03:06

Взаимодействие паров воды с поверхностями силикатных стекол: масс-спектрометрическое исследование

© Ю. Кудрявцев¹, R. Asomoza-Palacio¹, L. Manzanilla-Naim²

 ¹ Отделение твердотельной электроники центра исследований и передового обучения национального политехнического института, 07360, Мехико, Мексика
 ² Институт антропологических исследований автономного национального университета, Мехико, Мексика E-mail: yuriyk@cinvestav.mx

Поступило в Редакцию 28 сентября 2016 г.

Методом масс-спектрометрии вторичных ионов исследовались результаты гидратирования боросиликатного, алюмосиликатного и натриево-известковосиликатного стекол в парах воды ${}^{1}\text{H}_{2}{}^{18}\text{O}$ с 97%-м содержанием изотопа ${}^{18}\text{O}$. Показано, что для натриево-известково-силикатного стекла происходит гидратирование поверхности в результате реакции ионного обмена с щелочными металлами. В случае боросиликатного и алюмосиликатного стекол молекулы воды распадаются на поверхности стекол, а наблюдаемое формирование гидрогенированного слоя в стекле является результатом твердотельной химической реакции, предположительно, образования гидроксидов из оксидов алюминия и бора.

DOI: 10.21883/PJTF.2017.09.44579.16506

Взаимодействие стекол с водой имеет важное прикладное значение и активно изучается последние 50 лет. В первую очередь следует отметить проблему захоронения радиоактивных отходов в специальных контейнерах из боросиликатного (БС) и алюмосиликатного (АС) стекол с точки зрения сохранности таких захоронений в течение долгого времени [1,2]. Существут также проблема защиты поверхности музейных экспонатов, сделанных из стекла, от взаимодействия с парами воды [3]. Отдельно следует упомянуть метод датирования археологических артефактов, сделанных из вулканического стекла — обсидиана. Обсидиан представляет собой природное алюмосиликатное стекло, содержащее

75

10-14 wt% оксида алюминия в зависимости от месторождения. В основе метода датирования обсидианов лежит предположение, что на поверхности свежего скола обсидиана из воздуха осаждаются молекулы воды, которые со временем диффундируют внутрь стекла, образуя некий модифицированный или "гидратированный" слой [4,5]. Определенная в оптическом микроскопе или методом масс-спектрометрии вторичных ионов (МСВИ) толщина "гидратированного" слоя *d* позволяет определять возраст артефакта из эмпирического соотношения [4].

$$d = \sqrt{Dt},\tag{1}$$

где *D* — коэффициент диффузии, зависящий от локальной температуры и химического состава стекла, а *t* — время с момента изготовления или возраст данного артефакта.

В данной работе нами экспериментально проверено предположение о диффузии молекул воды в силикатные стекла. Экспериментальные образцы БС-стекла (марка Pyrex) и натриево-известково-силикатного (НИС) стекла вырезались из изделий подходящего размера для изготовления образцов примерно 3 × 5 × 2 mm. В качестве АС-стекла использовались образцы обсидиана размерами примерно $3 \times 5 \times 2 \,\mathrm{mm}$, вырезаемые из большого куска обсидиана алмазным диском. Исследуемая поверхность обсидианового образца при этом полировалась. Гидратирование образцов проводилось в стандартных патрубках высоковакуумного соединения типа кофлат (conflat) CF 1.33" с медными прокладками. В верхнем уплотняющем фланце просверливалась дырка, в которую вкручивался болт из нержавеющей стали. Образец подвешивался на этот болт при помощи тефлоновой нитки. Таким образом исключался контакт между образцом, водой и стенками патрубка, а также между разными образцами. Перед затягиванием болтов соединения в нижнюю часть патрубка наливалось примерно 500 mg воды ¹H₂¹⁸O с 97%-м содержанием изотопа ¹⁸О (Sigma Aldrich 329878). Патрубки с образцами помещались на 30 суток в печку, нагретую до температуры 90°С. После извлечения и перед анализом МСВИ образцы в течение 3 min чистились в ультразвуковой ванне в спирте, сушились в струе сухого азота, а затем в специальном держателе загружались в предварительную камеру массспектрометра и откачивались не менее 8 h до 10^{-8} Torr перед загрузкой в камеру анализа.

