, I.N. Flerov, A.D. Vasilev, A.I. Kruglik, I.T. Kokov. Phys. Stat. Sol. (a) 105, 2, 441 (1988).
- [3] V. Teuchard, M. Louer, J.P. Auffredic, D. Louer. Rev. Chim. Miner. 24, 4, 414 (1987).
- [4] В.В. Гладкий, В.А. Кириков, И.С. Желудев, И.В. Гаврилова. ФТТ 29, 6, 1690 (1987).
- [5] О.Г. Влох, А.В. Китык, И.И. Половинко. Кристаллография 32, *1*, 140 (1987).
- [6] О.Г. Влох, Б.В. Каминский, И.И. Половинко, С.А. Свелева. ФТТ 28, 9, 2911 (1986).

- [7] T. Nattermann. Phys. Stat. Sol. (b) 133, 1, 65 (1986).
- [8] F. Shimizu, M. Takashige. J. Phys. Soc. Jap. 67, 7, 2555 (1998).
- [9] И.М. Болеста, Ю.М. Фургала. УФЖ 36, 11, 1654 (1991).
- [10] О.Н. Юнакова, В.К. Милославский, Е.Н. Коваленко. ФТТ 45, 5, 887 (2003).
- [11] И.Х. Акопян, Д.Н. Громов, А.В. Мищенко, А.Е. Монов, Б.В. Новиков, М.Д. Яуфман. ФТТ 26, 9, 2628 (1984).
- [12] Физика тонких пленок. Т. 4. / Под ред. Г. Хасса, Р.Э. Туна. М., Мир (1970). С. 440.
- [13] В.К. Милославский, О.Н. Юнакова, Сунь Цзя-Линь. Опт. и спектр. 78, 3, 436 (1955).
- [14] M. Schreiber, Y. Toyozawa. J. Phys. Soc. Jap. 51, 5, 1528 (1982).
- [15] Б.А. Струков, В.М. Арутюнова, И. Уссу. ФТТ 24, 10, 3061 (1982).
- [16] K. Hamano, Y. Ikeda, T. Fujimoto, K. Ema, S. Hirotsu. J. Phys. Soc. Jap. 49, 6, 2278 (1980).
- [17] M. Matsuura, H. Buttner. Phys. Rev. B 21, 2, 679 (1980).
- [18] В.К. Милославский, О.Н. Юнакова. Опт. и спектр. **57**, *1*, 85 (1984).
- [19] В.К. Милославский, О.Н. Юнакова. УФЖ 31, 1, 50 (1986).