Послойный анализ образцов осуществлялся методом МСВИ при помощи время-пролетного масс-спектрометра TOF-SIMS-V компании Ion-TOF, Германия. Прибор использовался в режиме анализа с двойным пучком: травление поверхности осуществлялось ионами цезия с энергией 2 keV и углом падения 45°, анализ проводился пульсирующим жидкометаллическим источником ионов висмута с энергией 30 keV и углом падения 45°. При этом анализ вторичных отрицательных ионов проводился из центральной (100 × 100 µm) области кратера травления цезиевым источником с размерами 300 × 300 µm для минимизации эффекта границ кратера травления. Анализировались вторичные отрицательные ионы: ¹H⁻, ¹⁸O⁻, ²³Na⁻, ²⁸Si⁻ и другие. Сигнал ионов кремния ²⁸Si⁻ использовался для нормализации всех остальных сигналов. Бомбардировка поверхности стекла положительными ионами приводит к появлению положительного поверхностного заряда, препятствующего дальнейшему анализу. Для компенсации эффекта заряда поверхности в данной работе использовался низкоэнергетичный источник электронов (20 eV) с током пучка до $18 \,\mu$ А, направлявшийся на кратер травления. Остаточный вакуум в камере анализа в процессе анализа ВИМС поддерживался не хуже 1 · 10⁻⁹ Тогг. Глубина эспериментальных кратеров травления определялась профилографом Dektak-XT фирмы Bruker для пересчета времени травления в глубину. Концентрация водорода (а также воды в объеме обсидиана) рассчитывалась при помощи имплантированного стандарта. Для изотопа ¹⁸О концентрация определялась с учетом концентрации кислорода во всех оксидах, определенных методом рентгеновского флуоресцентного анализа (РФА), исходя из природного соотношения изотопов кислорода. Химический состав обсидиана и НИС-стекла измерялся независимо методом РФА в коммерческой лаборатории. Для БС-стекла состав брался из сертификата изделия. В таблице приведен состав использованных в данной работе стекол.

На рисунке, a-d приведены профили распределения водорода ¹Н и изотопа кислорода ¹⁸О для трех разных стекол. Поверхность НИСстекла оказалась сильно модифицированной в процессе гидратирования, поэтому для этого образца измерения проводились в наиболее измененной области (c) и наиболее сохранившейся области (d). Для обоих профилей характерно синхронное изменение концентрации водорода и кислорода ¹⁸О, что подтверждает ранее опубликованные данные о реакции ионного обмена между молекулами воды и оксидами щелочных

Распределение водорода и изотопа кислорода ¹⁸О в алюмосиликатном (обсидиан) (*a*), боросиликатном (*b*) и натриево-известково-силикатном (*c*, *d*) стеклах после гидратирования в парах воды ¹H₂¹⁸O при температуре 90°C в течение месяца. Штриховой линией показана аппроксимация распределения изотопа ¹⁸O комплементарной функцией ошибок (уравнение (2)).

Письма в ЖТФ, 2017, том 43, вып. 9

Химический состав стекол, использованных в данной работе, определенный методом РФА и взятый из сертификата изделия (Pyrex) в весовых процентах (приведены только основные примеси)

Стекло	Na ₂ O	Al_2O_3	B_2O_3	SiO_2	K_2O	CaO	Fe ₂ O ₃	MgO
Боросиликатное	4.2	2.2	12.6	80.6	4.6		-	—
Алюмосиликатное (обсидиан)	4.5	10.0	_	76.6	4.8	0.2	3.2	_
Натриево-известково- силикатное	~ 12.7	1.9	_	72.4	0.6	6.9	0.1	4.2

металлов (Na₂O и K₂O), в результате которой на поверхности образца образуется гидратированный слой, а натрий и калий покидают стекло — так называемый эффект выщелачивания [6].

В случае БС- и АС-стекол следует отметить наличие двух разных слоев: очень тонкого приповерхностного слоя толщиной примерно 10 nm с высокой концентрацией водорода и кислорода ¹⁸O (а скорее всего, воды) и значительно более толстого слоя (толщиной более микрона), в котором распределение водорода и изотопа ¹⁸O радикально отличаются. Для водорода в этом слое мы наблюдаем так называемое "S-распределение", как и в случае других измерений водорода в обсидианах [7,8]. Распределение же ¹⁸O в этих двух образцах описывается комплиментарной функцией ошибки, характерной для реакции изотопного обмена в твердом теле [9]:

$$C(t) = \frac{C1}{2} \operatorname{erfc}\left(\frac{-x}{2\sqrt{Dt}}\right) - C_0.$$
⁽²⁾

Здесь C_1 — концентрация изотопа ¹⁸О на границе поверхностного слоя, насыщенного изотопной водой и являющегося источником диффузанта, C_0 — концентрация изотопа ¹⁸О в объеме стекла.

Таким образом, в боросиликатном и алмосиликатном стеклах нами наблюдаются результаты двух различных физико-химических процессов "проникновения" атомов водорода и изотопа кислорода ¹⁸О в стекло, а не диффузия воды, как утверждалось ранее. Очевидно, что молекулы воды разлагаются в поверхностном слое этих стекол толщиной примерно 10 nm, а затем водород и кислород ¹⁸O "проникают" в АС- и

БС-стекла независимо друг от друга. Этот вывод совпадает с ранее нами сделанным на основе анализа обсидианов, гидратированных в "естественных условиях" [8]. Характерная форма профиля водорода позволяет нам исключить диффузию с постоянным коэффициентом из дальнейшего рассмотрения [9]. В качестве рабочей гипотезы нами рассматривается твердотельная химическая реакция между водородом и составляющими стекло оксидами; при этом наиболее реальным видится образование гидроксидов из оксидов-модификаторов: оксида алюминия, бора и железа (в обсидиане), т.е. оксидов трехвалентных металлов. Такой вывод вытекает из сравнения результатов эксперимента, приведенных на рисунке, и химического состава стекол. Действительно, предельная концентрация водорода в гидрогенированном слое примерно совпадает (или ограничена сверху) с концентрацией оксида бора и алюминия, а также оксида железа в БС- и АС-стеклах соответственно (считая в атомарных процентах). В случае же НИС-стекол, где вместо оксидов трехвалентных металлов присутствуют в качестве модификаторов оксиды двухвалентных металлов (оксиды кальция и магния), происходит именно гидратирование стекла, как уже отмечалось выше. Для окончательного ответа на вопрос образования гидрогенированного слоя в БС- и АС-стеклах требуются дополнительные исследования, проводящиеся в настоящее время.

И последнее. Распад молекул воды в тонком приповерхностном слое БС- и АС-стекол на водород и кислород при низкой температуре (начиная с комнатной), а также накапливание этими стеклами водорода с концентрацией до почти 10 at.% представляются чрезвычайно интересными с точки зрения дальнейшего исследования возможного применения этих стекол в водородных топливных элементах из-за их дешевизны в сравнении с редкими металлами и редкоземельными оксидами, используемыми в настоящее время.

Авторы выражают благодарность фонду Conacyt (Мексика) за финансовую поддержку работы (грант № 254903).

Список литературы

- [1] Gin S. // Procedia Mater. Sci. 2014. V. 7. P 163-171.
- [2] Geisler T., Nagel T., Kilburn M.R. et al. // Geochim. Cosmochim. Acta. 2015.
 V. 158. P 112–129.

- [3] Fearn S., McPhail D.S., Oakley V. // Appl. Surf. Sci. 2004. V. 231–232. P. 510– 514.
- [4] Friedman I., Smith R. // Am. Antiquity. 1960. V. 25. P. 476-522.
- [5] Liritzis Io., Laskaris N. // J. Non-Cryst. Solids. 2011. V. 357. P. 2011-2023.
- [6] Lanford W.A., Davis K., Lamarche P. et al. // J. Non-Cryst. Solids. 1979. V. 33. P. 249–266.
- [7] Anovitz L.M., Elam J.M., Riciputi L.R., Cole D.R. // J. Arc. Sci. 1999. V. 26. P 735–752.
- [8] Kudriavtsev Yu., Gallardo S., Villegas A. et al. // Revista Mexicana de Fisica. 2010. V. 56. P. 204–207.
- [9] Crank J. The Mathematics of Diffusion. Oxford: Oxford University Press, 1975. P. 414.